Submitted:
28 August 2025
Posted:
05 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- We introduce DUET, a novel dual-stream transformer framework that disentangles early-stage modality encoding and achieves semantic alignment through parameter sharing in deeper layers.
- We propose a caption-similarity-weighted DCG metric that accounts for graded semantic relevance, addressing the limitations of traditional binary evaluation criteria.
- We provide extensive experiments on the MS-COCO benchmark, showing that DUET sets a new performance standard under both exact match and semantic retrieval metrics.
2. Related Work
2.1. Cross-Modal Embedding Strategies for Alignment
2.2. Relational Reasoning Mechanisms in Neural Architectures
2.3. Beyond Binary: Semantic-Aware Retrieval Evaluation
3. Preliminary
3.1. Pipeline Formalization and Notation
3.2. Visual-Linguistic Fusion via Attention Mechanisms
3.2.1. Adaptive Attention with Sentinel Mechanism
3.2.2. Transformer-Based Multi-Head Attention
3.3. Instantiating Representative Architectures
- Ada-LSTM: A hybrid model combining adaptive attention with an LSTM-based decoder and a standard prediction head.
- MH-FC: A multi-head attention variant employing transformer-style attention and a feedforward classifier over fused features.
3.4. Training Losses and Learning Objectives
3.5. Extended Design: Context Aggregation and Alignment Regularization
Soft Gated Aggregation
Context Alignment Loss

4. Unified Multimodal Reasoning with Dual Transformers
4.1. Representation of Multimodal Inputs
4.1.1. Spatially-Aware Visual Embedding
4.1.2. Contextualized Language Encoding via BERT
4.2. Dual Transformer Encoder Design
4.3. Cross-Modal Contrastive Alignment
4.4. Auxiliary Learning Signals and Regularization
(i) Spatial Coordinate Regression.
(ii) Embedding Norm Stability.
4.5. Overall Optimization Objective
5. Experiment and Evaluation
- How does DUET compare to existing state-of-the-art methods under both hard (Recall@K) and soft (NDCG) evaluation protocols?
- Can DUET better capture semantic correspondence beyond literal matches?
- What impact do individual architectural components have on performance?
5.1. Dataset and Evaluation Metrics
5.2. Implementation Configuration
5.3. Comparison with State-of-the-Art Methods
- On the 1K set, DUET achieves +0.7 improvement in R@1 and +3.3 in over VSRN, highlighting its enhanced semantic alignment.
- On the full 5K test set, DUET retains an advantage across all metrics, showing scalability and robustness.
- Improvements in SPICE-based NDCG reflect DUET’s stronger grasp of conceptual similarity and abstract reasoning.
5.4. Qualitative Examples: Generalization Beyond Lexical Overlap
5.5. Ablation Analysis
- DUET w/o shared layers: Disables transformer weight sharing.
- DUET w/o spatial features: Removes bounding-box coordinate input.
- DUET (no norm reg): Drops embedding norm regularization.
- Full DUET: The complete model as proposed.
5.6. Inference Efficiency and Scalability
6. Conclusion and Future Work
References
- Faghri, F.; Fleet, D.J.; Kiros, J.R.; Fidler, S. “VSE++: improving visual-semantic embeddings with hard negatives,” in BMVC 2018. BMVA Press, 2018, p. 12.
- Carrara, F.; Esuli, A.; Fagni, T.; Falchi, F.; Fernández, A.M. Picture it in your mind: generating high level visual representations from textual descriptions. Inf. Retr. J. 2018, 21, 208–229. [Google Scholar] [CrossRef]
- Lu, J.; Batra, D.; Parikh, D.; Lee, S. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In NeurIPS 2019, 2019, pp. 13–23.
- Karpathy, A.; Li, F. Deep visual-semantic alignments for generating image descriptions. In CVPR 2015. IEEE Computer Society, 2015, pp. 3128–3137.
- Lee, K.; Chen, X.; Hua, G.; Hu, H.; He, X. “Stacked cross attention for image-text matching,” in ECCV 2018, ser. Lecture Notes in Computer Science, vol. 11208. Springer, 2018, pp. 212–228.
