Submitted:
04 September 2025
Posted:
05 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
2.1. Selection of Models and Testing Framework
2.2. Problem Selection and Design
2.3. Evaluation Process and Scoring
2.4. Follow-up Prompting Methodology
2.5. Documentation and Analysis
3. Results
3.1. Overall Performance
| 1st Test (90 points) | 2nd test (80 points) | 3rd Test (100 points) | Final (150 points) | Total (420 points) | |
| Chat GPT 4o | 90 (A) | 70 (B+) | 85 (B) | 130 (B+) | 375 (89.3: B+) |
| Gemini Advanced with 1.5 Pro | 90 (A) | 70 (B+) | 85 (B) | 140 (A) | 385 (91.7: A-) |
| Copilot Pro | 85 (A) | 70 (B+) | 80 (B-) | 125 (B) | 360 (85.7: B) |
| Claude 3.5 Sonnet | 75 (B) | 60 (C) | 80 (B-) | 110 (C) | 325 (77.4: C+) |
| Meta AI | 80 (B+) | 60 (C) | 70 (C-) | 110 (C) | 320 (76.2: C) |
| Mistral AI | 90 (A) | 70 (B+) | 80 (B-) | 120 (B-) | 360 (85.7: B) |
| Perplexity | 90 (A) | 45 (F) | 75 (B) | 115 (C+) | 325 (77.4: C+) |
| Average | 85.7 (A) | 63.6 (C+) | 79.3 (C+) | 121.4 (B-) | 2450 (83.3: B) |
3.2. Performance Analysis by Test
| Chat GPT 4o | Found the wrong answer. New prompt: Evaluate the definite integral: integration from -1 to 1 [(x-x^2)/(5(x^(1/5)))]. Show all the steps. Calculate each operation separately. Don’t use even or odd function properties. Still found the wrong different answers. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (2/9). |
| Copilot Pro | Found the correct answer: (2/9). |
| Claude 3.5 Sonnet | Found the correct answer: (2/9). |
| Meta AI | Found the correct answer: (2/9). |
| Mistral AI | Found the correct answer: (2/9). |
| Perplexity | Found the correct answer: (2/9). |
| Chat GPT 4o | Found the correct answer: (-3x^2)/2 + 2x - 2ln|x^2-3| +C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (-3x^2)/2 + 2x - 2ln|x^2-3| +C. |
| Copilot Pro | Found the correct answer: (-3x^2)/2 + 2x - 2ln|x^2-3| +C. |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: Evaluate the indefinite integral: integration [(-3x^3+2x^2+5x-6)/(x^2-3)]. Show all the steps. Don’t use a partial fraction method. Still found the wrong different answers. |
| Meta AI | Found the correct answer: (-3x^2)/2 + 2x - 2ln|x^2-3| +C. |
| Mistral AI | Found the correct answer: (-3x^2)/2 + 2x - 2ln|x^2-3| +C. |
| Perplexity | Found the wrong answer. New prompt: Evaluate the indefinite integral: integration [(-3x^3+2x^2+5x-6)/(x^2-3)]. Show all the steps. Don’t use a partial fraction method. Found the correct answer: (-3x^2)/2 + 2x - 2ln|x^2-3| +C. |
| Chat GPT 4o | Found the wrong answer. New prompt: Evaluate the definite integral: integration from -1 to 1 [(1+(1/(x^3)))^4(1/(x^4))]. Show all the steps. Use the u-substitution method. Found the correct answer: (-32/15). |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (-32/15). |
| Copilot Pro | Found the wrong answer. New prompt: Evaluate the definite integral: integration from -1 to 1 [(1+(1/(x^3)))^4(1/(x^4))]. Show all the steps. Use the u-substitution method. Found the correct answer: (-32/15). |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: Evaluate the definite integral: integration from -1 to 1 [(1+(1/(x^3)))^4(1/(x^4))]. Show all the steps. Use the u-substitution method. Still found the wrong answer. |
| Meta AI | Found the wrong answer. New prompt: Evaluate the definite integral: integration from -1 to 1 [(1+(1/(x^3)))^4(1/(x^4))]. Show all the steps. Use the u-substitution method. Still found the wrong answer. |
| Mistral AI (5/10) | Found the wrong answer. New prompt: Evaluate the definite integral: integration from -1 to 1 [(1+(1/(x^3)))^4(1/(x^4))]. Show all the steps. Use the u-substitution method. Found the correct answer: (-32/15). |
| Perplexity | Found the correct answer: (-32/15). |
| Chat GPT 4o | Found the correct answer: (4/15). |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (4/15). |
| Copilot Pro | Found the correct answer: (4/15). |
| Claude 3.5 Sonnet | Found the wrong answer: (-4/15). However, it evaluated the integration from 4 to 16. New prompt: Definite integral was evaluated from 4 to 16. It was wrong. Evaluate the definite integral from 16 to 4. Found the correct answer: (4/15). |
| Meta AI | Found the correct answer: (4/15). |
| Mistral AI | Found the correct answer: (4/15). |
| Perplexity | Found the correct answer: (4/15). |
| Chat GPT 4o | Found the correct answer: 16. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: 16. |
| Copilot Pro | Found the wrong answer. It found the wrong intersection points. New prompt: It’s wrong. Do it again. It found the correct intersection points, but it still found the wrong answer. New prompt: Find the area separately and add them, but it still found the wrong answer. |
| Claude 3.5 Sonnet | Found the correct answer: 16. |
| Meta AI | Found the wrong answer. New prompt: It’s wrong. Do it again. Still found the wrong answer. |
| Mistral AI (5/10) | Found the wrong answer. New prompt: It’s wrong. Do it again. Found the correct answer: 16. |
| Perplexity | Found the wrong answer. It found the wrong intersection points. New prompt: It’s wrong. Do it again. It found the correct intersection points, but it still found the wrong answer. New prompt: Find the area separately and add them, but it still found the wrong answer. |
| Chat GPT 4o | Found the wrong answer. The calculation was wrong in Step 4, the calculation of (-x^2+3x+4)^2. New prompt: Step 4 was wrong. Do it again. Found the correct answer: (384/5) (3.14). |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (384/5) (3.14). |
