Submitted:
04 September 2025
Posted:
05 September 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Identifying a Weldability Test for AM
2.2. The Proposed Cracking Susceptibility Test for AM
3. Results
3.1. Solidification Cracking Susceptibility
3.2. Liquation Cracking Susceptibility
3.3. Fracture Surfaces
4. Discussion
4.1. Solidification Cracking Susceptibility
4.2. Liquation Cracking Susceptibility
4.3. Effect of Substrate and Deposit Location
5. Conclusions
- (1)
- The PVR weldability test has been selected, modified and used as a test for evaluating the susceptibility to solidification cracking and liquation cracking in AM. In this test a single-pass, single-layer deposit is made along a slender specimen that is pulled like in tensile testing but with acceleration.
- (2)
- The test can be conducted in an Ar-filled chamber for AM. Specimens can be tested one by one without having to open the chamber.
- (3)
- Solidification cracks are visible on the surface of the deposit.
- (4)
- Liquation cracks are visible in the substrate near the deposit, and they can propagate through the specimen.
- (5)
- The fracture surfaces are readily accessible for examination by SEM. Dendritic fracture surfaces of the deposits have confirmed solidification cracking. Nondendritic fracture surfaces of the substrates showing intergranular cracking have confirmed liquation cracking.
- (6)
- The critical pulling speed for solidification cracking can be determined as an index for the cracking susceptibility under the conditions of deposition and testing used in the test, so can that for liquation cracking. In either type of cracking, the lower the critical pulling speed is, the higher the cracking susceptibility.
- (7)
- The results of the present study can be considered as a proof of concept for this AM cracking-susceptibility test.
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AM | Additive Manufacturing |
| PMZ | Partially Melted Zone |
| PVR | Programmierter (Programmable) Verformungs (Deformation) Riss (Crack) |
| SEM | Scanning Electron Microscopy |
References
- Flemings, M.C. Solidification Processing; McGraw-Hills: New York, 1974; pp. 252–258. [Google Scholar]
- Kou, S. Welding Metallurgy, 3rd ed.; John Wiley and Sons: Hoboken, NJ, 2021; pp. 323–366, 419–439. [Google Scholar]
- Kou, S. Grain refining and cracking during solidification. Metallurgical and Materials Transactions A 2024, 55, 4663–4675. [Google Scholar] [CrossRef]
- Dasgupta, S.; Kou, S. Undercooling and cracking during solidification. Metallurgical and Materials Transactions A 2024, 55, 3450–3462. [Google Scholar] [CrossRef]
- Liu, J.; Duarte, H.P.; Kou, S. Evidence of back diffusion reducing cracking during solidification. Acta Materialia 2017, 122, 47–59. [Google Scholar] [CrossRef]
- Kou, S. Predicting susceptibility to solidification cracking and liquation cracking by CALPHAD. Metals 2021, 11, 1442. [Google Scholar] [CrossRef]
- Kou, S. A criterion for cracking during solidification. Acta Materialia 2015, 88, 366–374. [Google Scholar] [CrossRef]
- Kou, S. A simple index for predicting the susceptibility to solidification cracking. Welding Journal 2015, 94, 374s–388s. [Google Scholar]
- Kannengiesser, T.; Boellinghaus, T. Hot cracking tests—An overview of present technologies and applications. Welding in the World 2014, 58, 397–421. [Google Scholar] [CrossRef]
- Yu, J.; Rombouts, M.; Maes, G. Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition. Materials & Design. 2013, 45, 228–235. [Google Scholar]
- Yang, J.; Li, F.; Wang, Z.; Zeng, X. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. Journal of Materials Processing Technology 2015, 225, 229–239. [Google Scholar] [CrossRef]
- Hu, Z.; Nie, X.; Qi, Y.; Zhang, H.; Zhu, H. Cracking criterion for high strength Al–Cu alloys fabricated by selective laser melting. Additive Manufacturing 2021, 37, 101709. [Google Scholar] [CrossRef]
- Hyer, H.; Zhou, L.; Mehta, A.; Park, S.; Huynh, T.; Song, S.; Bai, Y.; Cho, K.; McWilliams, B.; Sohn, Y. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion. Acta Materialia 2021, 208, 116698. [Google Scholar] [CrossRef]