- Qi, D.; Su, L.; Song, J.; Cui, E.; Bharti, T.; Sacheti, A. “Imagebert: Cross-modal pre-training with large-scale weak-supervised image-text data,” CoRR, vol. abs/2001.07966, 2020.
- Li, K.; Zhang, Y.; Li, K.; Li, Y.; Fu, Y. “Visual semantic reasoning for image-text matching,” in ICCV 2019. IEEE, 2019, pp. 4653–4661.
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. “Attention is all you need,” in NeurIPS 2017, 2017, pp. 5998–6008.
- Klein, B.; Lev, G.; Sadeh, G.; Wolf, L. “Associating neural word embeddings with deep image representations using fisher vectors,” in CVPR 2015. IEEE Computer Society, 2015, pp. 4437–4446.
- Vendrov, I.; Kiros, R.; Fidler, S.; Urtasun, R. “Order-embeddings of images and language,” in 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.
- Lin, X.; Parikh, D. “Leveraging visual question answering for image-caption ranking,” in ECCV 2016, ser. Lecture Notes in Computer Science, Leibe, B., Matas, J., Sebe, N., Welling, M., Eds., vol. 9906. Springer, 2016, pp. 261–277.
- Huang, Y.; Wang, W.; Wang, L. “Instance-aware image and sentence matching with selective multimodal LSTM,” in CVPR 2017. IEEE Computer Society, 2017, pp. 7254–7262.
- Eisenschtat, A.; Wolf, L. “Linking image and text with 2-way nets,” in CVPR 2017. IEEE Computer Society, 2017, pp. 1855–1865.
- Liu, Y.; Guo, Y.; Bakker, E.M.; Lew, M.S. “Learning a recurrent residual fusion network for multimodal matching,” in IEEE International Conference on Computer Vision, ICCV 2017. IEEE Computer Society, 2017, pp. 4127–4136.
- Gu, J.; Cai, J.; Joty, S.R.; Niu, L.; Wang, G. “Look, imagine and match: Improving textual-visual cross-modal retrieval with generative models,” in CVPR 2018. IEEE Computer Society, 2018, pp. 7181–7189.
- Huang, Y.; Wu, Q.; Song, C.; Wang, L. “Learning semantic concepts and order for image and sentence matching,” in CVPR 2018. IEEE Computer Society, 2018, pp. 6163–6171.
- Sun, C.; Gan, C.; Nevatia, R. “Automatic concept discovery from parallel text and visual corpora,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 2596–2604.
- Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image captioning and VQA. CoRR 2017, abs/1707.07998. [Google Scholar]
- Santoro, A.; Raposo, D.; Barrett, D.G.; Malinowski, M.; Pascanu, R.; Battaglia, P.; Lillicrap, T. “A simple neural network module for relational reasoning,” in Advances in neural information processing systems, 2017, pp. 4967–4976.
- Messina, N.; Amato, G.; Carrara, F.; Falchi, F.; Gennaro, C. “Learning visual features for relational cbir,” International Journal of Multimedia Information Retrieval, Sep 2019.
- ——, “Learning relationship-aware visual features,” in ECCV 2018 Workshops, ser. Lecture Notes in Computer Science, vol. 11132. Springer, 2018, pp. 486–501.
- Hu, R.; Andreas, J.; Rohrbach, M.; Darrell, T.; Saenko, K. “Learning to reason: End-to-end module networks for visual question answering,” in The IEEE International Conference on Computer Vision (ICCV), 2017.
- Johnson, J.; Hariharan, B.; Maaten, L.v.; Hoffman, J.; Fei-Fei, L.; Zitnick, C.L.; Girshick, R. “Inferring and executing programs for visual reasoning,” in The IEEE International Conference on Computer Vision (ICCV), 2017.
- Yao, T.; Pan, Y.; Li, Y.; Mei, T. “Exploring visual relationship for image captioning,” in ECCV 2018, ser. Lecture Notes in Computer Science, vol. 11218. Springer, 2018, pp. 711–727.
- Yang, X.; Tang, K.; Zhang, H.; Cai, J. “Auto-encoding scene graphs for image captioning,” in CVPR 2019. Computer Vision Foundation / IEEE, 2019, pp. 10 685–10 694.
