Submitted:
13 September 2025
Posted:
15 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
- aged 18–39 years; and
- overnight fasting capability (no more than 16 consecutive hours).
- cerebrovascular/neurological diseases (e.g., stroke, multiple sclerosis, traumatic brain injury, cerebral hematoma);
- major cardiovascular events;
- major psychiatric disorders (e.g., major depressive disorder, generalized anxiety disorder, schizophrenia, autism spectrum disorders, attention deficit hyperactivity disorder, bipolar disorder);
- recent drug, alcohol, or substance abuse (≤6 months);
- diabetes mellitus I/II;
- blood pressure ≥21.3/14.7 kPa (≥160/110 mmHg)
- fasting blood glucose values of <3.9 mmol/L (<70 mg/dL) or >6.9 mmol/L (>125 mg/dL);
- current use of medications that impact weight, insulin levels, serum biomarkers, or affective processing (e.g., systemic corticosteroids, weight reduction medications, atypical antipsychotics);
- have ferrous metal implants or shrapnel around the head/eyes;
- currently pregnant; and
- currently use nicotine/tobacco products.
2.2. Study Design and Protocol
2.2.1. Initial Screening Visit
2.2.2. First Follow-Up Visit
2.2.3. Second Follow-Up Visit
- Negative minus Neutral;
- Positive minus Neutral; and
- Negative minus Positive.
2.3. Electroencephalography
- the application of a high-pass (≤0.1 Hz) filter followed by a low-pass (≥30 Hz) filter (using gain 1,000, 16-bit A/D conversion);
- continuous EEG data was epoched into two-second segments post-stimulus onset (0–2.0 s latency window);
- standardized the whole-brain amplitude values via average reference computation;
- eliminated noisy channels through an automatic epoch rejection method (channel fluctuations ≥1,000 µV);
- eliminated artifacts using a peer-reviewed algorithm and statistical parameters [63]; and
- exported the whole time-course grand means for each valence condition to a .csv file.
2.4. Event-Related Potential Components
- Negative–Neutral;
- Positive–Neutral; and
- Negative–Positive.
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Event-Related Potentials
3.3. Neural Amplitudes by Categorical Groups
| Adiposity Insulin | |||||||
| ERP Components | Total | Lean | Obese | t value | Insulin-sensitive | Insulin-resistant | t value |
| Negative–Neutral | |||||||
| EPN | 1.7 (2.7) | 1.7 (3.0) | 1.6 (2.6) | t= 0.04 | 1.1 (2.6) | 2.5 (2.6) | t= -1.37 |
| Early LPP | 0.9 (1.9) | 0.6 (2.5) | 1.1 (1.7) | t= -0.64 | 0.8 (2.1) | 1.2 (1.7) | t= -0.47 |
| Middle LPP | 0.8 (2.2) | 0.6 (2.2) | 0.9 (2.2) | t= -0.38 | 0.7 (2.1) | 1.1 (2.4) | t= -0.45 |
| Late LPP | 1.2 (1.8) | 2.4 (2.3) | 0.8 (1.5) | t= 2.31* | 1.8 (1.9) | 0.3 (1.3) | t= 2.37* |
| Positive–Neutral | |||||||
| EPN | -0.3 (2.6) | -0.7 (2.1) | -0.2 (2.8) | t= -0.49 | -0.8 (2.5) | 0.4 (2.6) | t= -1.22 |
| Early LPP | -0.1 (2.3) | 0.6 (1.7) | -0.3 (2.5) | t= 0.96 | 0.0 (2.3) | -0.2 (2.5) | t= 0.26 |
| Middle LPP | 0.1 (2.7) | 0.3 (2.0) | 0.1 (2.9) | t= 0.17 | 0.2 (2.5) | 0.0 (3.1) | t= 0.13 |
| Late LPP | 0.7 (2.2) | 1.9 (2.1) | 0.3 (2.2) | t= 1.87 | 1.2 (1.9) | -0.1 (2.6) | t= 1.69 |
| Negative–Positive | |||||||
| EPN | 2.0 (2.7) | 2.4 (3.1) | 1.8 (2.6) | t= 0.50 | 1.9 (2.9) | 2.1 (2.5) | t= -0.18 |
| Early LPP | 1.0 (1.6) | 0.0 (1.6) | 1.4 (1.4) | t= -2.38* | 0.8 (1.7) | 1.3 (1.4) | t= -0.97 |
| Middle LPP | 0.7 (2.0) | 0.3 (1.2) | 0.9 (2.2) | t= -0.65 | 0.5 (1.9) | 1.0 (2.2) | t= -0.68 |
| Late LPP | 0.5 (2.0) | 0.5 (2.0) | 0.5 (2.0) | t= 0.03 | 0.6 (2.0) | 0.4 (2.0) | t= 0.19 |
3.4. Affective Processing Parameters by Categorical Groups
3.5. Neural Amplitudes and Affective Processing


3.6. Moderation Analyses
3.6.1. Negative–Neutral Picture Condition

3.6.2. Positive–Neutral Picture Condition
3.6.3. Negative–Positive Picture Condition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BF% | Body fat percentage |
| BMI | Body mass index |
| BP | Blood pressure |
| DEXA/DXA | Dual-energy X-ray absorptiometry scan |
| dlPFC | Dorsolateral prefrontal cortex |
| EEG | Electroencephalography |
| eLPP | Late positive potential in the early latency window |
| EPN | Early posterior negativity |
| ERP | Event-related potential |
| fMRI | Functional magnetic resonance imaging |
| Hemoglobin A1c | Glycated hemoglobin |
| HOMA-IR | Homeostatic model assessment for insulin resistance |
| IR | Insulin resistance/resistant |
| IS | Insulin sensitivity/sensitive |
| lLPP | Late positive potential in the late latency window |
| LPP | Late positive potential |
| mLPP | Late positive potential in the middle latency window |
| ms | Milliseconds |
| RT | Reaction time |
| vlPFC | Ventrolateral prefrontal cortex |
Appendix A
| Negative | Neutral | Positive |
| 3030, 3060, 3071, 3100, 3102, 3130, 3150, 3170, 6020, 6230, 6313, 6570, 9040, 9140, 9181, 9253, 9265, 9320, 9420, 9433, 9570, 9571 | 2372, 2383, 2514, 2840, 5410, 6150, 6900, 7000, 7002, 7006, 7009, 7010, 7035, 7080, 7130, 7170, 7175, 7233, 7491, 7550, 7705 | 1340, 1463, 2165, 2306, 2374, 4603, 4611, 4652, 4656, 4810, 5202, 5611, 5764, 6250, 7200, 7250, 7508, 8118, 8251, 8500, 9400 |
References
- Brauer, M.; Roth, G.A.; Aravkin, A.Y.; Zheng, P.; Abate, K.H.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasi, M.A.; Abbasian, M., et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. The Lancet 2024, 403, 2162-2203, doi:10.1016/S0140-6736(24)00933-4.
- Panda, S.S.; Nayak, A.; Shah, S.; Aich, P. A systematic review on the association between obesity and mood disorders and the role of gut microbiota. Metabolites 2023, 13, doi:10.3390/metabo13040488.
- McElroy, S.L.; Kotwal, R.; Malhotra, S.; Nelson, E.B.; Keck, P.E.; Nemeroff, C.B. Are mood disorders and obesity related? A review for the mental health professional. J. Clin. Psychiatry 2004, 65, 634-651, quiz 730, doi:10.4088/jcp.v65n0507.