- Qi, T.; Zhu, H.; Zhang, H.; Yin, J.; Ke, L.; Zeng, X. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Materials & Design 2017, 135, 257–266. [Google Scholar] [CrossRef]
- Mehta, A.; Zhou, L.; Huynh, T.; Park, S.; Hyer, H.; Song, S.; Bai, Y.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; Sohn, Y. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Additive Manufacturing 2021, 41, 101966. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, M.J.; StJohn, D.H.; Krynen, J.; Tedman-Jones, S.; Dargusch, M.S. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Materialia 2019, 168, 261–274. [Google Scholar] [CrossRef]
- Zhang, D.; Prasad, A.; Bermingham, M.J.; Todaro, C.J.; Benoit, M.J.; Patel, M.N.; Qiu, D.; StJohn, D.H.; Qian, M.; Easton, M.A. Grain refinement of alloys in fusion-based additive manufacturing processes. Metallurgical and Materials Transactions A 2020, 51, 4341–4359. [Google Scholar] [CrossRef]
- Uddin, S.Z.; Murr, L.E.; Terrazas, C.A.; Morton, P.; Roberson, D.A.; Wicker, R.B. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Additive Manufacturing 2018, 22, 405–415. [Google Scholar] [CrossRef]
- Seidel, A.; Finaske, T.; Straubel, A.; Wendrock, H.; Maiwald, T.; Riede, M.; Lopez, E.; Brueckner, F.; Leyens, C. Additive manufacturing of powdery Ni-based superalloys Mar-M-247 and CM 247 LC in hybrid laser metal deposition. Metallurgical and Materials Transactions A 2018, 49, 3812–3830. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, F.; Zhang, K.; Nie, P.; Hosseini, S.R.E.; Feng, K.; Li, Z. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling. Journal of Alloys and Compounds 2016, 670, 312–321. [Google Scholar] [CrossRef]
- Goodwin, G.M. Development of a new hot-cracking test – the Sigmajig. Welding Journal 1987, 66, 33–38. [Google Scholar]
- Borland, J.C.; Rogerson, J.H. Examination of the patch test for assessing hot cracking tendencies of weld metal. British Welding Journal 1963, 8, 494–499. [Google Scholar]
- Soysal, T.; Kou, S. A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction. Acta Materialia 2018, 143, 181–197. [Google Scholar] [CrossRef]
- Coniglio, N.; Cross, C.E.; Michael, T.; Lammers, M. Defining a critical weld dilution to avoid solidification cracking in aluminum. Welding Journal 2008, 87, 237s–247s. [Google Scholar]
- Savage, W.F.; Lundin, C.D. The varestraint test. Welding Journal 1965, 44, 433s–442s. [Google Scholar]
- Houldcroft, P.T. A simple cracking test for use with argon-arc welding. British Welding Journal 1955, 2, 471–475. [Google Scholar]
- Niel, A.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Drezet, J.M. Hot tearing test for TIG welding of aluminum alloys: Application of a stress parallel to the fusion line. In Hot cracking phenomena in welds III; Springer: Berlin, Heidelberg, 2011; pp. 43–58. [Google Scholar]
- Shinozaki, K.; Kuroki, H.; Luo, X.; Ariyoshi, H.; Shirai, M. Comparison of hot-cracking susceptibilities of various Ni-base, heat-resistant superalloys by U-type hot cracking test. Study of laser weldability of Ni-base, heat-resistant superalloys (2nd report). Welding International 1999, 13, 952–959. [Google Scholar] [CrossRef]
- Folkhard, E.; Rabensteiner, G.S.H.; Fuchs, K.; Tösch, L. The PVR test, a highly significant, quantitative test method for determining the hot cracking resistance of weld metals. Wien. (in German). 1977. [Google Scholar]
- Yushchenko, K.; Savchenko, V.; Chervyakov, N.; Zvyagintseva, A.; Guyot, E. Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals Inconel Sr 52 and 52 Mss. Welding in the World 2011, 55, 28–35. [Google Scholar] [CrossRef]
- Yushchenko, K.A.; Savchenko, V.S.; Chervyakov, N.O.; Zvyagintseva, A.V.; Monko, G.G.; Pestov, V.A. Comparative evaluation of sensitivity of welded joints on alloy Inconel 690 to hot cracking. The Paton Welding J 2011, 11, 2–7. [Google Scholar]
- DINENISO17641: Destructive tests on welds in metallic materials— hot cracking tests for weldments, part 1–3—Arc welding processes (2005).