- Li, X.; Jiang, S. Know more say less: Image captioning based on scene graphs. IEEE Trans. Multimedia, 2019, 21, 2117–2130. [Google Scholar] [CrossRef]
- Yang, J.; Lu, J.; Lee, S.; Batra, D.; Parikh, D. “Graph R-CNN for scene graph generation,” in ECCV 2018, ser. Lecture Notes in Computer Science, vol. 11205. Springer, 2018, pp. 690–706.
- Li, Y.; Ouyang, W.; Zhou, B.; Shi, J.; Zhang, C.; Wang, X. “Factorizable net: An efficient subgraph-based framework for scene graph generation,” in ECCV 2018, ser. Lecture Notes in Computer Science, vol. 11205. Springer, 2018, pp. 346–363.
- Lee, K.; Palangi, H.; Chen, X.; Hu, H.; Gao, J. Learning visual relation priors for image-text matching and image captioning with neural scene graph generators. CoRR 2019, abs/1909.09953. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. “Bottom-up and top-down attention for image captioning and visual question answering,” in CVPR 2018. IEEE Computer Society, 2018, pp. 6077–6086.
- Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.; Shamma, D.A.; Bernstein, M.S.; Li, F. Visual genome: Connecting language and vision using crowdsourced dense image annotations. CoRR 2016, abs/1602.07332. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In 1st International Conference on Learning Representations, ICLR 2013, 2013.
- Lin, C.-Y. “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out. Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81.
- Anderson, P.; Fernando, B.; Johnson, M.; Gould, S. “SPICE: semantic propositional image caption evaluation,” in ECCV 2016, ser. Lecture Notes in Computer Science, vol. 9909. Springer, 2016, pp. 382–398.
- Lin, T.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. `Microsoft COCO: common objects in context. In ECCV 2014, ser. Lecture Notes in Computer Science, vol. 8693. Springer, 2014, pp. 740–755.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, 4171–4186.
- Endri Kacupaj, Kuldeep Singh, Maria Maleshkova, and Jens Lehmann. 2022. An Answer Verbalization Dataset for Conversational Question Answerings over Knowledge Graphs. arXiv 2022, arXiv:2208.06734.
- Magdalena Kaiser, Rishiraj Saha Roy, and Gerhard Weikum. 2021. Reinforcement Learning from Reformulations In Conversational Question Answering over Knowledge Graphs. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 459–469.
- Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. 2021. A Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21. International Joint Conferences on Artificial Intelligence Organization, 4483–4491. Survey Track.
- Yunshi Lan and Jing Jiang. 2021. Modeling transitions of focal entities for conversational knowledge base question answering. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
- Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 7871–7880.
- Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In International Conference on Learning Representations.
- Pierre Marion, Paweł Krzysztof Nowak, and Francesco Piccinno. 2021. Structured Context and High-Coverage Grammar for Conversational Question Answering over Knowledge Graphs. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2021).
- Pradeep, K. Atrey, M. Anwar Hossain, Abdulmotaleb El Saddik, and Mohan S. Kankanhalli. Multimodal fusion for multimedia analysis: a survey. Multimedia Systems 2010, 16, 345–379. [Google Scholar]
- Meishan Zhang, Hao Fei, Bin Wang, Shengqiong Wu, Yixin Cao, Fei Li, and Min Zhang. Recognizing everything from all modalities at once: Grounded multimodal universal information extraction. In Findings of the Association for Computational Linguistics: ACL 2024, 2024.
- Shengqiong Wu, Hao Fei, and Tat-Seng Chua. Universal scene graph generation. Proceedings of the CVPR, 2025.
- Shengqiong Wu, Hao Fei, Jingkang Yang, Xiangtai Li, Juncheng Li, Hanwang Zhang, and Tat-seng Chua. Learning 4d panoptic scene graph generation from rich 2d visual scene. Proceedings of the CVPR, 2025.
- Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, and Hao Fei. Multimodal chain-of-thought reasoning: A comprehensive survey. arXiv 2025, arXiv:2503.12605.