- Romero-Rebollar, C.; García-Gómez, L.; Báez-Yáñez, M.G.; Gutiérrez-Aguilar, R.; Pacheco-López, G. Adiposity affects emotional information processing. Front. Psychol. 2022, Volume 13 - 2022, doi:10.3389/fpsyg.2022.879065.
- Wegener, I.; Wawrzyniak, A.; Imbierowicz, K.; Conrad, R.; Musch, J.; Geiser, F.; Wermter, F.; Liedtke, R. Evidence for attenuated affective processing in obesity. Psychol Rep 2008, 103, 35-47, doi:10.2466/pr0.103.1.35-47.
- Hanson, J.A.; Wagner, G.; Dretsch, M. Cognitive disinhibition and infrequent moderate-to-intense physical activity linked with obesity in U.S. soldiers. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity 2021, 26, 973-981, doi:10.1007/s40519-020-00932-5.
- Scarpina, F.; Varallo, G.; Castelnuovo, G.; Capodaglio, P.; Molinari, E.; Mauro, A. Correction to: Implicit facial emotion recognition of fear and anger in obesity. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity 2021, 26, 1281-1281, doi:10.1007/s40519-020-01042-y.
- Woods, S.C.; Seeley, R.J.; Baskin, D.G.; Schwartz, M.W. Insulin and the blood-brain barrier. Curr. Pharm. Des. 2003, 9, 795-800, doi:10.2174/1381612033455323.
- Freeman, A.; Pennings, N. Insulin resistance; StatPearls Publishing Inc.: Treasure Island, FL, 2019.
- Hardy, O.T.; Czech, M.P.; Corvera, S. What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 81-87, doi:10.1097/MED.0b013e3283514e13.
- Dhokte, S.; Czaja, K. Visceral adipose tissue: The hidden culprit for type 2 diabetes. Nutrients 2024, 16, doi:10.3390/nu16071015.
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315, doi:10.1016/j.biopha.2021.111315.
- Stenkula, K.G.; Erlanson-Albertsson, C. Adipose cell size: Importance in health and disease. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2018, 315, R284-R295, doi:10.1152/ajpregu.00257.2017.
- Kleinridders, A.; Cai, W.; Cappellucci, L.; Ghazarian, A.; Collins, W.R.; Vienberg, S.G.; Pothos, E.N.; Kahn, C.R. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci U S A 2015, 112, 3463-3468, doi:10.1073/pnas.1500877112.
- Martin, H.; Bullich, S.; Martinat, M.; Chataigner, M.; Di Miceli, M.; Simon, V.; Clark, S.; Butler, J.; Schell, M.; Chopra, S., et al. Insulin modulates emotional behavior through a serotonin-dependent mechanism. Mol. Psychiatry 2024, 29, 1610-1619, doi:10.1038/s41380-022-01812-3.
- Marsh, C.A.; Berent-Spillson, A.; Love, T.; Persad, C.C.; Pop-Busui, R.; Zubieta, J.K.; Smith, Y.R. Functional neuroimaging of emotional processing in women with polycystic ovary syndrome: A case-control pilot study. Fertil Steril 2013, 100, 200-207.e201, doi:10.1016/j.fertnstert.2013.02.054.
- Breiter, H.C.; Etcoff, N.L.; Whalen, P.J.; Kennedy, W.A.; Rauch, S.L.; Buckner, R.L.; Strauss, M.M.; Hyman, S.E.; Rosen, B.R. Response and habituation of the human amygdala during visual processing of facial expression. Neuron 1996, 17, 875-887, doi:10.1016/S0896-6273(00)80219-6.
- Kohn, N.; Eickhoff, S.B.; Scheller, M.; Laird, A.R.; Fox, P.T.; Habel, U. Neural network of cognitive emotion regulation--An ALE meta-analysis and MACM analysis. NeuroImage 2014, 87, 345-355, doi:10.1016/j.neuroimage.2013.11.001.
- de Weijer, B.A.; van de Giessen, E.; van Amelsvoort, T.A.; Boot, E.; Braak, B.; Janssen, I.M.; van de Laar, A.; Fliers, E.; Serlie, M.J.; Booij, J. Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. European Journal of Nuclear Medicine and Molecular Imaging Research 2011, 1, 37, doi:10.1186/2191-219x-1-37.
- Volkow, N.D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Thanos, P.K.; Logan, J.; Alexoff, D.; Ding, Y.S.; Wong, C.; Ma, Y., et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. NeuroImage 2008, 42, 1537-1543, doi:10.1016/j.neuroimage.2008.06.002.
- Osugo, M.; Wall, M.B.; Selvaggi, P.; Zahid, U.; Finelli, V.; Chapman, G.E.; Whitehurst, T.; Onwordi, E.C.; Statton, B.; McCutcheon, R.A., et al. Striatal dopamine D2/D3 receptor regulation of human reward processing and behaviour. Nat. Commun. 2025, 16, 1852, doi:10.1038/s41467-025-56663-7.
- Park, B.-y.; Hong, J.; Park, H. Neuroimaging biomarkers to associate obesity and negative emotions. Sci. Rep. 2017, 7, 7664, doi:10.1038/s41598-017-08272-8.
- Sripetchwandee, J.; Chattipakorn, N.; Chattipakorn, S.C. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front. Endocrinol. (Lausanne) 2018, 9, 496, doi:10.3389/fendo.2018.00496.
- Bingham, E.M.; Hopkins, D.; Smith, D.; Pernet, A.; Hallett, W.; Reed, L.; Marsden, P.K.; Amiel, S.A. The role of insulin in human brain glucose metabolism: An 18fluoro-deoxyglucose positron emission tomography study. Diabetes 2002, 51, 3384-3390, doi:10.2337/diabetes.51.12.3384.
- Willette, A.A.; Xu, G.; Johnson, S.C.; Birdsill, A.C.; Jonaitis, E.M.; Sager, M.A.; Hermann, B.P.; La Rue, A.; Asthana, S.; Bendlin, B.B. Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults. Diabetes Care 2013, 36, 443-449, doi:10.2337/dc12-0922.
- Gevins, A.; Smith, M.E.; McEvoy, L.K.; Leong, H.; Le, J. Electroencephalographic imaging of higher brain function. Philos Trans R Soc Lond B Biol Sci 1999, 354, 1125-1133, doi:10.1098/rstb.1999.0468.
- Eryilmaz, H.H.; Duru, A.D.; Parlak, B.; Ademoglu, A.; Demiralp, T. Neuroimaging of event related brain potentials (ERP) using fMRI and dipole source reconstruction. Annu Int Conf IEEE Eng Med Biol Soc 2007, 2007, 3384-3387, doi:10.1109/iembs.2007.4353057.
- McWeeny, S.; Norton, E.S. Understanding event-related potentials (ERPs) in clinical and basic language and communication disorders research: A tutorial. Int. J. Lang. Commun. Disord. 2020, 55, 445-457, doi:10.1111/1460-6984.12535.
- Woodman, G.F. A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys 2010, 72, 2031-2046, doi:10.3758/APP.72.8.2031.
- Brown, S.B.; van Steenbergen, H.; Band, G.P.; de Rover, M.; Nieuwenhuis, S. Functional significance of the emotion-related late positive potential. Front Hum Neurosci 2012, 6, 33, doi:10.3389/fnhum.2012.00033.
- Luck, S.J. Event-related potentials. 2012.
- Schupp, H.T.; Junghöfer, M.; Weike, A.I.; Hamm, A.O. The selective processing of briefly presented affective pictures: An ERP analysis. Psychophysiology 2004, 41, 441-449, doi:10.1111/j.1469-8986.2004.00174.x.