- Kotkunde, N.; Krishnamurthy, H.N.; Singh, S.K.; Jella, G. Experimental and numerical investigations on hot deformation behavior and processing maps for ASS 304 and ASS 316. High Temperature Materials and Processes 2018, 37, 73–888. [Google Scholar] [CrossRef]
- Kou, S. Patent Application Publication No. US 2024/0139811 A1, May 2, 2024, submitted by WARF of University of Wisconsin-Madison, October 28, 2022.
- Dowd, J.D. Weld cracking of aluminum alloys. Weld. J. 1952, 31, 448–456. [Google Scholar]
- Dudas, J.H.; Collins, F.R. Preventing weld cracks in high-strength aluminum alloys. Weld. J. 1966, 45, 241–249. [Google Scholar]
- Soysal, T.; Kou, S. A Simple Test for Solidification Cracking Susceptibility and Filler Metal Effect. Welding Journal 2017, 96, 389-s–401-s. [Google Scholar]
- Li, Z.; Zhang, Y.; Li, H.; Wang, Y.; Wang, L.; Zhang, Y. Liquation cracking susceptibility and mechanical properties of 7075 aluminum alloy GTAW joints. Materials 2022, 15, 3651. [Google Scholar] [CrossRef]
- Huang, C.; Cao, G.; Kou, S. Liquation cracking in partial-penetration aluminum welds. Science and Technology of Welding and Joining 2004, 9, 149–157. [Google Scholar] [CrossRef]
- Yu, P.; Kou, S.; Lin, C.M. Solidification and liquation cracking in welds of high entropy CoCrFeNiCux Alloys. Materials 2023, 16, 5621. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.M.; Goulart, P.R.; Couto, A.A.; Garcia, A.M.A.U.R.I. Primary dendrite arm spacing effects upon mechanical properties of an Al–3wt% Cu–1wt% Li alloy. In Properties and Characterization of Modern Materials; Springer: Singapore, 2017; pp. 215–229. [Google Scholar]
- Kromm, A.; Thomas, M.; Kannengiesser, T.; Gibmeier, J.; Vollert, F. Assessment of the solidification cracking susceptibility of welding consumables in the Varestraint test by means of an extended evaluation methodology. Advanced Engineering Materials 2022, 24, 2101650. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, K.; Huang, J.; Hosseini, S.R.E.; Li, Z. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Materials & Design 2016, 90, 586–594. [Google Scholar] [CrossRef]
- CompuTherm LLC, M. WI, USA, Pandat, Phase Diagram Calculation Software Package for Multicomponent Systems. 2020.
- CompuTherm LLC, M. WI, USA, PanAluminum, Thermodynamic Database for Aluminum Alloys. 2020.


















| Wt% | Cr | Cu | Fe | Mg | Mn | Si | Ti | Zn | Al |
| 6061 | 0.20 | 0.33 | 0.6 | 1.0 | 0.08 | 0.72 | 0.02 | 0.1 | balance |
| 7075 | 0.19 | 1.5 | 0.17 | 2.4 | 0.03 | 0.07 | 0.03 | 5.7 | balance |
| Specimen | Laser power (W) | Travel velocity, Vbase (mm/s) | Acceleration, a (mm/s2) | Total deposit length (mm) | Deposit length at 1st SC, L1st (mm) | Critical pulling speed Vcr for SC (mm/s) | Deposit length at 1st LC, L1st (mm) | Critical pulling speed Vcr for LC (mm/s) |
| 6061-P2 | 350 | 7.5 | 0.020 | 175 | ||||
| 6061-P3 | 400 | 7.5 | 0.020 | 223 | ||||
| 6061-P5 | 350 | 6.5 | 0.050 | 199 | 82 - 93 | 0.67± 0.04 | ||
| 6061-P7 | 400 | 6.5 | 0.050 | 197 | 82 | 0.63 | ||
| 6061-P9 | 400 | 7.0 | 0.050 | 154 | 91 - 97 | 0.67± 0.02 | ||
| 7075-P3 | 400 | 6.0 | 0.010 | 114 | ||||
| 7075-P4 | 400 | 6.0 | 0.025 | 89 | 77 | 0.32 | ||
| 7075-P6 | 350 | 6.0 | 0.030 | 121 | 86 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