| Copilot Pro | Found the wrong answer. The setup was wrong in Step 3, (R(x))^2 and (r(x))^2. New prompt: Step 3 was wrong. Do it again. It still found the wrong answer. The calculation was wrong in Step 4, the calculation of (-x^2+3x+4)^2. New prompt: Step 4 was wrong. Do it again. Still found the wrong answer. |
| Claude 3.5 Sonnet | Found the wrong answer. The calculation was wrong in Step 4, the calculation of (-x^2+3x+4)^2. New prompt: Step 4 was wrong. Do it again. Still found the wrong answer. One more time. New prompt: Step 4 was wrong. Do it again. Still found the wrong answer. |
| Meta AI | Found the wrong answer. The calculation was wrong in Step 4, the calculation of (-x^2+3x+4)^2. New prompt: Step 4 was wrong. Do it again. Still found the wrong answer. One more time. New prompt: Step 4 was wrong. Do it again. Still found the wrong answer. |
| Mistral AI | Found the wrong answer. New prompt: It’s wrong. Do it again. Still found the wrong answer. |
| Perplexity | Found the correct answer: (384/5) (3.14). |
| Chat GPT 4o | Found the correct answer: [((tan(4x))^6)/24] + [((tan(4x))^8)/32] + C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: [((tan(4x))^6)/24] + [((tan(4x))^8)/32] + C. |
| Copilot Pro | Found the correct answer: [((tan(4x))^6)/24] + [((tan(4x))^8)/32] + C. |
| Claude 3.5 Sonnet | Found the correct answer: [((tan(4x))^6)/24] + [((tan(4x))^8)/32] + C. |
| Meta AI | Found the correct answer: [((tan(4x))^6)/24] + [((tan(4x))^8)/32] + C. |
| Mistral AI | Found the correct answer: [((tan(4x))^6)/24] + [((tan(4x))^8)/32] + C. |
| Perplexity | Found the correct answer: [((tan(4x))^6)/24] + [((tan(4x))^8)/32] + C. |
| Chat GPT 4o | Found the correct answer: 2ln|x| - ln|x+1| - 9/(x+1) + C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: 2ln|x| - ln|x+1| - 9/(x+1) + C. |
| Copilot Pro | Found the correct answer: 2ln|x| - ln|x+1| - 9/(x+1) + C. |
| Claude 3.5 Sonnet | Found the correct answer: 2ln|x| - ln|x+1| - 9/(x+1) + C. |
| Meta AI | Found the wrong answer. The B value, B/(x+1), in Step 2 was wrong. New prompt: The B value in Step 2 was wrong. Do it again. Found the correct answer: 2ln|x| - ln|x+1| - 9/(x+1) + C. |
| Mistral AI | Found the correct answer: 2ln|x| - ln|x+1| - 9/(x+1) + C. |
| Perplexity | Found the correct answer: 2ln|x| - ln|x+1| - 9/(x+1) + C. |
| Chat GPT 4o | Found the correct answer: It diverges. |
| Gemini Advanced with 1.5 Pro | Found the wrong answer. As x -> -oo, then e^(x) -> oo. It’s correct. So (1-x)e^(-oo) -> 0. It’s wrong. x -> -oo, then (1-x)e^(-x) -> oo. This is correct. New prompt: Integration was correct, but the evaluation steps were wrong. Do it again. Still found the wrong answer. |
| Copilot Pro | Found the correct answer: It diverges. |
| Claude 3.5 Sonnet | Found the correct answer: It diverges. However, some middle steps were wrong. (5/10). |
| Meta AI | Found the correct answer: It diverges. However, some middle steps were wrong. (5/10). |
| Mistral AI | Found the wrong answer. As x -> -oo, then e^(-x) -> oo. It’s correct. So (1-x)e^(-oo) -> 0. It’s wrong. x -> -oo, then (1-x)e^(-x) -> -oo. This is correct. New prompt: Integration was correct, but the evaluation steps were wrong. Do it again. Still found the wrong answer. |
| Perplexity | Found the wrong answer. As x -> -oo, then e^(-x) -> oo. It’s correct. So (1-x)e^(-oo) -> 0. It’s wrong. x -> -oo, then (1-x)e^(-x) -> -oo. This is correct. New prompt: Integration was correct, but the evaluation steps were wrong. Do it again. Still found the wrong answer. |
| Chat GPT 4o | Found the correct answer: The series diverges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: The series diverges. |
| Copilot Pro | Found the correct answer: The series diverges. |
| Claude 3.5 Sonnet | Found the correct answer: The series diverges. |
| Meta AI | Found the correct answer: The series diverges. |
| Mistral AI | Found the correct answer: The series diverges. |
| Perplexity | Found the correct answer: The series diverges. |
| Chat GPT 4o | Found the correct answer: The series converges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: The series converges. |
| Copilot Pro | Found the correct answer: The series converges. |
| Claude 3.5 Sonnet | Found the correct answer: The series converges. |
| Meta AI | Found the correct answer: The series converges. |
| Mistral AI | Found the correct answer: The series converges. |
| Perplexity | Found the correct answer: The series converges. |
| Chat GPT 4o | Found the correct answer: The series converges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: The series converges. |
| Copilot Pro | Found the correct answer: The series converges. |
| Claude 3.5 Sonnet | Found the correct answer: The series converges. |
| Meta AI | Found the correct answer: The series converges. |
| Mistral AI | Found the correct answer: The series converges. |
| Perplexity | Found the correct answer: The series converges. |
| Chat GPT 4o | Found the correct answer: The series converges |
| Gemini Advanced with 1.5 Pro | Found the correct answer: The series converges |
| Copilot Pro | Found the correct answer: The series converges |
| Claude 3.5 Sonnet | Found the correct answer: The series converges |
| Meta AI | Found the correct answer: The series converges |