- Frank, D.W.; Sabatinelli, D. Hemodynamic and electrocortical reactivity to specific scene contents in emotional perception. Psychophysiology 2019, 56, e13340, doi:10.1111/psyp.13340.
- Cuthbert, B.N.; Schupp, H.T.; Bradley, M.M.; Birbaumer, N.; Lang, P.J. Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biol. Psychol. 2000, 52, 95-111, doi:10.1016/s0301-0511(99)00044-7.
- Moran, T.P.; Jendrusina, A.A.; Moser, J.S. The psychometric properties of the late positive potential during emotion processing and regulation. Brain Res 2013, 1516, 66-75, doi:10.1016/j.brainres.2013.04.018.
- Liu, Y.; Huang, H.; McGinnis-Deweese, M.; Keil, A.; Ding, M. Neural substrate of the late positive potential in emotional processing. The Journal of Neuroscience 2012, 32, 14563-14572, doi:10.1523/jneurosci.3109-12.2012.
- Keil, A.; Bradley, M.M.; Hauk, O.; Rockstroh, B.; Elbert, T.; Lang, P.J. Large-scale neural correlates of affective picture processing. Psychophysiology 2002, 39, 641-649.
- Schupp, H.T.; Cuthbert, B.N.; Bradley, M.M.; Cacioppo, J.T.; Ito, T.; Lang, P.J. Affective picture processing: The late positive potential is modulated by motivational relevance. Psychophysiology 2000, 37, 257-261.
- Hajcak, G.; Dunning, J.P.; Foti, D. Motivated and controlled attention to emotion: Time-course of the late positive potential. Clin. Neurophysiol. 2009, 120, 505-510, doi:10.1016/j.clinph.2008.11.028.
- Hajcak, G.; MacNamara, A.; Olvet, D.M. Event-related potentials, emotion, and emotion regulation: An integrative review. Dev. Neuropsychol. 2010, 35, 129-155, doi:10.1080/87565640903526504.
- Schupp, H.T.; Flaisch, T.; Stockburger, J.; Junghöfer, M. Emotion and attention: Event-related brain potential studies. In Progress in Brain Research, Anders, S., Ende, G., Junghofer, M., Kissler, J., Wildgruber, D., Eds. Elsevier: 2006; Vol. 156, pp. 31-51.
- Fields, E.C. The P300, the LPP, context updating, and memory: What is the functional significance of the emotion-related late positive potential? Int. J. Psychophysiol. 2023, 192, 43-52, doi:10.1016/j.ijpsycho.2023.08.005.
- Dolcos, F.; Cabeza, R. Event-related potentials of emotional memory: Encoding pleasant, unpleasant, and neutral pictures. Cognitive, Affective, & Behavioral Neuroscience 2002, 2, 252-263, doi:10.3758/CABN.2.3.252.
- Macnamara, A.; Foti, D.; Hajcak, G. Tell me about it: Neural activity elicited by emotional pictures and preceding descriptions. Emotion 2009, 9, 531-543, doi:10.1037/a0016251.
- Foti, D.; Hajcak, G.; Dien, J. Differentiating neural responses to emotional pictures: Evidence from temporal-spatial PCA. Psychophysiology 2009, 46, 521-530, doi:10.1111/j.1469-8986.2009.00796.x.
- Hajcak, G.; Weinberg, A.; MacNamara, A.; Foti, D. ERPs and the Study of Emotion. In The Oxford Handbook of Event-Related Potential Components, Kappenman, E.S., Luck, S.J., Eds. Oxford University Press: 2011; 10.1093/oxfordhb/9780195374148.013.0222p. 0.
- O’Hare, A.J.; Atchley, R.A.; Young, K.M. Valence and arousal influence the late positive potential during central and lateralized presentation of images. Laterality 2017, 22, 541-559, doi:10.1080/1357650x.2016.1241257.
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412-419, doi:10.1007/bf00280883.
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans; U.S. Dept of Health and Human Services: Washinton, D.C., 2018.
- Larsen, B.A.; Klinedinst, B.S.; Wolf, T.; McLimans, K.E.; Wang, Q.; Pollpeter, A.; Li, T.; Mohammadiarvejeh, P.; Fili, M.; Grundy, J.G., et al. Adiposity and insulin resistance moderate the links between neuroelectrophysiology and working and episodic memory functions in young adult males but not females. Physiol Behav 2023, 271, 114321, doi:10.1016/j.physbeh.2023.114321.
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International affective picture system (IAPS): Affective ratings of pictures and instruction manual, Technical Report A-8; University of Florida: Gainesville, FL, 2008.
- Psychology Software Tools. E-Prime. Availabe online: https://pstnet.com/products/e-prime/ (accessed on 3 August 2024).
- Shaygan, M.; Böger, A.; Kröner-Herwig, B. Valence and arousal value of visual stimuli and their role in the mitigation of chronic pain: What is the power of pictures? The Journal of Pain 2017, 18, 124-131, doi:10.1016/j.jpain.2016.10.007.
- Calvo, M.G.; Avero, P. Reaction time normative data for the IAPS as a function of display time, gender, and picture content. Behav. Res. Methods 2009, 41, 184-191, doi:10.3758/brm.41.1.184.
- Baumeister, R.F.; Bratslavsky, E.; Finkenauer, C.; Vohs, K.D. Bad is stronger than good. Rev. Gen. Psychol. 2001, 5, 323-370, doi:10.1037/1089-2680.5.4.323.
- Striepens, N.; Scheele, D.; Kendrick, K.M.; Becker, B.; Schäfer, L.; Schwalba, K.; Reul, J.; Maier, W.; Hurlemann, R. Oxytocin facilitates protective responses to aversive social stimuli in males. Proc Natl Acad Sci U S A 2012, 109, 18144-18149, doi:10.1073/pnas.1208852109.
- Yuan, J.; Chen, J.; Yang, J.; Ju, E.; Norman, G.J.; Ding, N. Negative mood state enhances the susceptibility to unpleasant events: Neural correlates from a music-primed emotion classification task. PLoS One 2014, 9, e89844, doi:10.1371/journal.pone.0089844.
- Botelho, C.; Pasion, R.; Prata, C.; Barbosa, F. Neuronal underpinnings of the attentional bias toward threat in the anxiety spectrum: Meta-analytical data on P3 and LPP event-related potentials. Biol. Psychol. 2023, 176, 108475, doi:10.1016/j.biopsycho.2022.108475.
- Duan, H.; Yao, Z.; Zhang, L.; Kohn, N.; Wu, J. The late positive potentials evoked by negative emotional pictures predict autonomic responses to an acute psychosocial stressor in healthy adults. medRxiv 2021, 10.1101/2021.05.18.21257390, 2021.2005.2018.21257390, doi:10.1101/2021.05.18.21257390.
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134, 9-21, doi:10.1016/j.jneumeth.2003.10.009.
- Winkler, I.; Haufe, S.; Tangermann, M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 2011, 7, 30, doi:10.1186/1744-9081-7-30.
- Winkler, I.; Brandl, S.; Horn, F.; Waldburger, E.; Allefeld, C.; Tangermann, M. Robust artifactual independent component classification for BCI practitioners. J. Neural Eng. 2014, 11.
- Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011, 48, 229-240, doi:10.1111/j.1469-8986.2010.01061.x.
- Farkas, A.H.; Sabatinelli, D. Emotional perception: Divergence of early and late event-related potential modulation. Journal of Cognitive Neuroscience 2023, 35, 941-956, doi:10.1162/jocn_a_01984.
