Submitted:
07 September 2025
Posted:
08 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- A standard bus system like IEEE 13 and IEEE 33 test bus system with DL based DSTATCOM model is designed to analyse various PQ issues scenarios.
- At the grid, a generator is chosen whose bus is regarded as PCC. In that system, a DSTATCOM compensator is connected.
- A real-time dataset is generated which contains three-phase bus voltages under normal and various PQ issues conditions.
- As per the obtained dataset, a Deep Neural network (DNN) controller is constructed and its trained model is integrated into the system.
- The controller analyses the voltage of each bus, every second and generates the appropriate pulse signal of the compensator. The proposed model mitigation process is validated in several circumstances like swell, sag, interruption and harmonics.
2. Related Work
3. Proposed Methodology
3.1. Modelling of STATCOM
3.2. Voltage regulation of DSTATCOM
3.3. Modelling of DL controller
3.4. Modelling of DNN controller
3.5. Working process
4. Result and Discussion
Dataset generation
4.1. Case 1: Performance analysis in IEEE 13 bus system
4.1.1. IEEE 13 bus system
4.1.2. Performance analysis of the proposed controller
4.2. Case 2: Performance analysis in IEEE 33 bus system
4.2.1. IEEE 33 bus system
4.3. Comparison of performance metrics
4.4. Comparison of performance in IEEE 13 and IEEE 33 bus system
4.5. Comparative analysis of the controller
5. Conclusions
Availability of data and material
Funding
Acknowledgements
Conflict of Interest
References
- Ghiasi M (2019) Technical and economic evaluation of power quality performance using FACTS devices considering renewable generations. Renewable Energy Focus 29:49-62.
- Bajaj M, Singh AK, Alowaidi M, Sharma NK, Sharma SK, Mishra S (2020) Power quality assessment of distorted distribution networks incorporating renewable distributed generation systems based on the analytic hierarchy process. IEEE Access 8:145713-37.
- Pene, Armel Duvalier, Bikai Jacques, J. B. Bidias, Theodore Louossi, Doka Baza Gilbert, Kidmo Koaga Dieudonne, J. L. Nsouandele, Noël Djongyang, and Cesar Kapseu. “A Robust Maximum Power Point Tracking Control under Shading Effects on Photovoltaic Systems.” International Transactions on Electrical Engineering and Computer Science 4, no. 3 (2025): 137-151.
- Mahela OP, Parihar M, Garg AR, Khan B, Kamel S (2022) A hybrid signal processing technique for recognition of complex power quality disturbances. Electric Power Systems Research 207:107865.
- Raju, S. Govinda. “Hybrid Energy Generation System with Brushless Generators.” International Transactions on Electrical Engineering and Computer Science 2, no. 1 (2023): 20-29.
- Ansari MN, Singh RK (2021) Application of D-STATCOM for harmonic reduction using power balance theory. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12(6):2496-503.
- Nanda H, Chalamalla SR (2020) Harmonic and reactive power compensation with IRP controlled DSTATCOM. InInnovations in Electrical and Electronics Engineering: Proceedings of the 4th ICIEEE 2019 (pp. 215-224). Springer Singapore.
- Balasubramanian M, Nagarajan C (2022) FFDSOGI-PLL-based DSTATCOM for Power Quality Enhancement. IEIE Transactions on Smart Processing & Computing 11(5):376-84.
- Naz MN, Imtiaz S, Bhatti MK, Awan WQ, Siddique M, Riaz A (2020) Dynamic stability improvement of decentralized wind farms by effective distribution static compensator. Journal of Modern Power Systems and Clean Energy.
- Karimi H, Simab M, Nafar M (2022) Enhancement of power quality utilizing photovoltaic fed D-STATCOM based on zig-zag transformer and fuzzy controller. Scientia Iranica 29(5):2465-79.
- Goud BS, Reddy CR, Bajaj M, Elattar EE, Kamel S (2021) Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller. Sustainability 13(20):11194.
- Krishna, D. Vasavi, M. Surya Kalavathi, and B. Ganeshbabu. “A Novel NR-DA-Based ANN for SHEPWM in Cascaded Multilevel Inverters for Renewable Energy Applications.” International Transactions on Electrical Engineering and Computer Science 3, no. 3 (2024): 135-143.
- Ahmad T, Zhang D, Huang C, Zhang H, Dai N, Song Y, Chen H (2021) Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production 289:125834.
- Prasad KK, Myneni H, Kumar GS (2018) Power quality improvement and PV power injection by DSTATCOM with variable DC link voltage control from RSC-MLC. IEEE Transactions on Sustainable Energy 10(2):876-85.
- Badoni M, Singh A, Singh B (2018) Power quality improvement using DSTATCOM with affine projection algorithm. IET Generation, Transmission & Distribution 12(13):3261-9.