| Mistral AI | Found the correct answer: The series converges |
| Perplexity | Found the correct answer: The series converges |
| Chat GPT 4o | Found the correct answer: p(x)=(1/4) + (x+2)/4 + 3(x+2)^2/16 + (x+2)^3/8 + 5(x+2)^4/64. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: p(x)=(1/4) + (x+2)/4 + 3(x+2)^2/16 + (x+2)^3/8 + 5(x+2)^4/64. |
| Copilot Pro | Found the correct answer: p(x)=(1/4) + (x+2)/4 + 3(x+2)^2/16 + (x+2)^3/8 + 5(x+2)^4/64. |
| Claude 3.5 Sonnet | Found the correct answer: p(x)=(1/4) + (x+2)/4 + 3(x+2)^2/16 + (x+2)^3/8 + 5(x+2)^4/64. |
| Meta AI | Found the correct answer: p(x)=(1/4) + (x+2)/4 + 3(x+2)^2/16 + (x+2)^3/8 + 5(x+2)^4/64. |
| Mistral AI | Found the correct answer: p(x)=(1/4) + (x+2)/4 + 3(x+2)^2/16 + (x+2)^3/8 + 5(x+2)^4/64. |
| Perplexity | Found the wrong answer. New prompt: The coefficients of (x+2), (x+2)^3, and (x+2)^4 were wrong. Solve it again. Still found the wrong answer. |
| Chat GPT 4o | Found the correct answer: R=5. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: R=5. |
| Copilot Pro | Found the correct answer: R=5. |
| Claude 3.5 Sonnet | Found the correct answer: R=5. |
| Meta AI | Found the correct answer: R=5. |
| Mistral AI | Found the correct answer: R=5. |
| Perplexity | Found the correct answer: R=5. |
| Chat GPT 4o | Found the correct answer: 9x^(5/3)-6x^(2/3)+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: 9x^(5/3)-6x^(2/3)+C. |
| Copilot Pro | Found the correct answer: 9x^(5/3)-6x^(2/3)+C. |
| Claude 3.5 Sonnet | Found the correct answer: 9x^(5/3)-6x^(2/3)+C. |
| Meta AI | Found the correct answer: 9x^(5/3)-6x^(2/3)+C. |
| Mistral AI | Found the correct answer: 9x^(5/3)-6x^(2/3)+C. |
| Perplexity | Found the correct answer: 9x^(5/3)-6x^(2/3)+C. |
| Chat GPT 4o | Found the correct answer: -5ln|x|-2x-3. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: -5ln|x|-2x-3. |
| Copilot Pro | Found the correct answer: -5ln|x|-2x-3. |
| Claude 3.5 Sonnet | Found the correct answer: -5ln|x|-2x-3. |
| Meta AI | Found the correct answer: -5ln|x|-2x-3. |
| Mistral AI | Found the correct answer: -5ln|x|-2x-3. |
| Perplexity | Found the correct answer: -5ln|x|-2x-3. |
| Chat GPT 4o | Found the correct answer: 792. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: 792. |
| Copilot Pro | Found the correct answer: 792. |
| Claude 3.5 Sonnet | Found the correct answer: 792. |
| Meta AI | Found the correct answer: 792. |
| Mistral AI | Found the correct answer: 792. |
| Perplexity | Found the correct answer: 792. |
| Chat GPT 4o | Found the correct answer: (2/3). |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (2/3). |
| Copilot Pro | Found the correct answer: (2/3). |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: It’s wrong. Solve it again. Still found the wrong answer. |
| Meta AI | Found the correct answer: (2/3). |
| Mistral AI | Found the correct answer: (2/3). |
| Perplexity | Found the correct answer: (2/3). |
| Chat GPT 4o | Found the correct answer: 48. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: 48. |
| Copilot Pro | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: 48. |
| Claude 3.5 Sonnet | Found the correct answer: 48. |
| Meta AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Mistral AI | Found the correct answer: 48. |
| Perplexity | Found the correct answer: 48. |
| Chat GPT 4o | Found the correct answer: (-4/3)(1-x^3)^(3/2)+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (-4/3)(1-x^3)^(3/2)+C. |
| Copilot Pro | Found the correct answer: (-4/3)(1-x^3)^(3/2)+C. |
| Claude 3.5 Sonnet | Found the correct answer: (-4/3)(1-x^3)^(3/2)+C. |
| Meta AI | Found the correct answer: (-4/3)(1-x^3)^(3/2)+C. |
| Mistral AI | Found the correct answer: (-4/3)(1-x^3)^(3/2)+C. |
| Perplexity | Found the correct answer: (-4/3)(1-x^3)^(3/2)+C. |
| Chat GPT 4o | Found the correct answer: (1/e)-(1/e^3). |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (1/e)-(1/e^3). |
| Copilot Pro | Found the correct answer: (1/e)-(1/e^3). |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: (1/e)-(1/e^3). |
| Meta AI | Found the correct answer: (1/e)-(1/e^3). |
| Mistral AI | Found the correct answer: (1/e)-(1/e^3). |
| Perplexity | Found the correct answer: (1/e)-(1/e^3). |
| Chat GPT 4o | Found the correct answer: (-1/18)(6+(1/x^3))^(6)+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (-1/18)(6+(1/x^3))^(6)+C. |
| Copilot Pro | Found the correct answer: (-1/18)(6+(1/x^3))^(6)+C. |
| Claude 3.5 Sonnet | Found the correct answer: (-1/18)(6+(1/x^3))^(6)+C. |
| Meta AI | Found the correct answer: (-1/18)(6+(1/x^3))^(6)+C. |
| Mistral AI | Found the correct answer: (-1/18)(6+(1/x^3))^(6)+C. |
| Perplexity | Found the correct answer: (-1/18)(6+(1/x^3))^(6)+C. |
| Chat GPT 4o | Found the correct answer: (1/3). |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (1/3). |
| Copilot Pro | Found the correct answer: (1/3). |
| Claude 3.5 Sonnet | Found the correct answer: (1/3). |
| Meta AI | Found the correct answer: (1/3). |
| Mistral AI | Found the correct answer: (1/3). |
| Perplexity | Found the correct answer: (1/3). |
| Chat GPT 4o | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: - oo. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: - oo. |
| Copilot Pro | Found the correct answer: - oo. |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: - oo. |
| Meta AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: - oo. |