- Zhang, W.; Jończyk, R.; Wu, Y.J.; Lan, Y.; Gao, Z.; Hu, J.; Thierry, G.; Gao, S. Brain potentials reveal how emotion filters native language access when bilinguals read words in their second language. Cerebral Cortex 2023, 33, 8783-8791, doi:10.1093/cercor/bhad161.
- Moretta, T.; Buodo, G. Motivated attention to stimuli related to social networking sites: A cue-reactivity study. J Behav Addict 2021, 10, 314-326, doi:10.1556/2006.2021.00040.
- Nordström, H.; Wiens, S. Emotional event-related potentials are larger to figures than scenes but are similarly reduced by inattention. BMC Neurosci. 2012, 13, 49, doi:10.1186/1471-2202-13-49.
- Kim, B.M.; Lee, J.; Choi, A.R.; Chung, S.J.; Park, M.; Koo, J.W.; Kang, U.G.; Choi, J.S. Event-related brain response to visual cues in individuals with internet gaming disorder: Relevance to attentional bias and decision-making. Transl Psychiatry 2021, 11, 258, doi:10.1038/s41398-021-01375-x.
- Willroth, E.C.; Koban, L.; Hilimire, M.R. Social information influences emotional experience and late positive potential response to affective pictures. Emotion 2017, 17, 572-576, doi:10.1037/emo0000289.
- Goto, N.; Mushtaq, F.; Shee, D.; Lim, X.L.; Mortazavi, M.; Watabe, M.; Schaefer, A. Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task. Biol. Psychol. 2017, 128, 11-20, doi:10.1016/j.biopsycho.2017.06.004.
- Kessel, E.M.; Huselid, R.F.; Decicco, J.M.; Dennis, T.A. Neurophysiological processing of emotion and parenting interact to predict inhibited behavior: An affective-motivational framework. Front. Hum. Neurosci. 2013, 7, 326, doi:10.3389/fnhum.2013.00326.
- World Health Organization. Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1-452.
- Lee, C.H.; Shih, A.Z.; Woo, Y.C.; Fong, C.H.; Leung, O.Y.; Janus, E.; Cheung, B.M.; Lam, K.S. Optimal cut-offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to identify dysglycemia and type 2 diabetes mellitus: A 15-year prospective study in Chinese. PLoS One 2016, 11, e0163424, doi:10.1371/journal.pone.0163424.
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442-443, doi:10.1046/j.1464-5491.1999.00059.x.
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition: A Regression-Based Approach, 3rd ed.; Guilford publications: New York, NY, 2022.
- Steward, T.; Picó-Pérez, M.; Mata, F.; Martínez-Zalacaín, I.; Cano, M.; Contreras-Rodríguez, O.; Fernández-Aranda, F.; Yucel, M.; Soriano-Mas, C.; Verdejo-García, A. Emotion regulation and excess weight: Impaired affective processing characterized by dysfunctional insula activation and connectivity. PLoS One 2016, 11, e0152150, doi:10.1371/journal.pone.0152150.
- Chen, Y.-H.; Chen, C.; Jian, H.-Y.; Chen, Y.-C.; Fan, Y.-T.; Yang, C.-Y.; Cheng, Y. The neural correlates of emotional conflict monitoring as an early manifestation of affective and cognitive declines in persons with Type 2 diabetes. Brain Communications 2023, 5, doi:10.1093/braincomms/fcad022.
- Wolf, T.; Tsenkova, V.; Ryff, C.D.; Davidson, R.J.; Willette, A.A. Neural, hormonal, and cognitive correlates of metabolic dysfunction and emotional reactivity. Psychosom. Med. 2018, 80, 452-459, doi:10.1097/psy.0000000000000582.
- Hajcak, G.; Anderson, B.S.; Arana, A.; Borckardt, J.; Takacs, I.; George, M.S.; Nahas, Z. Dorsolateral prefrontal cortex stimulation modulates electrocortical measures of visual attention: Evidence from direct bilateral epidural cortical stimulation in treatment-resistant mood disorder. Neuroscience 2010, 170, 281-288, doi:10.1016/j.neuroscience.2010.04.069.
- Langeslag, S.J.E.; Surti, K. The effect of arousal on regulation of negative emotions using cognitive reappraisal: An ERP study. Int. J. Psychophysiol. 2017, 118, 18-26, doi:10.1016/j.ijpsycho.2017.05.012.
- Wu, H.; Tang, P.; Huang, X.; Hu, X.; Luo, Y. Differentiating electrophysiological response to decrease and increase negative emotion regulation. Chinese Science Bulletin 2013, 58, 1543-1550, doi:10.1007/s11434-013-5746-x.
- Bamford, S.; Broyd, S.J.; Benikos, N.; Ward, R.; Wiersema, J.R.; Sonuga-Barke, E. The late positive potential: A neural marker of the regulation of emotion-based approach-avoidance actions? Biol. Psychol. 2015, 105, 115-123, doi:10.1016/j.biopsycho.2015.01.009.
- Baur, R.; Conzelmann, A.; Wieser, M.J.; Pauli, P. Spontaneous emotion regulation: Differential effects on evoked brain potentials and facial muscle activity. Int. J. Psychophysiol. 2015, 96, 38-48, doi:10.1016/j.ijpsycho.2015.02.022.
- Vallet, W.; Hone-Blanchet, A.; Brunelin, J. Abnormalities of the late positive potential during emotional processing in individuals with psychopathic traits: A meta-analysis. Psychol. Med. 2020, 50, 2085-2095, doi:10.1017/s0033291719002216.
- Bylsma, L.M.; Tan, P.Z.; Silk, J.S.; Forbes, E.E.; McMakin, D.L.; Dahl, R.E.; Ryan, N.D.; Ladouceur, C.D. The late positive potential during affective picture processing: Associations with daily life emotional functioning among adolescents with anxiety disorders. Int. J. Psychophysiol. 2022, 182, 70-80, doi:10.1016/j.ijpsycho.2022.09.009.
- Hajcak, G.; Moser, J.S.; Simons, R.F. Attending to affect: Appraisal strategies modulate the electrocortical response to arousing pictures. Emotion 2006, 6, 517-522, doi:10.1037/1528-3542.6.3.517.
- Krompinger, J.W.; Moser, J.S.; Simons, R.F. Modulations of the electrophysiological response to pleasant stimuli by cognitive reappraisal. Emotion 2008, 8, 132-137, doi:10.1037/1528-3542.8.1.132.
- Leite, J.; Carvalho, S.; Galdo-Alvarez, S.; Alves, J.; Sampaio, A.; Gonçalves, O.F. Affective picture modulation: Valence, arousal, attention allocation and motivational significance. Int. J. Psychophysiol. 2012, 83, 375-381, doi:10.1016/j.ijpsycho.2011.12.005.
- Feng, C.; Li, W.; Tian, T.; Luo, Y.; Gu, R.; Zhou, C.; Luo, Y.-j. Arousal modulates valence effects on both early and late stages of affective picture processing in a passive viewing task. Soc. Neurosci. 2014, 9, 364-377, doi:10.1080/17470919.2014.896827.
- Liu, Y.; Huang, H.; McGinnis-Deweese, M.; Keil, A.; Ding, M. Neural substrate of the late positive potential in emotional processing. J Neurosci 2012, 32, 14563-14572, doi:10.1523/jneurosci.3109-12.2012.
- Renfroe, J.B.; Bradley, M.M.; Sege, C.T.; Bowers, D. Emotional modulation of the late positive potential during picture free viewing in older and young adults. PLoS One 2016, 11, e0162323, doi:10.1371/journal.pone.0162323.
- Tolomeo, S.; Christmas, D.; Jentzsch, I.; Johnston, B.; Sprengelmeyer, R.; Matthews, K.; Douglas Steele, J. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control. Brain 2016, 139, 1844-1854, doi:10.1093/brain/aww069.