- Kumar A, Kumar P (2021) Power quality improvement for grid-connected PV system based on distribution static compensator with fuzzy logic controller and UVT/ADALINE-based least mean square controller. Journal of Modern Power Systems and Clean Energy 9(6):1289-99.
- Kanase DB, Jadhav HT (2022) Three-phase distribution static compensator for power quality improvement. Journal of The Institution of Engineers (India): Series B 103(5):1809-26.
- Pandu SB, Sundarabalan CK, Srinath NS, Krishnan TS, Priya GS, Balasundar C, Sharma J, Soundarya G, Siano P, Alhelou HH (2021) Power quality enhancement in sensitive local distribution grid using interval type-II fuzzy logic controlled DSTATCOM. IEEE Access 9:59888-99.
- Babu JV, Malligunta KK (2021) Multilevel diode clamped D-Statcom for power quality improvement in distribution systems. International Journal of Power Electronics and Drive Systems 12(1):217.
- Hasanzadeh S, Shojaeian H, Mohsenzadeh MM, Heydarian-Forushani E, Alhelou HH, Siano P (2022) Power quality enhancement of the distribution network by multilevel STATCOM-compensated based on improved one-cycle controller. IEEE Access 10:50578-88.
- Arya AK, Kumar A, Chanana S (2019) Analysis of distribution system with D-STATCOM by gravitational search algorithm (GSA). Journal of The Institution of Engineers (India): Series B 100:207-15.
- Gopal B, Sreenivas GN (2019) Improvement In Power Quality With D-Statcom Using Voltage Source Converters In Dg Systems. Ilkogretim Online 18(3):1495-513.
- Ahmed SA (2019) Performance Analysis of Power Quality Improvement for Standard IEEE 14-Bus Power System based on FACTS Controller. Journal of Electrical Engineering, Electronics, Control and Computer Science 5(4):11-8.
- Dataset 1: http://images.shoutwiki.com/mindworks/7/7e/IEEE_13_Bus_Power_System.
- Dataset 2: https://link.springer.com/content/pdf/bbm:978-3-030-39943-6/1.
- Juyal VD, Arora S (2016) Power quality improvement of a system using three phase cascaded H-bridge multilevel inverters (a comparison). In2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE) (pp. 1-7). IEEE.
- Das SR, Ray PK, Sahoo AK, Balasubramanian K, Reddy GS (2020) Improvement of power quality in a three-phase system using an adaline-based multilevel inverter. Frontiers in Energy Research 8:23.
- Mangaraj,M., Muyeen, S.M., Babu, B. C., Nizami, T. K., Singh,S., & Chakravarthy,A(2024).Deep Reinforced Learning-Based Inductively Coupled DSTATCOM under load uncertainties.





















| Parameter | Ranges |
|---|---|
| Capacitance | 1000 e-6 F |
| Initial voltage | 800V |
| Parameter | Method | Ranges |
|---|---|---|
| Hidden neuron | DNN | 10 |
| Epoch | 30 | |
| Epoch | FFNN |
100 |
| Gradient | 6.8e-05 | |
| µ | 1e-07 | |
| Training algorithm | Levenberg-Marquardt | |
| Num. Neighbors | KNN | 5 |
| Num. Observations | 150 | |
| Distance | Euclidean |
| Dataset | IEEE 13 bus | IEEE 33 bus |
|---|---|---|
| Overall data | 20000 | 20000 |
| Attributes | 39 | 99 |
| Bus no. | Voltage (V) | Sag (V) |
Swell (V) |
Interruption (V) |
|---|---|---|---|---|
| 1 | 3417 | 2890 | 3900 | 2300 |
| 2 | 4100 | 3560 | 4630 | 3325 |
| 3 | 4180 | 3455 | 4850 | 2200 |
| 4 | 4180 | 3278 | 5600 | 15 |
| 5 | 4180 | 2280 | 5600 | 15 |
| 6 | 10890 | 10550 | 10600 | 10500 |
| 7 | 9143 | 8677 | 9150 | 8580 |
| 8 | 6937 | 6340 | 7300 | 6000 |