- Hao Fei, Yuan Zhou, Juncheng Li, Xiangtai Li, Qingshan Xu, Bobo Li, Shengqiong Wu, Yaoting Wang, Junbao Zhou, Jiahao Meng, Qingyu Shi, Zhiyuan Zhou, Liangtao Shi, Minghe Gao, Daoan Zhang, Zhiqi Ge, Weiming Wu, Siliang Tang, Kaihang Pan, Yaobo Ye, Haobo Yuan, Tao Zhang, Tianjie Ju, Zixiang Meng, Shilin Xu, Liyu Jia, Wentao Hu, Meng Luo, Jiebo Luo, Tat-Seng Chua, Shuicheng Yan, and Hanwang Zhang. On path to multimodal generalist: General-level and general-bench. In Proceedings of the ICML, 2025.
- Jian Li, Weiheng Lu, Hao Fei, Meng Luo, Ming Dai, Min Xia, Yizhang Jin, Zhenye Gan, Ding Qi, Chaoyou Fu, et al. A survey on benchmarks of multimodal large language models. arXiv 2024, arXiv:2408.08632.
- Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
- Dong Yu Li Deng. Deep Learning: Methods and Applications. NOW Publishers, May 2014. URL https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/.
- Eric Makita and Artem Lenskiy. A movie genre prediction based on Multivariate Bernoulli model and genre correlations. (May), mar 2016a. URL http://arxiv.org/abs/1604.08608.
- Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L Yuille. Explain images with multimodal recurrent neural networks. arXiv 2014, arXiv:1410.1090.
- Deli Pei, Huaping Liu, Yulong Liu, and Fuchun Sun. Unsupervised multimodal feature learning for semantic image segmentation. In The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE, aug 2013. ISBN 978-1-4673-6129-3. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6706748.
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv:1409.1556.
- Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-Shot Learning Through Cross-Modal Transfer. In C J C Burges, L Bottou, M Welling, Z Ghahramani, and K Q Weinberger (eds.), Advances in Neural Information Processing Systems 26, pp. 935–943. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/5027-zero-shot-learning-through-cross-modal-transfer.pdf.
- Hao Fei, Shengqiong Wu, Meishan Zhang, Min Zhang, Tat-Seng Chua, and Shuicheng Yan. Enhancing video-language representations with structural spatio-temporal alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence 2024.
- Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. TPAMI 2017, 39, 664–676. [Google Scholar] [CrossRef]
- Hao Fei, Yafeng Ren, and Donghong Ji. Retrofitting structure-aware transformer language model for end tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2151–2161, 2020a.
- Shengqiong Wu, Hao Fei, Fei Li, Meishan Zhang, Yijiang Liu, Chong Teng, and Donghong Ji. Mastering the explicit opinion-role interaction: Syntax-aided neural transition system for unified opinion role labeling. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, pages 11513–11521, 2022.
- Wenxuan Shi, Fei Li, Jingye Li, Hao Fei, and Donghong Ji. Effective token graph modeling using a novel labeling strategy for structured sentiment analysis. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4232–4241, 2022.
- Hao Fei, Yue Zhang, Yafeng Ren, and Donghong Ji. Latent emotion memory for multi-label emotion classification. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 7692–7699, 2020b.
- Fengqi Wang, Fei Li, Hao Fei, Jingye Li, Shengqiong Wu, Fangfang Su, Wenxuan Shi, Donghong Ji, and Bo Cai. Entity-centered cross-document relation extraction. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9871–9881, 2022.
- Zhuang, L.; Fei, H.; Hu, P. Knowledge-enhanced event relation extraction via event ontology prompt. Inf. Fusion 2023, 100, 101919. [Google Scholar] [CrossRef]
- Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading comprehension. arXiv, arXiv:1804.09541.
- Wu, S.; Fei, H.; Cao, Y.; Bing, L.; Chua, T. Information screening whilst exploiting! multimodal relation extraction with feature denoising and multimodal topic modeling. arXiv 2023, arXiv:2305.11719. [Google Scholar] [CrossRef]
- Xu, J.; Fei, H.; Pan, L.; Liu, Q.; Lee, Mo.; Hsu, W. . Faithful logical reasoning via symbolic chain-of-thought. arXiv, arXiv:2405.18357.