- Cheng, S.; Qiu, X.; Mo, L.; Li, S.; Xu, F.; Zhang, D. Asynchronous involvement of VLPFC and dlPFC during negative emotion processing: An online transcranial magnetic stimulation study. Neuroscience 2024, 551, 237-245, doi:10.1016/j.neuroscience.2024.05.041.
- Machado, L.; Cantilino, A. A systematic review of the neural correlates of positive emotions. Braz J Psychiatry 2017, 39, 172-179, doi:10.1590/1516-4446-2016-1988.
- Rolls, E.T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Structure and Function 2023, 228, 1201-1257, doi:10.1007/s00429-023-02644-9.
- Schupp, H.T.; Markus, J.; Weike, A.I.; Hamm, A.O. Emotional facilitation of sensory processing in the visual cortex. Psychol. Sci. 2003, 14, 7-13, doi:10.1111/1467-9280.01411.
- Milstein, J.L.; Ferris, H.A. The brain as an insulin-sensitive metabolic organ. Mol Metab 2021, 52, 101234, doi:10.1016/j.molmet.2021.101234.
- Benedict, L.; Nelson, C.A.; Schunk, E.; Sullwold, K.; Seaquist, E.R. Effect of insulin on the brain activity obtained during visual and memory tasks in healthy human subjects. Neuroendocrinology 2006, 83, 20-26, doi:10.1159/000093338.
- Laskey, M.A. Dual-energy X-ray absorptiometry and body composition. Nutrition 1996, 12, 45-51, doi:10.1016/0899-9007(95)00017-8.

| Adiposity Insulin | |||||||
| Data (unit) | Total (n=30) | Lean (n=8) | Obese (n=22) | t value/Chi-square | Insulin-sensitive (n=18) | Insulin-resistant (n=12) | t value/Chi-square |
| Age (years) | 25.7 (5.3) | 23.3 (4.1) | 26.5 (5.5) | t= -1.54 | 24.9 (5.6) | 26.8 (4.9) | t= -0.98 |
| Sex (n females (%)) | 15 (50.0%) | 3 (37.5%) | 12 (54.5%) | χ2= 0.68 | 8 (44.4%) | 7 (58.3%) | χ2= 0.56 |
| Activity Level (n (%)) | χ2= 4.18 | χ2= 5.63* | |||||
| Sedentary/Low Active | 20 (66.7%) | 3 (37.5%) | 17 (77.3%) | 9 (50.0%) | 11 (91.7%) | ||
| Active/Very Active | 10 (33.3%) | 5 (62.5%) | 5 (22.7%) | 9 (50.0%) | 1 (8.3%) | ||
| Race/Ethnicity (n (%)) | χ2= 3.62 | χ2= 5.17 | |||||
| White | 24 (80.0%) | 5 (62.5%) | 19 (86.4%) | 13 (72.2%) | 11 (91.7%) | ||
| Asian | 5 (16.7%) | 3 (37.5%) | 2 (9.1%) | 5 (27.8%) | 0 (0.0%) | ||
| Hispanic/Latinx | 1 (3.3%) | 0 (0.0%) | 1 (4.5%) | 0 (0.0%) | 1 (8.3%) | ||
| Black | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
| BF% (DEXA) | 37.1 (10.3) | 24.8 (4.7) | 41.6 (7.9) | t= -5.64*** | 31.6 (8.5) | 45.5 (6.7) | t= -4.76*** |
| BMI | 29.3 (8.2) | 21.0 (1.6) | 32.2 (7.5) | t= -6.94*** | 24.5 (5.3) | 36.4 (6.4) | t= -5.74*** |
| BP, diastolic (kPa) | 10.2 (1.7) | 9.6 (2.0) | 10.5 (1.5) | t= -1.26 | 9.7 (1.6) | 11.1 (1.4) | t= -2.33* |
| BP, systolic (kPa) | 16.2 (2.1) | 16.6 (2.8) | 16.0 (1.7) | t= 0.68 | 16.0 (2.4) | 16.6 (1.3) | t= -0.75 |
| Glucose (mmol/L), fasting | 5.0 (0.5) | 4.7 (0.4) | 5.1 (0.4) | t= -2.38* | 4.9 (0.5) | 5.2 (0.5) | t= -1.50 |
| Height (meters) | 1.7 (0.1) | 1.8 (0.1) | 1.7 (0.1) | t= 0.43 | 1.7 (0.1) | 1.7 (0.1) | t= -0.37 |
| Hemoglobin A1c (%) | 5.4 (0.2) | 5.3 (0.1) | 5.4 (0.2) | t= -1.05 | 5.3 (0.2) | 5.4 (0.2) | t= -1.36 |
| HOMA-IR | 2.6 (2.5) | 0.9 (0.3) | 3.3 (2.7) | t= -4.24*** | 1.2 (0.4) | 4.9 (2.8) | t= -8.07*** |
| Insulin (pmol/L), fasting | 69.3 (63.0) | 25.2 (8.5) | 85.4 (66.7) | t= -4.14*** | 31.8 (9.5) | 125.7 (67.5) | t= -4.78*** |
| Adiposity | |||||||
| Insulin | |||||||
| Affective Processing Parameters | Total | Lean | Obese | t value | Insulin-sensitive | Insulin-resistant | t value |
| Rating (Negative–Neutral) | 1.6 (0.4) | 1.5 (0.5) | 1.6 (0.3) | t= -0.37 | 1.6 (0.4) | 1.5 (0.3) | t= 0.57 |
| RT (Negative–Neutral) | 2.6 (206.1) | -1.3 (154.2) | 4.0 (225.2) | t= -0.06 | -59.0 (182.9) | 95.0 (211.6) | t= -2.12* |
| Rating (Positive–Neutral) | -0.4 (0.2) | -0.5 (0.2) | -0.4 (0.2) | t= -1.26 | -0.5 (0.2) | -0.3 (0.2) | t= -0.91 |
| RT (Positive–Neutral) | 25.5 (174.4) | 58.9 (213.0) | 13.4 (162.2) | t= 0.63 | 7.8 (213.8) | 52.1 (91.1) | t= -0.78 |
| Rating (Negative–Positive) | 2.7 (0.2) | 2.5 (0.3) | 2.7 (0.2) | t= -2.39* | 2.6 (0.2) | 2.8 (0.2) | t= -1.64 |
| RT (Negative–Positive) | -17.8 (216.8) | -30.8 (156.0) | -13.0 (238.2) | t= -0.20 | -53.7 (184.3) | 36.2 (257.3) | t= -1.12 |
| Negative–Neutral Positive–Neutral Negative–Positive | ||||||
| ERP Components | Valence Rating | Reaction Time | Valence Rating | Reaction Time | Valence Rating | Reaction Time |