| Mistral AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Perplexity | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Chat GPT 4o | Found the correct answer: (x^2/2)-4x+(ln|x^2-5|/2)+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (x^2/2)-4x+(ln|x^2-5|/2)+C. |
| Copilot Pro | Found the correct answer: (x^2/2)-4x+(ln|x^2-5|/2)+C. |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: (x^2/2)-4x+(ln|x^2-5|/2)+C. |
| Meta AI | Found the correct answer: (x^2/2)-4x+(ln|x^2-5|/2)+C. |
| Mistral AI | Found the correct answer: (x^2/2)-4x+(ln|x^2-5|/2)+C. |
| Perplexity | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. (It used partial fractions.) |
| Chat GPT 4o | Found the correct answer: -(ln(x)/x^2)-1/(2x^2)+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: -(ln(x)/x^2)-1/(2x^2)+C. |
| Copilot Pro | Found the correct answer: -(ln(x)/x^2)-1/(2x^2)+C. |
| Claude 3.5 Sonnet | Found the correct answer: -(ln(x)/x^2)-1/(2x^2)+C. |
| Meta AI | Found the correct answer: -(ln(x)/x^2)-1/(2x^2)+C. |
| Mistral AI | Found the correct answer: -(ln(x)/x^2)-1/(2x^2)+C. |
| Perplexity | Found the correct answer: -(ln(x)/x^2)-1/(2x^2)+C. |
| Chat GPT 4o | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: (3/(4e^(2x)))(2x+1)+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (3/(4e^(2x)))(2x+1)+C. |
| Copilot Pro | Found the correct answer: (3/(4e^(2x)))(2x+1)+C. |
| Claude 3.5 Sonnet | Found the correct answer: (3/(4e^(2x)))(2x+1)+C. |
| Meta AI | Found the correct answer: (3/(4e^(2x)))(2x+1)+C. |
| Mistral AI | Found the correct answer: (3/(4e^(2x)))(2x+1)+C. |
| Perplexity | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Chat GPT 4o | Found the correct answer: ((1/10)(sin2x)^5)-((1/14)(sin2x)^7)+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: ((1/10)(sin2x)^5)-((1/14)(sin2x)^7)+C. |
| Copilot Pro | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Claude 3.5 Sonnet | Found the correct answer: ((1/10)(sin2x)^5)-((1/14)(sin2x)^7)+C. |
| Meta AI | Found the correct answer: ((1/10)(sin2x)^5)-((1/14)(sin2x)^7)+C. |
| Mistral AI | Found the correct answer: ((1/10)(sin2x)^5)-((1/14)(sin2x)^7)+C. |
| Perplexity | Found the correct answer: ((1/10)(sin2x)^5)-((1/14)(sin2x)^7)+C. |
| Chat GPT 4o | Found the correct answer: ((sec(4x))^5)/20)-((sec(4x))^5)/12)+C. |
| Gemini Advanced with 1.5 Pro | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Copilot Pro | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: ((sec(4x))^5)/20)-((sec(4x))^5)/12)+C. |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Meta AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Mistral AI | Found the correct answer: (1/(20(cos(4x))^5))-(1/(12(cos(4x))^5))+C. |
| Perplexity | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: ((sec(4x))^5)/20)-((sec(4x))^5)/12)+C. |
| Chat GPT 4o | Found the correct answer: 2ln|x|-ln|x-1|+(1/(x-1))+C. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: 2ln|x|-ln|x-1|+(1/(x-1))+C. |
| Copilot Pro | Found the correct answer: 2ln|x|-ln|x-1|+(1/(x-1))+C. |
| Claude 3.5 Sonnet | Found the correct answer: 2ln|x|-ln|x-1|+(1/(x-1))+C. |
| Meta AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: 2ln|x|-ln|x-1|+(1/(x-1))+C. |
| Mistral AI | Found the correct answer: 2ln|x|-ln|x-1|+(1/(x-1))+C. |
| Perplexity | Found the correct answer: 2ln|x|-ln|x-1|+(1/(x-1))+C. |
| Chat GPT 4o | Found the correct answer: (-1/e). |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (-1/e). |
| Copilot Pro | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: (-1/e). |
| Claude 3.5 Sonnet | Found the correct answer: (-1/e). |
| Meta AI | Found the correct answer: (-1/e). |
| Mistral AI | Found the correct answer: (-1/e). |
| Perplexity | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Chat GPT 4o | Found the correct answer: 9/2, but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: 9/2. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: 9/2. |
| Copilot Pro | Found the correct answer: 9/2, but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer, but some steps are still not correct. |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Meta AI | Found the correct answer: 9/2, but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer, but some steps are still not correct. |
| Mistral AI (5/10) | Found the correct answer: 9/2, but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer, but some steps are still not correct. |
| Perplexity | Found the correct answer: 9/2, but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer: 9/2. |
| Chat GPT 4o | Found the correct answer: 253/12. |
| Gemini Advanced with 1.5 Pro | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Copilot Pro | Found the correct answer: 253/12, but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer, but some steps are still not correct. |
| Claude 3.5 Sonnet | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Meta AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Mistral AI (5/10) | Found the correct answer: 253/12, but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer, but some steps are still not correct. |
| Perplexity | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Chat GPT 4o | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: (108/5)(3.14), but some steps are inaccurate because they switched the upper and lower functions. New prompt: The answer is correct, but some steps are not correct. Solve the problem again. Found the correct answer, but some steps are still not correct. New prompt: The answer is wrong. Solve the problem again. Found the correct answer, but some steps are still not correct. |