- Dunn, M.; Sagun, L.; Higgins, M.; Guney, V.U.; Cirik, V.; Cho, K. SearchQA: A new Q&A dataset augmented with context from a search engine. arXiv 2017, arXiv:1704.05179. [Google Scholar]
- Hao Fei, Shengqiong Wu, Jingye Li, Bobo Li, Fei Li, Libo Qin, Meishan Zhang, Min Zhang, and Tat-Seng Chua. Lasuie: Unifying information extraction with latent adaptive structure-aware generative language model. In Proceedings of the Advances in Neural Information Processing Systems, NeurIPS 2022, pages 15460–15475, 2022a.
- Qiu, G.; Liu, B.; Bu, J.; Chen, C. Opinion word expansion and target extraction through double propagation. Computational linguistics 2011, 37, 9–27. [Google Scholar] [CrossRef]
- Fei, H.; Ren, Y.; Zhang, Y.; Ji, D.; Liang, X. Enriching contextualized language model from knowledge graph for biomedical information extraction. Briefings in Bioinformatics 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Shengqiong Wu, Hao Fei, Wei Ji, and Tat-Seng Chua. Cross2StrA: Unpaired cross-lingual image captioning with cross-lingual cross-modal structure-pivoted alignment. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2593–2608, 2023b.
- Bobo Li, Hao Fei, Fei Li, Tat-seng Chua, and Donghong Ji. 2024a. Multimodal emotion-cause pair extraction with holistic interaction and label constraint. ACM Transactions on Multimedia Computing, Communications and Applications 2024.
- Bobo Li, Hao Fei, Fei Li, Shengqiong Wu, Lizi Liao, Yinwei Wei, Tat-Seng Chua, and Donghong Ji. 2025. Revisiting conversation discourse for dialogue disentanglement. ACM Transactions on Information Systems 2025, 43, 1–34.
- Bobo Li, Hao Fei, Fei Li, Yuhan Wu, Jinsong Zhang, Shengqiong Wu, Jingye Li, Yijiang Liu, Lizi Liao, Tat-Seng Chua, and Donghong Ji. 2023. DiaASQ: A Benchmark of Conversational Aspect-based Sentiment Quadruple Analysis. In Findings of the Association for Computational Linguistics: ACL 2023. 13449–13467.
- Bobo Li, Hao Fei, Lizi Liao, Yu Zhao, Fangfang Su, Fei Li, and Donghong Ji. Harnessing holistic discourse features and triadic interaction for sentiment quadruple extraction in dialogues. Proceedings of the AAAI conference on artificial intelligence 2024, 38, 18462–18470. [CrossRef]
- Shengqiong Wu, Hao Fei, Liangming Pan, William Yang Wang, Shuicheng Yan, and Tat-Seng Chua. 2025a. Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 39. 8460–8468.
- Shengqiong Wu, Weicai Ye, Jiahao Wang, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Shuicheng Yan, Hao Fei, et al. 2025b. Any2caption: Interpreting any condition to caption for controllable video generation. arXiv 2025, arXiv:2503.24379.
- Han Zhang, Zixiang Meng, Meng Luo, Hong Han, Lizi Liao, Erik Cambria, and Hao Fei. 2025. Towards multimodal empathetic response generation: A rich text-speech-vision avatar-based benchmark. In Proceedings of the ACM on Web Conference 2025. 2872–2881.
- Yu Zhao, Hao Fei, Shengqiong Wu, Meishan Zhang, Min Zhang, and Tat-seng Chua. 2025. Grammar induction from visual, speech and text. Artificial Intelligence 2025, 341, 104306.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text. arXiv 2016, arXiv:1606.05250.
- Hao Fei, Fei Li, Bobo Li, and Donghong Ji. Encoder-decoder based unified semantic role labeling with label-aware syntax. In Proceedings of the AAAI conference on artificial intelligence, pages 12794–12802, 2021a.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.
- Hao Fei, Shengqiong Wu, Yafeng Ren, Fei Li, and Donghong Ji. Better combine them together! integrating syntactic constituency and dependency representations for semantic role labeling. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 549–559, 2021b.