| Negative–Neutral | ||||||
| EPN | -0.15 | 0.11 | - | - | - | - |
| Early LPP | 0.08 | 0.08 | - | - | - | - |
| Middle LPP | -0.01 | 0.16 | - | - | - | - |
| Late LPP | -0.36 | 0.06 | - | - | - | - |
| Positive–Neutral | ||||||
| EPN | - | - | -0.27 | 0.15 | - | - |
| Early LPP | - | - | -0.06 | 0.09 | - | - |
| Middle LPP | - | - | -0.04 | 0.14 | - | - |
| Late LPP | - | - | -0.31 | 0.01 | - | - |
| Negative–Positive | ||||||
| EPN | - | - | - | - | 0.19 | -0.38* |
| Early LPP | - | - | - | - | 0.28 | -0.19 |
| Middle LPP | - | - | - | - | 0.31 | -0.08 |
| Late LPP | - | - | - | - | -0.08 | -0.15 |
| Step 1 Step 2 | ||||||||||||
| Variables. | β | t | R2 | F | p | β | t | ΔR2 | ΔF | p | ||
| Model 1 | 0.03 | 0.47 | 0.63 | 0.00 | 0.01 | 0.92 | ||||||
| EPN | -0.15 | -0.79 | -0.15 | -0.78 | ||||||||
| BF% | 0.10 | 0.53 | 0.10 | 0.52 | ||||||||
| EPN*BF% | 0.02 | 0.10 | ||||||||||
| Model 2 | 0.02 | 0.33 | 0.73 | 0.00 | 0.01 | 0.93 | ||||||
| EPN | -0.15 | -0.81 | -0.15 | -0.77 | ||||||||
| HOMA-IR | -0.01 | -0.06 | -0.01 | -0.07 | ||||||||
| EPN*HOMA-IR | 0.02 | 0.09 | ||||||||||
| Model 3 | 0.02 | 0.28 | 0.76 | 0.00 | 0.16 | 0.69 | ||||||
| eLPP | 0.10 | 0.51 | 0.11 | 0.57 | ||||||||
| BF% | 0.12 | 0.62 | 0.13 | 0.67 | ||||||||
| eLPP*BF% | 0.08 | 0.40 | ||||||||||
| Model 4 | 0.01 | 0.09 | 0.91 | 0.01 | 0.13 | 0.73 | ||||||
| eLPP | 0.08 | 0.43 | 0.09 | 0.46 | ||||||||
| HOMA-IR | 0.00 | -0.01 | -0.01 | -0.05 | ||||||||
| eLPP*HOMA-IR | 0.07 | 0.36 | ||||||||||
| Model 5 | 0.01 | 0.16 | 0.86 | 0.05 | 1.28 | 0.27 | ||||||
| mLPP | -0.02 | -0.10 | 0.00 | 0.01 | ||||||||
| BF% | 0.11 | 0.56 | 0.15 | 0.76 | ||||||||
| mLPP*BF% | 0.22 | 1.13 | ||||||||||
| Model 6 | 0.00 | 0.00 | 1.00 | 0.06 | 1.65 | 0.21 | ||||||
| mLPP | -0.01 | -0.06 | -0.04 | -0.21 | ||||||||
| HOMA-IR | 0.01 | 0.03 | -0.09 | -0.42 | ||||||||
| mLPP*HOMA-IR | 0.26 | 1.29 | ||||||||||
| Model 7 | 0.13 | 2.06 | 0.15 | 0.25*** | 10.23*** | 0.004 | ||||||
| lLPP | -0.38 | -1.94 | -0.05 | -0.24 | ||||||||
| BF% | -0.06 | -0.28 | -0.08 | -0.46 | ||||||||
| lLPP*BF% | 0.60*** | 3.20*** | ||||||||||
| Model 8 | 0.14 | 2.20 | 0.13 | 0.24*** | 9.89*** | 0.004 | ||||||
| lLPP | -0.40 | -2.12 | -0.20 | -1.18 | ||||||||
| HOMA-IR | -0.12 | -0.63 | -0.11 | -0.69 | ||||||||
| lLPP*HOMA-IR | 0.52*** | 3.14*** | ||||||||||
| Step 1 Step | ||||||||||
| Variables | β | t | R2 | F | p | β | t | ΔR2 | ΔF | p |
| Model 1 | 0.14 | 1.38 | 0.27 | 0.02 | 0.61 | 0.44 | ||||
| EPN | 0.10 | 0.56 | 0.12 | 0.64 | ||||||
| BF% | 0.02 | 0.09 | 0.02 | 0.10 | ||||||
| Age | 0.35 | 1.90 | 0.36 | 1.95 | ||||||
| EPN*BF% | -0.15 | -0.78 | ||||||||
| Model 2 | 0.15 | 2.37 | 0.11 | 0.02 | 0.75 | 0.40 | ||||
| EPN | 0.15 | 0.85 | 0.11 | 0.63 | ||||||
| HOMA-IR | 0.37 | 2.08 | 0.32 | 1.76 | ||||||
| Age | 0.32 | 1.73 | ||||||||
| EPN*HOMA-IR | -0.16 | -0.86 | ||||||||
| Model 3 | 0.16 | 1.65 | 0.20 | 0.00 | 0.01 | 0.91 | ||||
| eLPP | 0.19 | 1.00 | 0.18 | 0.93 | ||||||
| BF% | 0.03 | 0.16 | 0.02 | 0.13 | ||||||
| Age | 0.40 | 2.14 | 0.40 | 2.10 | ||||||
| eLPP*BF% | -0.02 | -0.12 | ||||||||
| Model 4 | 0.32 | 2.91 | 0.04 | 0.09 | 3.38 | 0.08 | ||||
| eLPP | 0.11 | 0.61 | 0.12 | 0.69 | ||||||
| HOMA-IR | 0.38 | 2.09 | 0.30 | 1.75 | ||||||
| Age | 0.32 | 1.79 | 0.36 | 2.02 | ||||||
| Race/Ethnicity | 0.32 | 1.83 | ||||||||
| eLPP*HOMA-IR | -0.31 | -1.84 | ||||||||
| Model 5 | 0.18 | 1.93 | 0.15 | 0.00 | 0.11 | 0.74 | ||||
| mLPP | 0.24 | 1.32 | 0.23 | 1.26 | ||||||
| BF% | -0.01 | -0.07 | -0.02 | -0.13 | ||||||
| Age | 0.41 | 2.21 | 0.41 | 2.19 | ||||||
| mLPP*BF% | -0.06 | -0.33 | ||||||||
| Model 6 | 0.34 | 3.22 | 0.03 | 0.04 | 1.36 | 0.26 | ||||
| mLPP | 0.19 | 1.11 | 0.22 | 1.30 | ||||||
| HOMA-IR | 0.37 | 2.05 | 0.42 | 2.29 | ||||||
| Age | 0.33 | 1.92 | 0.38 | 2.15 | ||||||
| Race/Ethnicity | 0.33 | 1.93 | 0.31 | 1.81 | ||||||
| mLPP*HOMA-IR | -0.21 | -1.17 | ||||||||
| Model 7 | 0.24 | 1.95 | 0.13 | 0.13 | 4.75 | 0.04 | ||||
| lLPP | 0.31 | 1.42 | 0.09 | 0.40 | ||||||
| BF% | 0.25 | 1.13 | 0.28 | 1.39 | ||||||
| Age | 0.37 | 2.11 | 0.39 | 2.34 | ||||||
| Race/Ethnicity | 0.37 | 1.79 | 0.42 | 2.15 | ||||||
| lLPP*BF% | -0.44 | -2.18 | ||||||||
| Model 8 | 0.44*** | 4.92*** | 0.005 | 0.12 | 6.33 | 0.02 | ||||
| lLPP | 0.43 | 2.44 | 0.28 | 1.63 | ||||||