| Copilot Pro | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Claude 3.5 Sonnet | Found the correct answer: (108/5)(3.14). |
| Meta AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Mistral AI | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Perplexity | Found the wrong answer. New prompt: The answer is wrong. Solve the problem again. Still found the wrong answer. |
| Chat GPT 4o | Found the correct answer: Converges to 0. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: Converges to 0. |
| Copilot Pro | Found the correct answer: Converges to 0. |
| Claude 3.5 Sonnet | Found the correct answer: Converges to 0. |
| Meta AI | Found the correct answer: Converges to 0. |
| Mistral AI | Found the correct answer: Converges to 0. |
| Perplexity | Found the correct answer: Converges to 0. |
| Chat GPT 4o | Found the correct answer: Diverges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: Diverges. |
| Copilot Pro | Found the correct answer: Diverges. |
| Claude 3.5 Sonnet | Found the correct answer: Diverges. |
| Meta AI | Found the correct answer: Diverges. |
| Mistral AI | Found the correct answer: Diverges. |
| Perplexity | Found the correct answer: Diverges. |
| Chat GPT 4o | Found the correct answer: Diverges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: Diverges. |
| Copilot Pro | Found the correct answer: Diverges. |
| Claude 3.5 Sonnet | Found the correct answer: Diverges. |
| Meta AI | Found the correct answer: Diverges. |
| Mistral AI | Found the correct answer: Diverges. |
| Perplexity | Found the correct answer: Diverges. |
| Chat GPT 4o | Found the correct answer: Converges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: Converges. |
| Copilot Pro | Found the correct answer: Converges. |
| Claude 3.5 Sonnet | Found the correct answer: Converges. |
| Meta AI | Found the correct answer: Converges. |
| Mistral AI | Found the correct answer: Converges. |
| Perplexity | Found the correct answer: Converges. |
| Chat GPT 4o | Found the correct answer: Diverges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: Diverges. |
| Copilot Pro | Found the correct answer: Diverges. |
| Claude 3.5 Sonnet | Found the correct answer: Diverges. |
| Meta AI | Found the correct answer: Diverges. |
| Mistral AI | Found the correct answer: Diverges. |
| Perplexity | Found the correct answer: Diverges. |
| Chat GPT 4o | Found the correct answer: Converges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: Converges. |
| Copilot Pro | Found the correct answer: Converges. |
| Claude 3.5 Sonnet | Found the correct answer: Converges. |
| Meta AI | Found the correct answer: Converges. |
| Mistral AI | Found the correct answer: Converges. |
| Perplexity | Found the correct answer: Converges. |
| Chat GPT 4o | Found the correct answer: Converges. |
| Gemini Advanced with 1.5 Pro | Found the correct answer: Converges. |
| Copilot Pro | Found the correct answer: Converges. |
| Claude 3.5 Sonnet | Found the correct answer: Converges. |
| Meta AI | Found the correct answer: Converges. |
| Mistral AI | Found the correct answer: Converges. |
| Perplexity | Found the correct answer: Converges. |
3.3. Response to Follow-up Prompt
3.4. Problem Type Analysis
4. Discussion
4.1. Correct Solutions
| Original command: | Follow-up commands: |
| 3-3) Find the volume of the solid generated by revolving the region bounded by the graphs of y = - x^2 + 2x + 5, y = -x + 5 about the line y = 2. Show all the steps. Still found the wrong answer. |
3-3) (-x^2+2x+3)(-x^2+2x+3). The answer is x^4-4x^3-2x^2+12x+9. (-x^2+2x+3)(-x^2+2x+3)-(-x+3)(-x+3). The answer is x^4-4x^3-3x^2+18x. integration from 0 to 3 x^4-4x^3-3x^2+18x. The answer is (108/5). Found the correct answer: (108/5)(3.14). |
| F-1) Evaluate the definite integral: integration from -1 to 1 [(x-x^2)/(5(x^(1/5)))]. Show all the steps. Calculate each operation separately. Still found the wrong answer. |
F-1) Integrate x^(4/5)-x^(9/5). Show all the steps. (1/5)[(5/9)x^(9/5)-(5/14)(x^(14/5)]. f(x)=x^9, g(x)=x^14, f(-1)=? and g(-1)=? f(-1)=-1, g(-1)=1. (-1)^(1/5)=? 1^(1/5)=? (-1)^(1/5)=(-1), 1^(1/5)=(1). (1/5)(5/9)[1-(-1)]=? Found the correct answer: (2/9). |
| Original command: | Follow-up commands: |
| 2-6) Find the indefinite integral: integration [((sec(4x))^3)((tan(4x))^3)]. Show all the steps. Still found the wrong answer. |
2-6) Let u=sec(4x). Put (sec(4x))^3=(sec(4x)^2(sec(4x)). Solve the problem again. Show all the steps. Found the correct answer: [(sec(4x)^5)/20]-[(sec(4x)^3)/12]+C |
| 3-2) Find the area of the region bounded by the graphs of the equations: y=x^3-3x^2-4x, y=-2x^2+2x. Show all the steps. Still found the wrong answer. |
3-2) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. Show all the steps. The answer is wrong. (16/3)+(63/4): The answer is wrong. What is the answer for (16/3)+(63/4)? Found the correct answer: (253/12). |
| 3-3) Find the volume of the solid generated by revolving the region bounded by the graphs of y = - x^2 + 2x + 5, y = -x + 5 about the line y = 2. Show all the steps. Still found the wrong answer. |
3-3) R(x) and r(x) answers are wrong. Do it again. Show all the steps. Found the correct answer: (108/5)(3.14). * R(x): Outer radius. r(x): Inner radius. |