| 9 | 7175 | 6800 | 7450 | 6665 |
| 10 | 6860 | 6445 | 7150 | 6265 |
| 11 | 6650 | 6200 | 6950 | 6000 |
| 12 | 6600 | 6125 | 6920 | 5858 |
| 13 | 6770 | 6230 | 7105 | 6910 |
| Bus no. | Voltage (V) | Sag (V) | Swell (V) | Interruption (V) |
|---|---|---|---|---|
| 1 | 1.79*104 | 1.7885*104 | 1.7913*104 | 1.7837*104 |
| 2 | 1.785*104 | 1.77*104 | 1.8*104 | 1.7*104 |
| 3 | 1.765*104 | 1.69*104 | 1.865*104 | 1.334*104 |
| 4 | 1.7578*104 | 1.67*104 | 1.874*104 | 1.25*104 |
| 5 | 1.75*104 | 1.65*104 | 1.88*104 | 1.175*104 |
| 6 | 1.736*104 | 1.6*104 | 1.915*104 | 9680 |
| 7 | 1.734*104 | 1.6*104 | 1.9*104 | 1*104 |
| 8 | 1.732*104 | 1.618*104 | 1.894*104 | 1*104 |
| 9 | 1.725*104 | 1.607*104 | 1.89*104 | 1*104 |
| 10 | 1.724*104 | 1.61*104 | 1.888*104 | 1*104 |
| 11 | 1.725*104 | 1.61*104 | 1.883*104 | 1*104 |
| 12 | 1.725*104 | 1.6*104 | 1.887*104 | 1*104 |
| 13 | 1.718*104 | 1.58*104 | 1.9*104 | 9400 |
| 14 | 1.7162*104 | 1.58*104 | 1.9*104 | 9050 |
| 15 | 1.715*104 | 1.58*104 | 1.91*104 | 8700 |
| 16 | 1.712*104 | 1.564*104 | 1.92*104 | 8000 |
| 17 | 1.705*104 | 1.5*104 | 1.95*104 | 6200 |
| 18 | 1.703*104 | 1.5*104 | 1.97*104 | 5450 |
| 19 | 1.781*104 | 1.76*104 | 1.80*104 | 1.667*104 |
| 20 | 1.754*104 | 1.688*104 | 1.84*104 | 1.37*104 |
| 21 | 1.7468*104 | 1.668*104 | 1.856*104 | 1.275*104 |
| 22 | 1.74*104 | 1.65*104 | 1.864*104 | 12000 |
| 23 | 1.752*104 | 1.642*104 | 1.9*104 | 1750 |
| 24 | 1.734*104 | 1.55*104 | 2*104 | 5400 |
| 25 | 1.72*104 | 1.456*104 | 2.1*104 | 78 |
| 26 | 1.734*104 | 1.6*104 | 1.82*104 | 9130 |
| 27 | 1.731*104 | 1.584*104 | 1.94*104 | 8357 |
| 28 | 1.722*104 | 1.5*104 | 2*104 | 5000 |
| 29 | 1.715*104 | 1.5*104 | 2.07*104 | 2300 |
| 30 | 1.700*104 | 1.5*104 | 2.02*104 | 2785 |
| 31 | 1.703*104 | 1.5*104 | 2*104 | 3750 |
| 32 | 1.7*104 | 1.5*104 | 2*104 | 4300 |
| 33 | 1.7*104 | 1.5*104 | 2*104 | 5000 |
| Metrics | IEEE 13 bus system | IEEE 33 bus system |
|---|---|---|
| Accuracy | 99.9 | 99.9 |
| Error | 0.1 | 0.1 |
| F1_score | 99.9 | 99.9 |
| False positive rate | 0.01 | 0.01 |
| Kappa | 99.9 | 99.9 |
| MCC | 99.9 | 99.9 |
| Precision | 99.9 | 99.9 |
| Sensitivity | 99.9 | 99.9 |
| Specificity | 99.9 | 99.9 |
| Condition | IEEE 13 bus system THD | IEEE 33 bus system THD |
|---|---|---|
| Sag | 0.09 | 1.99 |
| Swell | 0.08 | 0.44 |
| Interruption | 0.01 | 0.01 |
| Parameters | A-LMS [26] |
VSC [27] |
Deep Reinforcement Learning(IC-DSTATCOM)[28] |
Proposed FFNN | |
|---|---|---|---|---|---|
| IEEE 13 bus | IEEE 33 bus | ||||
| Load side THD | 1.21% | 3.65% | 27.90%% | 0.09% | 1.99% |
| Source side THD | - | 21.10% | 0.94% | 0% | 0% |
| Model Variation | No.of Hidden Layers | Neurons Per Layer | Total Weights | THD(%)IEEE 13-Bus(Sag) | THD(%)IEEE 33-Bus(Sag) |
|---|---|---|---|---|---|
| Baseline(proposed) | 1 | 10 | 1100 | 0.09 | 1.99 |
| Variation 1 | 2 | 20 | 4200 | 0.07 | 1.50 |
| Variation 2 | 3 | 30 | 9300 | 0.05 | 1.20 |
| Variation 3 | 4 | 50 | 20500 | 0.04 | 1.10 |
| Variation 4 | 2 | 10 | 2200 | 0.08 | 1.70 |
| Scenario No | Power Load(kw) | Harmonic Distortion(%) | Control Unit Location | THD After Compensation(%) |
|---|---|---|---|---|
| 1 | 500 | 5 | Bus 5 | 0.09 |
| 2 | 750 | 7 | Bus 5 | 0.12 |
| 3 | 500 | 10 | Bus 10 | 1.12 |
| 4 | 1000 | 5 | Bus 15 | 0.18 |
| 5 | 600 | 8 | Bus 5 | 0.11 |
| 6 | 750 | 12 | Bus 10 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