| HOMA-IR | 0.59*** | 3.28*** | 0.58*** | 3.52*** | ||||||
| Age | 0.29 | 1.91 | 0.28 | 2.02 | ||||||
| Race/Ethnicity | 0.52 | 2.97 | 0.49** | 3.07** | ||||||
| lLPP*HOMA-IR | -0.37 | -2.52 | ||||||||
| Step 1 Step 2 | ||||||||||
| Variables | β | t | R2 | F | p | β | t | ΔR2 | ΔF | p |
| Model 1 | 0.44*** | 6.82*** | 0.002 | 0.00 | 0.17 | 0.69 | ||||
| EPN | -0.27 | -1.85 | -0.29 | -1.87 | ||||||
| BF% | 0.32 | 2.11 | 0.32 | 2.05 | ||||||
| Race/Ethnicity | 0.62*** | 4.02*** | 0.61*** | 3.91*** | ||||||
| EPN*BF% | 0.06 | 0.41 | ||||||||
| Model 2 | 0.41*** | 6.03*** | 0.003 | 0.00 | 0.08 | 0.78 | ||||
| EPN | -0.32 | -2.10 | -0.32 | -2.07 | ||||||
| HOMA-IR | 0.27 | 1.70 | 0.27 | 1.66 | ||||||
| Race/Ethnicity | 0.61*** | 3.84*** | 0.61*** | 3.72*** | ||||||
| EPN*HOMA-IR | 0.04 | 0.29 | ||||||||
| Model 3 | 0.45*** | 5.09*** | 0.004 | 0.00 | 0.00 | 1.00 | ||||
| eLPP | -0.15 | -0.93 | -0.15 | -0.86 | ||||||
| BF% | 0.32 | 1.99 | 0.32 | 1.94 | ||||||
| Age | -0.28 | -1.85 | -0.28 | -1.82 | ||||||
| Race/Ethnicity | 0.62*** | 3.99*** | 0.62*** | 3.91*** | ||||||
| eLPP*BF% | 0.00 | -0.01 | ||||||||
| Model 4 | 0.43** | 4.65** | 0.006 | 0.00 | 0.00 | 0.97 | ||||
| eLPP | -0.23 | -1.46 | -0.23 | -1.39 | ||||||
| HOMA-IR | 0.28 | 1.68 | 0.28 | 1.64 | ||||||
| Age | -0.32 | -2.00 | -0.32 | -1.96 | ||||||
| Race/Ethnicity | 0.64*** | 3.90*** | 0.64*** | 3.81*** | ||||||
| eLPP*HOMA-IR | 0.01 | 0.04 | ||||||||
| Model 5 | 0.45*** | 5.01*** | 0.004 | 0.02 | 1.00 | 0.33 | ||||
| mLPP | -0.12 | -0.81 | 0.04 | 0.23 | ||||||
| BF% | 0.35 | 2.24 | 0.51 | 2.55 | ||||||
| Age | -0.27 | -1.78 | ||||||||
| Race/Ethnicity | 0.62*** | 3.97*** | 0.67*** | 4.13*** | ||||||
| Physical Activity | 0.36 | 1.81 | ||||||||
| mLPP*BF% | -0.17 | -1.00 | ||||||||
| Model 6 | 0.32 | 4.11 | 0.02 | 0.05 | 2.08 | 0.16 | ||||
| mLPP | -0.17 | -1.10 | 0.03 | 0.17 | ||||||
| HOMA-IR | 0.29 | 1.76 | 0.46 | 2.32 | ||||||
| Age | -0.29 | -1.83 | ||||||||
| Race/Ethnicity | 0.62*** | 3.77*** | 0.76*** | 4.24*** | ||||||
| Physical Activity | 0.39 | 1.94 | ||||||||
| Sex | -0.33 | -1.91 | ||||||||
| mLPP*HOMA-IR | -0.25 | -1.44 | ||||||||
| Model 7 | 0.54*** | 5.59*** | 0.001 | 0.01 | 0.27 | 0.61 | ||||
| lLPP | -0.29 | -1.76 | -0.31 | -1.81 | ||||||
| BF% | 0.42 | 2.25 | 0.39 | 1.99 | ||||||
| Age | -0.29 | -1.94 | -0.28 | -1.85 | ||||||
| Physical Activity | 0.30 | 1.76 | 0.32 | 1.79 | ||||||
| Race/Ethnicity | 0.61*** | 4.00*** | 0.59*** | 3.72*** | ||||||
| lLPP*BF% | 0.08 | 0.52 | ||||||||
| Model 8 | 0.47*** | 5.46*** | 0.003 | 0.00 | 0.12 | 0.73 | ||||
| lLPP | -0.32 | -2.03 | -0.30 | -1.80 | ||||||
| HOMA-IR | 0.21 | 1.30 | 0.22 | 1.32 | ||||||
| Age | -0.35 | -2.24 | -0.35 | -2.22 | ||||||
| Race/Ethnicity | 0.54*** | 3.44*** | 0.54*** | 3.39*** | ||||||
| lLPP*HOMA-IR | -0.05 | -0.35 | ||||||||
| Step 1 Step 2 | ||||||||||
| Variables | β | t | R2 | F | p | β | t | ΔR2 | ΔF | p |
| Model 1 | 0.04 | 0.39 | 0.76 | 0.07 | 2.00 | 0.17 | ||||
| EPN | 0.15 | 0.77 | 0.21 | 1.08 | ||||||
| BF% | -0.09 | -0.47 | -0.08 | -0.44 | ||||||
| EPN*BF% | -0.27 | -1.41 | ||||||||
| Model 2 | 0.03 | 0.37 | 0.70 | 0.01 | 0.38 | 0.54 | ||||
| EPN | 0.16 | 0.82 | 0.16 | 0.84 | ||||||
| HOMA-IR | -0.07 | -0.36 | -0.07 | -0.35 | ||||||
| EPN*HOMA-IR | -0.12 | -0.62 | ||||||||
| Model 3 | 0.01 | 0.18 | 0.84 | 0.00 | 0.01 | 0.93 | ||||
| eLPP | 0.07 | 0.33 | 0.06 | 0.28 | ||||||
| BF% | -0.07 | -0.35 | -0.07 | -0.35 | ||||||
| eLPP*BF% | 0.02 | 0.09 | ||||||||
| Model 4 | 0.01 | 0.13 | 0.88 | 0.02 | 0.42 | 0.53 | ||||
| eLPP | 0.09 | 0.44 | 0.12 | 0.58 | ||||||
| HOMA-IR | -0.03 | -0.18 | -0.04 | -0.23 | ||||||
| eLPP*HOMA-IR | -0.13 | -0.65 | ||||||||
| Model 5 | 0.03 | 0.35 | 0.71 | 0.01 | 0.27 | 0.61 | ||||
| mLPP | 0.13 | 0.67 | 0.16 | 0.79 | ||||||
| BF% | -0.07 | -0.39 | -0.10 | -0.48 | ||||||
| mLPP*BF% | -0.11 | -0.52 | ||||||||
| Model 6 | 0.02 | 0.30 | 0.74 | 0.05 | 1.26 | 0.27 | ||||
| mLPP | 0.14 | 0.73 | 0.21 | 1.06 | ||||||
| HOMA-IR | -0.04 | -0.22 | 0.00 | 0.00 | ||||||
| mLPP*HOMA-IR | -0.23 | -1.12 | ||||||||
| Model 7 | 0.01 | 0.13 | 0.86 | 0.01 | 0.15 | 0.71 | ||||
| lLPP | -0.03 | -0.16 | -0.05 | -0.23 | ||||||
| BF% | -0.11 | -0.51 | -0.13 | -0.60 | ||||||
| lLPP*BF% | 0.08 | 0.38 | ||||||||