| F-9) Determine whether the improper integral diverges or converges. Evaluate the definite integral if it converges: integration from negative infinity to 1 (1-x)e^(-x). Show all the steps. Still found the wrong answer. |
F-9) Step 4. Evaluate the limit: limit t -> -infinity, (1/e^(t)) -> 0: The answer is wrong. limit t -> -infinity, (te^(-t)): Answer is wrong. Do it again. Use the L’Hôpital’s rule. Show all the steps. Found the correct answer: It diverges to -oo. |
| Original command: | Follow-up commands: |
| 3-1) Find the area of the region bounded by the graphs of the equations: y=-x^2-2x+2, y=x+2. Show all the steps. Found the correct answer, but some steps are still not correct. |
3-1) Area setup was wrong. Check which curve is above. Solve the problem again. Show all the steps. Found the correct answer with the correct steps: (9/2). |
| 3-2) Find the area of the region bounded by the graphs of the equations: y=x^3-3x^2-4x, y=-2x^2+2x. Show all the steps. Still found the wrong answer. |
3-2) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. Show all the steps. The answer is wrong. In Area 1, y=x^3-3x^2-4x is above y=-2x^2+2x. In Area 2, y=-2x^2+2x is above y=x^3-3x^2-4x. Solve the problem again. Show all the steps. The answer is wrong. Area 1 answer is wrong. Find the Area 1 answer, again. Add Area 1 and Area 2. Found the correct answer: (253/12). |
| 3-3) Find the volume of the solid generated by revolving the region bounded by the graphs of y = - x^2 + 2x + 5, y = -x + 5 about the line y = 2. Show all the steps. Still found the wrong answer. |
3-3) R(x) and r(x) are wrong. They must be switched. The answer is wrong. (-x^2+2x+3)(-x^2+2x+3). The answer is x^4-4x^3-2x^2+12x+9. (-x^2+2x+3)(-x^2+2x+3)-(-x+3)(-x+3). The answer is x^4-4x^3-3x^2+18x. integration from 0 to 3 x^4-4x^3-3x^2+18x. The answer is (108/5). Found the correct answer: (108/5)(3.14). |
| F-5) Find the area of the region: y=2x^3-3x^2-5x, y=-3x^2+3x. Show all the steps. Still found the wrong answer. |
F-5) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. Show all the steps. Found the correct answer: 16. |
| F-6) Find the volume of the solid generated by revolving the region bounded by the graphs of y = -x^2 + 3x + 6, y = -x + 6 about the line y = 2. Show all the steps. Still found the wrong answer. |
F-6) Use a Washer method. The answer is wrong. R(x) and r(x) are wrong. They must be switched. The answer is wrong. (-x^2+3x+4)(-x^2+3x+4) is wrong. Do it again. Found the correct answer: (384/5)(3.14). |
| Original command: | Follow-up commands: |
| 1-4) Evaluate the definite integral: integration from -1 to 1 (x^2-1/x^3). Show all the steps. | 1-4) Use an antiderivative method. Find the correct answer: (2/3). |
| 2-6) Find the indefinite integral: integration [((sec(4x))^3)((tan(4x))^3)]. Show all the steps. Still found the wrong answer. |
2-6) Let u=sec(4x). Put (sec(4x))^3=(sec(4x)^2(sec(4x)). Solve the problem again. Show all the steps. Found the correct answer: [(sec(4x)^5)/20]-[(sec(4x)^3)/12]+C. |
| 3-1) Find the area of the region bounded by the graphs of the equations: y=-x^2-2x+2, y=x+2. Show all the steps. Found the correct answer, but some steps are still not correct. |
3-1) Area setup was wrong. Check which curve is above. Solve the problem again. Show all the steps. The answer is wrong. Area setup was right, but the answer is wrong. Solve the problem, agin. Show all the steps. Found the correct answer with the correct steps: (9/2). |
| 3-2) Find the area of the region bounded by the graphs of the equations: y=x^3-3x^2-4x, y=-2x^2+2x. Show all the steps. Still found the wrong answer. |
3-2) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. Show all the steps. The answer is wrong. In step 6, the second integral answer is wrong. Calculate the second integral, again. The answer is wrong. (-2x^2+2x)-(x^3-3x^2-4x): the answer is wrong. Calculate it again. (-2x^2+2x)-(x^3-3x^2-4x): the answer is right. The second integral answer is still wrong. Integrate it again. The answer is wrong. (3^3/3) is not 27. Integrate it again. Found the correct answer: (253/12). |
| F-2) Find the indefinite integral: integration [(-3x^3+2x^2+5x-6)/(x^2-3)]. Show all the steps. Still found the wrong answer. |
F-2) The long division result is wrong. Show all the steps. The answer is wrong. Don’t use the partial fraction method. Found the correct answer: (-3x^2)/2 + 2x - 2ln|x^2-3| +C. |
| F-3) Evaluate the definite integral: integration from -1 to 1 [(1+(1/(x^3)))^4(1/(x^4))]. Show all the steps. Still found the wrong answer. |
F-3) Use the substitution method. Let u=(1+(1/x^3)). Show all the steps. Found the correct answer: (-32/15). |
| F-6) Find the volume of the solid generated by revolving the region bounded by the graphs of y = -x^2 + 3x + 6, y = -x + 6 about the line y = 2. Show all the steps. Still found the wrong answer. |
F-6) (-x^2+3x+4)(-x^2+3x+4) x^4-6x^3+x^2+24x+16. Solve the problem again. Show all the steps The answer is wrong. Integrate from 0 to 4 x^4-6x^3+32x. Found the correct answer: (384/5)(3.14). |
| F-9) Determine whether the improper integral diverges or converges. Evaluate the definite integral if it converges: integration from negative infinity to 1 (1-x)e^(-x). Show all the steps. Still found the wrong answer. |