- K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in ACL, 2002, pp. 311–318.
- Fei, H.; Li, B.; Liu, Q.; Bing, L.; Li, F.; Chua, Ta. Reasoning implicit sentiment with chain-of-thought prompting. arXiv 2023, arXiv:2305.11255. [Google Scholar]
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. URL https://aclanthology.org/N19-1423.
- Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal llm. CoRR 2023, abs/2309.05519.
- Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
- Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Meishan Zhang, Mong-Li Lee, and Wynne Hsu. Video-of-thought: Step-by-step video reasoning from perception to cognition. In Proceedings of the International Conference on Machine Learning, 2024b.
- Naman Jain, Pranjali Jain, Pratik Kayal, Jayakrishna Sahit, Soham Pachpande, Jayesh Choudhari, et al. Agribot: agriculture-specific question answer system. IndiaRxiv 2019.
- Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, and Tat-Seng Chua. Dysen-vdm: Empowering dynamics-aware text-to-video diffusion with llms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7641–7653, 2024c.
- Mihir Momaya, Anjnya Khanna, Jessica Sadavarte, and Manoj Sankhe. Krushi–the farmer chatbot. In 2021 International Conference on Communication information and Computing Technology (ICCICT), pages 1–6. IEEE, 2021.
- Hao Fei, Fei Li, Chenliang Li, Shengqiong Wu, Jingye Li, and Donghong Ji. Inheriting the wisdom of predecessors: A multiplex cascade framework for unified aspect-based sentiment analysis. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pages 4096–4103, 2022b.
- Shengqiong Wu, Hao Fei, Yafeng Ren, Donghong Ji, and Jingye Li. Learn from syntax: Improving pair-wise aspect and opinion terms extraction with rich syntactic knowledge. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pages 3957–3963, 2021.
- Bobo Li, Hao Fei, Lizi Liao, Yu Zhao, Chong Teng, Tat-Seng Chua, Donghong Ji, and Fei Li. Revisiting disentanglement and fusion on modality and context in conversational multimodal emotion recognition. In Proceedings of the 31st ACM International Conference on Multimedia, MM, pages 5923–5934, 2023.
- Hao Fei, Qian Liu, Meishan Zhang, Min Zhang, and Tat-Seng Chua. Scene graph as pivoting: Inference-time image-free unsupervised multimodal machine translation with visual scene hallucination. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5980–5994, 2023b.
- Banerjee and A. Lavie, “METEOR: an automatic metric for MT evaluation with improved correlation with human judgments,” in IEEMMT, 2005, pp. 65–72.
- Hao Fei, Shengqiong Wu, Hanwang Zhang, Tat-Seng Chua, and Shuicheng Yan. Vitron: A unified pixel-level vision llm for understanding, generating, segmenting, editing. In Proceedings of the Advances in Neural Information Processing Systems, NeurIPS 2024, 2024d.
- Chen, A.; Liu, C. Intelligent commerce facilitates education technology: The platform and chatbot for the taiwan agriculture service. International Journal of e-Education, e-Business, e-Management and e-Learning 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Wu, S.; Fei, H.; Li, X.; Ji, J.; Zhang, H.; Chua, Ta.; Yan, S. Towards semantic equivalence of tokenization in multimodal llm. arXiv 2024, arXiv:2406.05127. [Google Scholar] [CrossRef]
- Jingye Li, Kang Xu, Fei Li, Hao Fei, Yafeng Ren, and Donghong Ji. MRN: A locally and globally mention-based reasoning network for document-level relation extraction. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1359–1370, 2021.
- Hao Fei, Shengqiong Wu, Yafeng Ren, and Meishan Zhang. Matching structure for dual learning. In Proceedings of the International Conference on Machine Learning, ICML, pages 6373–6391, 2022c.
- Hu Cao, Jingye Li, Fangfang Su, Fei Li, Hao Fei, Shengqiong Wu, Bobo Li, Liang Zhao, and Donghong Ji. OneEE: A one-stage framework for fast overlapping and nested event extraction. In Proceedings of the 29th International Conference on Computational Linguistics, pages 1953–1964, 2022.