| Model 8 | 0.00 | 0.03 | 0.97 | 0.01 | 0.18 | 0.68 | ||||
| lLPP | 0.00 | 0.00 | 0.03 | 0.14 | ||||||
| HOMA-IR | -0.05 | -0.24 | -0.03 | -0.17 | ||||||
| lLPP*HOMA-IR | -0.09 | -0.42 | ||||||||
| Step 1 Step 2 | ||||||||||
| Variables | β | t | R2 | F | p | β | t | ΔR2 | ΔF | p |
| Model 1 | 0.41*** | 5.96*** | 0.003 | 0.02 | 1.04 | 0.32 | ||||
| EPN | 0.34 | 2.09 | 0.30 | 1.84 | ||||||
| BF% | 0.35 | 2.23 | 0.37 | 2.33 | ||||||
| Race/Ethnicity | -0.42 | -2.51 | -0.36 | -1.98 | ||||||
| EPN*BF% | 0.17 | 1.02 | ||||||||
| Model 2 | 0.35 | 4.68 | 0.01 | 0.05 | 2.15 | 0.16 | ||||
| EPN | 0.41 | 2.41 | 0.46 | 2.71 | ||||||
| HOMA-IR | 0.25 | 1.51 | 0.25 | 1.54 | ||||||
| Race/Ethnicity | -0.47 | -2.67 | -0.40 | -2.29 | ||||||
| EPN*HOMA-IR | 0.25 | 1.47 | ||||||||
| Model 3 | 0.32 | 4.07 | 0.02 | 0.00 | 0.02 | 0.89 | ||||
| eLPP | 0.12 | 0.68 | 0.14 | 0.74 | ||||||
| BF% | 0.61** | 3.02** | 0.43 | 2.36 | ||||||
| Physical Activity | 0.33 | 1.72 | ||||||||
| eLPP*BF% | 0.02 | 0.13 | ||||||||
| Model 4 | 0.26 | 3.04 | 0.05 | 0.02 | 0.50 | 0.49 | ||||
| eLPP | 0.15 | 0.83 | 0.10 | 0.52 | ||||||
| HOMA-IR | 0.22 | 1.24 | 0.28 | 1.40 | ||||||
| Sex | -0.36 | -2.08 | -0.38 | -2.14 | ||||||
| eLPP*HOMA-IR | -0.14 | -0.71 | ||||||||
| Model 5 | 0.03 | 0.12 | 0.99 | 0.06 | 2.11 | 0.16 | ||||
| mLPP | 0.18 | 1.07 | 0.17 | 1.00 | ||||||
| BF% | 0.60** | 3.06** | 0.38 | 2.23 | ||||||
| Physical Activity | 0.33 | 1.75 | ||||||||
| mLPP*BF% | 0.24 | 1.45 | ||||||||
| Model 6 | 0.27 | 3.25 | 0.04 | 0.00 | 0.07 | 0.80 | ||||
| mLPP | 0.19 | 1.09 | 0.18 | 0.97 | ||||||
| HOMA-IR | 0.24 | 1.38 | 0.22 | 1.23 | ||||||
| Sex | -0.34 | -1.95 | -0.34 | -1.93 | ||||||
| mLPP*HOMA-IR | 0.05 | 0.26 | ||||||||
| Model 7 | 0.33 | 4.33 | 0.01 | 0.13 | 5.77 | 0.02 | ||||
| lLPP | -0.16 | -1.00 | -0.16 | -1.05 | ||||||
| BF% | 0.39 | 2.34 | 0.39 | 2.51 | ||||||
| Race/Ethnicity | -0.33 | -1.92 | -0.36 | -2.27 | ||||||
| lLPP*BF% | 0.35 | 2.40 | ||||||||
| Model 8 | 0.24 | 2.78 | 0.06 | 0.04 | 1.27 | 0.27 | ||||
| lLPP | -0.05 | -0.32 | -0.15 | -0.86 | ||||||
| HOMA-IR | 0.26 | 1.53 | 0.18 | 1.00 | ||||||
| Sex | -0.38 | -2.18 | ||||||||
| Race/Ethnicity | -0.39 | -2.11 | ||||||||
| lLPP*HOMA-IR | 0.19 | 1.13 | ||||||||
| Step 1 Step 2 | ||||||||||
| Variables | β | t | R2 | F | p | β | t | ΔR2 | ΔF | p |
| Model 1 | 0.36 | 3.52 | 0.02 | 0.03 | 0.89 | 0.36 | ||||
| EPN | -0.48 | -2.82 | -0.35 | -2.05 | ||||||
| BF% | 0.13 | 0.77 | 0.02 | 0.14 | ||||||
| Age | 0.33 | 2.04 | 0.36 | 2.06 | ||||||
| Race/Ethnicity | 0.36 | 1.98 | ||||||||
| EPN*BF% | -0.16 | -0.94 | ||||||||
| Model 2 | 0.41 | 4.30 | 0.01 | 0.00 | 0.17 | 0.68 | ||||
| EPN | -0.44 | -2.64 | -0.45 | -2.63 | ||||||
| HOMA-IR | 0.27 | 1.62 | 0.27 | 1.56 | ||||||
| Age | 0.29 | 1.84 | 0.31 | 1.86 | ||||||
| Race/Ethnicity | 0.39 | 2.28 | 0.37 | 2.06 | ||||||
| EPN*HOMA-IR | -0.07 | -0.41 | ||||||||
| Model 3 | 0.18 | 1.94 | 0.15 | 0.01 | 0.38 | 0.54 | ||||
| eLPP | -0.25 | -1.31 | -0.23 | -1.18 | ||||||
| BF% | 0.11 | 0.59 | 0.13 | 0.67 | ||||||
| Age | 0.35 | 1.97 | 0.33 | 1.75 | ||||||
| eLPP*BF% | 0.12 | 0.62 | ||||||||
| Model 4 | 0.27 | 3.24 | 0.04 | 0.03 | 1.10 | 0.30 | ||||
| eLPP | -0.31 | -1.78 | -0.25 | -1.32 | ||||||
| HOMA-IR | 0.34 | 1.89 | 0.33 | 1.63 | ||||||
| Age | 0.29 | 1.71 | ||||||||
| eLPP*HOMA-IR | 0.20 | 1.05 | ||||||||
| Model 5 | 0.14 | 1.37 | 0.27 | 0.00 | 0.01 | 0.94 | ||||
| mLPP | -0.09 | -0.48 | -0.09 | -0.48 | ||||||
| BF% | 0.05 | 0.28 | 0.05 | 0.26 | ||||||
| Age | 0.35 | 1.89 | 0.35 | 1.81 | ||||||
| mLPP*BF% | 0.01 | 0.07 | ||||||||
| Model 6 | 0.12 | 1.78 | 0.19 | 0.07 | 2.35 | 0.14 | ||||
| mLPP | -0.14 | -0.78 | -0.21 | -1.12 | ||||||
| HOMA-IR | 0.34 | 1.83 | 0.26 | 1.41 | ||||||
| mLPP*HOMA-IR | 0.29 | 1.53 | ||||||||
| Model 7 | 0.19 | 2.00 | 0.14 | 0.01 | 0.27 | 0.61 | ||||
| lLPP | -0.25 | -1.37 | -0.24 | -1.30 | ||||||
| BF% | 0.03 | 0.19 | 0.04 | 0.21 | ||||||
| Age | 0.41 | 2.25 | 0.39 | 2.02 | ||||||
| lLPP*BF% | 0.10 | 0.52 | ||||||||
| Model 8 | 0.23 | 2.63 | 0.07 | 0.01 | 0.33 | 0.57 | ||||
| lLPP | -0.23 | -1.29 | -0.23 | -1.27 | ||||||
| HOMA-IR | 0.22 | 1.25 | 0.23 | 1.25 | ||||||
| Age | 0.36 | 1.99 | 0.35 | 1.85 | ||||||
| lLPP*HOMA-IR | 0.10 | 0.58 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).