F-9) Integrate (1-x)e^(-x). Must use integration by parts. Show all the steps. xe^(-x) + C. f(x)=xe^(x). What is f(1)-f(b)? (1/e)-(be^(-b)). As b goes -infinity where does (1/e)-[1/e^(b)] go? Found the correct answer: It diverges to -oo. * We must prompt each step correctly to get the correct answer. |
| Original command: | Follow-up commands: |
| 1-5) Evaluate the definite integral: integration from -1 to 1 40(x-x^2)/x^(1/3). Show all the steps. Still found the wrong answer. |
1-5) (-1)^(5/3) value is wrong. Solve the problem again. Show all the steps. Found the correct answer: (48). |
| 2-6) Find the indefinite integral: integration [((sec(4x))^3)((tan(4x))^3)]. Show all the steps. Still found the wrong answer. |
2-6) Let u=sec(4x). Put (sec(4x))^3=(sec(4x)^2(sec(4x)). Replace (tan(4x))^2=((sec(4x)^2)-1). Solve the problem again. Show all the steps. Found the correct answer: [(sec(4x)^5)/20]-[(sec(4x)^3)/12]+C. |
| 3-1) Find the area of the region bounded by the graphs of the equations: y=-x^2-2x+2, y=x+2. Show all the steps. Found the correct answer, but some steps are still not correct. |
3-1) Area setup was wrong. Check which curve is above. Solve the problem again. Show all the steps. The answer is wrong. The area setup was right, but the answer was wrong. Solve the problem, again. Show all the steps. The answer is wrong. Calculate: (((-3)^3)/3)+((3(-3)^2)/2) Found the correct answer with the correct steps: (9/2). |
| 3-2) Find the area of the region bounded by the graphs of the equations: y=x^3-3x^2-4x, y=-2x^2+2x. Show all the steps. Still found the wrong answer. |
3-2) In the first integration, the upper function and lower function setup were wrong. Do the first integration again. Show all the steps. The answer is wrong. (x^3-3x^2-4x)-(-2x^2+2x): the answer is wrong. Calculate it again. Found the correct answer: (253/12). |
| 3-3) Find the volume of the solid generated by revolving the region bounded by the graphs of y = - x^2 + 2x + 5, y = -x + 5 about the line y = 2. Show all the steps. Still found the wrong answer. |
3-3) (-x^2+2x+3)(-x^2+2x+3) x^4-4x^3-2x^2+12x+9. Solve the problem again. Show all the steps. Found the correct answer: (108/5)(3.14). |
| F-3) Evaluate the definite integral: integration from -1 to 1 [(1+(1/(x^3)))^4(1/(x^4))]. Show all the steps. Still found the wrong answer. |
F-3) Use the substitution method. Show all the steps. Found the correct answer: (-32/15). |
| F-5) Find the area of the region: y=2x^3-3x^2-5x, y=-3x^2+3x. Show all the steps. Still found the wrong answer. |
F-5) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. Show all the steps. The final answer is wrong. * In Area A1, (2x^3-3x^2-5x)-(-3x^2+3x) answer is wrong. In Area A2, (-3x^2+3x)-(2x^3-3x^2-5x) answer is wrong. In Area A1, (2x^3-3x^2-5x)-(-3x^2+3x). Area A1 is 8. In Area A2, (-3x^2+3x)-(2x^3-3x^2-5x). Area A2 is 8. A1+A2. Found the correct answer: 16. |
| F-6) Find the volume of the solid generated by revolving the region bounded by the graphs of y = -x^2 + 3x + 6, y = -x + 6 about the line y = 2. Show all the steps. Still found the wrong answer. |
F-6) (-x^2+3x+4)(-x^2+3x+4) x^4-6x^3+x^2+24x+16. Solve the problem again. Show all the steps. The answer is wrong. Integrate from 0 to 4 x^4-6x^3+32x. Found the correct answer: (384/5)(3.14). |
| F-9) Determine whether the improper integral diverges or converges. Evaluate the definite integral if it converges: integration from negative infinity to 1 (1-x)e^(-x). Show all the steps. | F-9) Integrate (1-x)e^(-x). Must use integration by parts. Show all the steps. xe^(-x) + C. f(x)=xe^(x). What is f(1)-f(b)? (1/e)-(be^(-b)). As b goes -infinity where does (1/e)-[1/(e^(b))] go? Found the correct answer: It diverges to -oo. * We must prompt each step correctly to get the correct answer. |
| Original command: | Follow-up commands: |
| 2-1) Evaluate the limit, using L’Hôpital’s Rule if necessary: limit x goes negative infinity (-e^(x^2))/(1-x^3). Show all the steps. Still found the wrong answer. |
2-1) Evaluate the limit, using L’Hôpital’s Rule twice: limit x goes negative infinity (-e^(x^2))/(1-x^3). Show all the steps. Found the correct answer: -oo. |
| 2-6) Find the indefinite integral: integration [((sec(4x))^3)((tan(4x))^3)]. Show all the steps. Still found the wrong answer. |
2-6) Let v=sec(u). Put (sec(u))^3=(sec(u))^2(sec(u)). Solve the problem again. Show all the steps. Found the correct answer: [(sec(4x)^5)/20]-[(sec(4x)^3)/12]+C. |
| 3-1) Find the area of the region bounded by the graphs of the equations: y=-x^2-2x+2, y=x+2. Show all the steps. Found the correct answer, but some steps are still not correct. |
3-1) Area setup was wrong. Check which curve is above. Solve the problem again. Show all the steps. Found the correct answer with the correct steps: (9/2). |
| 3-2) Find the area of the region bounded by the graphs of the equations: y=x^3-3x^2-4x, y=-2x^2+2x. Show all the steps. Still found the wrong answer. |
3-2) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. Show all the steps. Found the correct answer: (253/12). |
| 3-3) Find the volume of the solid generated by revolving the region bounded by the graphs of y = - x^2 + 2x + 5, y = -x + 5 about the line y = 2. Show all the steps. Still found the wrong answer. |
3-3) (-x^2+2x+3)(-x^2+2x+3)-(-x+3)(-x+3). The answer is x^4-4x^3-3x^2+18x. integration from 0 to 3 x^4-4x^3-3x^2+18x. The answer is (108/5). Found the correct answer: (108/5)(3.14). |