- Tende, I.G.; Aburada, K.; Yamaba, H.; Katayama, T.; Okazaki, N. Proposal for a crop protection information system for rural farmers in tanzania. Agronomy 2021, 11, 2411. [Google Scholar] [CrossRef]
- Fei, H.; Ren, Y.; Ji, D. Boundaries and edges rethinking: An end-to-end neural model for overlapping entity relation extraction. Information Processing & Management 2020, 57, 102311. [Google Scholar]
- Jingye Li, Hao Fei, Jiang Liu, Shengqiong Wu, Meishan Zhang, Chong Teng, Donghong Ji, and Fei Li. Unified named entity recognition as word-word relation classification. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 10965–10973, 2022.
- Jain, M.; Kumar, P.; Bhansali, I.; Liao, Q.V.; Truong, K.; Patel, S. Farmchat: a conversational agent to answer farmer queries. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2, 1–22. [Google Scholar] [CrossRef]
- Shengqiong Wu, Hao Fei, Hanwang Zhang, and Tat-Seng Chua. Imagine that! abstract-to-intricate text-to-image synthesis with scene graph hallucination diffusion. In Proceedings of the 37th International Conference on Neural Information Processing Systems, pages 79240–79259, 2023d.
- P. Anderson, B. Fernando, M. Johnson, and S. Gould, “SPICE: semantic propositional image caption evaluation,” in ECCV, 2016, pp. 382–398.
- Fei, H.; Chua, Ta.; Li, C.; Ji, D.; Zhang, M.; Ren, Y. On the robustness of aspect-based sentiment analysis: Rethinking model, data, and training. ACM Transactions on Information Systems 2023, 41, 50:1–50:32. [Google Scholar] [CrossRef]
- Zhao, Y.; Fei, H.; Cao, Y.; Li, B.; Zhang, M.; Wei, J.; Zhang, M.; Chua, T. Constructing holistic spatio-temporal scene graph for video semantic role labeling. In Proceedings of the 31st ACM International Conference on Multimedia, MM, pages 5281–5291, 2023a.
- Wu, S.; Fei, H.; Cao, Y.; Bing, L.; Chua, T. Information screening whilst exploiting! multimodal relation extraction with feature denoising and multimodal topic modeling. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14734–14751, 2023e.
- Fei, H.; Ren, Y.; Zhang, Y.; Ji, D. Nonautoregressive encoder-decoder neural framework for end-to-end aspect-based sentiment triplet extraction. IEEE Transactions on Neural Networks and Learning Systems 2023, 34, 5544–5556. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. arXiv 2015, arXiv:1502.03044. [Google Scholar]
- Yuksel, S.E.; Wilson, J.N.; Gader, P.D. Twenty years of mixture of experts. IEEE transactions on neural networks and learning systems, 2012, 23, 1177–1193. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Liang, Y.; Ma, T. A simple but tough-to-beat baseline for sentence embeddings. In ICLR, 2017.
| 1 | |
| 2 | |
| 3 |
| Model | R@1 | R@5 | R@10 | ||
|---|---|---|---|---|---|
| 1K Test Set (5-fold average) | |||||
| VSE++ [1] | 52.0 | 84.3 | 92.0 | 0.712 | 0.617 |
| VSRN [7] | 60.8 | 88.4 | 94.1 | 0.723 | 0.620 |
| DUET (Ours) | 61.5 | 89.0 | 94.8 | 0.735 | 0.653 |
| 5K Test Set (full split) | |||||
| VSE++ [1] | 30.3 | 59.4 | 72.4 | 0.656 | 0.577 |
| VSRN [7] | 37.9 | 68.5 | 79.4 | 0.676 | 0.596 |
| DUET (Ours) | 38.2 | 70.1 | 80.3 | 0.668 | 0.600 |
| Model Variant | R@1 | |
|---|---|---|
| DUET w/o shared layers | 58.6 | 0.632 |
| DUET w/o spatial features | 57.9 | 0.628 |
| DUET (no norm reg) | 59.1 | 0.637 |
| Full DUET | 61.5 | 0.653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).