| F-6) Find the volume of the solid generated by revolving the region bounded by the graphs of y = -x^2 + 3x + 6, y = -x + 6 about the line y = 2. Show all the steps. Still found the wrong answer. |
3-3) (-x^2+3x+4)(-x^2+3x+4)-(-x+4)(-x+4). The answer is x^4-6x^3+32x. integration from 0 to 3 x^4-6x^3+32x. The answer is (384/5). Found the correct answer: (384/5)(3.14). |
| F-9) Determine whether the improper integral diverges or converges. Evaluate the definite integral if it converges: integration from negative infinity to 1 (1-x)e^(-x). Show all the steps. Still found the wrong answer. |
F-9) Integration (1-x)e^(-x) by parts. The answer is wrong. The answer is wrong. The answer is correct: xe^(-x). limit b goes to (negative infinity) [(1)e^(1)-(b)e^(-b)]. Found the correct answer: It diverges to -oo. |
| Original command: | Follow-up commands: |
| 2-1) Evaluate the limit, using L’Hôpital’s Rule if necessary: limit x goes negative infinity (-e^(x^2))/(1-x^3). Show all the steps. Still found the wrong answer. |
2-1) Evaluate the limit, using L’Hôpital’s Rule twice: limit x goes negative infinity (-e^(x^2))/(1-x^3). Show all the steps. Found the correct answer: -oo. |
|
2-2) Find the indefinite integral: integration (x^3-4x^2-4x+20)/(x^2-5). Show all the steps. Still found the wrong answer. |
2-2) After division, use a u-substitution instead of the partial fraction. Solve the problem again. Show all the steps. Found the correct answer: (x^2/2)-4x+(ln|x^2-5|/2)+C. |
| 2-8) Determine whether the improper integral diverges or converges. Evaluate the definite integral if it converges: integration from 1 to infinity (1-x)e^(-x). Show all the steps. Still found the wrong answer. |
2-8) Integration (1-x)e^(-x) by parts. Found the correct answer: (-1/e). |
| 3-2) Find the area of the region bounded by the graphs of the equations: y=x^3-3x^2-4x, y=-2x^2+2x. Show all the steps. Still found the wrong answer. |
3-2) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. Show all the steps. Found the correct answer: (253/12). |
| 3-3) Find the volume of the solid generated by revolving the region bounded by the graphs of y = - x^2 + 2x + 5, y = -x + 5 about the line y = 2. Show all the steps. Still found the wrong answer. |
3-3) R(x) and r(x) are wrong. R(x) and r(x) are correct, but the final answer is wrong. (-x^2+2x+3)(-x^2+2x+3) The answer is wrong. (-x^2+2x+3)(-x^2+2x+3) is wrong x^4-4x^3-2x^2+12x+9. Solve the problem again. Show all the steps. Found the correct answer: (108/5)(3.14). |
| F-5) Find the area of the region: y=2x^3-3x^2-5x, y=-3x^2+3x. Show all the steps. Still found the wrong answer. |
F-5) Must use two integrations instead of one integration. In each integration, check which curve is above. Solve the problem again. The answer is wrong. Areas set up, A1 and A2, were wrong. Check which curve is above. Found the correct answer: 16. |
| F-9) Determine whether the improper integral diverges or converges. Evaluate the definite integral if it converges: integration from negative infinity to 1 (1-x)e^(-x). Show all the steps. Still found the wrong answer. |
F-9) Step 1 answer is wrong. Integration (1-x)e^(-x) by parts. The answer is wrong. Step 5 answer is wrong. As t -> -infinity, te^(-t) goes to where? Use L’Hôpital’s rule. Found the correct answer: It diverges to -oo. |
| F-14) Find the n^(th) Taylor polynomial for the function, centered at c=-2: f(x)=1/x^2, n=4. Show all the steps. Still found the wrong answer. |
F-14) The coefficients of (x+2), (x+2)^3, and (x+2)^4 were wrong. Solve the problem again. Show all the steps. The answer is wrong. The coefficients of (x+2)^3, and (x+2)^4 were wrong. Solve the problem again. Show all the steps. The answer is wrong. The coefficient of (x+2)^4 was wrong. Solve the problem again. Show all the steps. Found the correct answer: p(x)=(1/4) + (x+2)/4 + 3(x+2)^2/16 + (x+2)^3/8 + 5(x+2)^4/64. |
4.2. Interpretation of Key Findings
4.3. Comparative Analysis of Model Strengths and Weaknesses
4.4. Error Patterns and Mathematical Reasoning
4.5. Implications for Educational Applications
4.6. Methodological Considerations and Limitations
4.7. Implications for LLM Development and Future Directions
5. Conclusions
References
- Hagos D. H., Battle R., Rawat D. B. (2024). Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives. arXiv preprint arXiv:2407.14962. [CrossRef]
- Dagley M., A. , Gill M., Saita E., Moore B., Chini J., Li X. (2018). Using Active Learning Strategies in Calculus to Improve Student Learning and Influence Mathematics Department Cultural Change. Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, 2018, Volume 2. [CrossRef]
- Mishra A. K. (2023). An Introduction to Calculus: Fundamental Concepts and Applications. International Journal of Creative Research Thoughts, February 2023, Volume 11, Issue 2, f536-f541.
- Bailey J., D. , Claridge J., Partner A. (2024). Investigating students’ perception of the importance of calculus: a cross-discipline comparison to inform module development. MSOR Connections, Volume 22, Number 1, 5–27. [CrossRef]
- Spresser D., M. (1981). High school calculus and achievement in university engineering and applied science courses. International Journal of Mathematical Education in Science and Technology, Volume 12, Issue 4, 453-459. [CrossRef]
- Kiat S., S. (2005). Analysis of Students’ Difficulties in Solving Integration Problems. The Mathematics Educator, Volume 9, Number 1, 39-59.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).