Submitted:
03 September 2025
Posted:
04 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Experimental Design
| Treatment Group | Full Bloom (D0) | 14 Days Post-Anthesis (D14) |
|---|---|---|
| 1 | EBR 0.2 mg/L | EBR 0.5 mg/L |
| 2 | EBR 0.5 mg/L | EBR 0.5 mg/L |
| 3 | EBR 0.8 mg/L | EBR 0.5 mg/L |
| 4 | EBR 1.0 mg/L | EBR 0.5 mg/L |
| 5 | 0.5 mg/L EBR + 200 mg/L SM | EBR 0.5 mg/L |
| 6 | 2 mg/L TDZ + 25 mg/L GA3 | TDZ 2 mg/L |
| 7 | 200 mg/L SM + 2 mg/L TDZ | TDZ 2 mg/L |
| 8 | CPPU 5.0 mg/L | CPPU 10 mg/L |
| 9 | 200 mg/L SM + CPPU 5.0 mg/L | CPPU 10 mg/L |
| 10 | 25 mg/L GA3 + CPPU 3.0 mg/L | 25 mg/L GA3 + CPPU 5.0 mg/L |
| 11 | 25 mg/L GA3 | 25 mg/L GA3 |
| CK | Solvent (Water) | Solvent (Water) |
2.3. Measurement of Fruit Quality Parameters
- Total Soluble Solids (TSS): Berries were homogenized, and the supernatant was extracted by centrifugation (3,000 × g, 10 min). TSS was measured using a handheld refractometer at 20°C, with values expressed as °Brix.
- Single berry weight and longitudinal/transverse diameters: Longitudinal and transverse diameters were measured using an electronic vernier caliper (0.01 mm precision), and single berry weight was recorded with an electronic balance (0.01 g precision).
- Acid Content: Fruit pulp (0.5 g) was homogenized with 20 mL distilled water, filtered, and the volume adjusted to 100 mL. A 20-mL aliquot was titrated with 0.05 M NaOH using 1% phenolphthalein as an indicator until a faint pink color lasted 30 s. TA content was calculated as:
2.4. Histological Analysis
2.5. Statistical Analysis
3. Results
3.1. Modulatory Effects of Plant Growth Regulators on Grape Berry Development and Quality Parameters
3.2. Effects of Plant Growth Regulators on Pedicel Microstructure Development in Grape


4. Discussion
4.1. Cultivar-Specific Responses to PGRs and Implications for Seedless Production
4.2. Microstructural Modifications and Marketability Implications
4.3. Research Method Limitationss
4.4. Risk Assessment and Regulatory Challenges
4.5. Market and Application Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Data Availability Statement
Acknowledgments
Abbreviations
| PGR | Plant Growth Regulator |
| GA3 | Gibberellic Acid |
| CPPU | Forchlorfenuron |
| TDZ | Thidiazuron |
| EBR | 24-Epibrassinolide |
| SM | Streptomycin |
| TSS | Total Soluble Solids |
| TA | Titratable Acidity |
| DAA | Days After Anthesis |
| CK | Control (Water Treatment) |
References
- Khan, N.; Fahad, S.; Naushad, M.; Faisal, S. Grape production critical review in the world. Available at SSRN 3595842 2020, pp. 1–28.
- Han, X.; Mi, Y.; Wang, H.; Ye, S.; Abe-Kanoh, N.; Ji, W. Influence of GA3 and CPPU on the Quality Attributes and Peelability of ’Wuhe Cuibao’ Grape. Agronomy 2025, 15, 1986. [Google Scholar] [CrossRef]
- Hassan, A.E.; Behary, E.H.M. EFFECT OF SOME GIBBERELLIC ACID AND FORCHLORFNURON APPLICATION ON PRODUCTIVITY AND BERRIES DEVELOPMENT OF EARLY SWEET GRAPES. Menoufia Journal of Plant Production 2021, 6, 289–298. [Google Scholar] [CrossRef]
- DONG, J.; ZHANG, P.; LI, W.; LI, H.; ZHOU, G.; CHEN, K.; FANG, Y.; ZHANG, K. Effects of Seedlessness and Swelling Treatments Based on GA3 and CPPU on the Fruit Quality of "Shine Muscat" Grapes. Scientia Agricultura Sinica 2025, 58, 2008–2021. [Google Scholar] [CrossRef]
- Peng, T.; Liu, C.; Wu, S.L.; Li, J.B.; Liu, F. Effects of different puffing measures on the fruit quality of ’summer black’ grapes. IOP Conference Series: Earth and Environmental Science 2020, 546, 052057. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W. Effects of Forchlorfenuron and Abscisic Acid on the Quality of ’Flame Seedless’ Grapes 2008. 43, 173–177. [CrossRef]
- Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. Journal of Plant Growth Regulation 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Jun-peng, R.; Xiao-hong, L.; Xin-xin, S.; Chen-chen, R.; Yue-fang, S.; Jian-min, T. Effects of GA3 and TDZ on Fruit Growth and Quality of Summer Black Grape. Acta Agriculturae Jiangxi 2020, 51, 145–152. [Google Scholar]
- Clouse, S.D.; Sasse, J.M. BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. Annual Review of Plant Physiology and Plant Molecular Biology 1998, 49, 427–451. [Google Scholar] [CrossRef]
- Bhat, Z.A.; Reddy, Y.N.; Srihari, D.; Bhat, J.A.; Rashid, R.; Rather, J.A. New Generation Growth Regulators–Brassinosteroids and CPPU Improve Bunch and Berry Characteristics in ’Tas–A–Ganesh’ Grape. International Journal of Fruit Science 2011, 11, 309–315. [Google Scholar] [CrossRef]
- Li, J.; Javed, H.U.; Wu, Z.; Wang, L.; Han, J.; Zhang, Y.; Ma, C.; Jiu, S.; Zhang, C.; Wang, S. Improving berry quality and antioxidant ability in ’Ruidu Hongyu’grapevine through preharvest exogenous 2, 4–epibrassinolide, jasmonic acid and their signaling inhibitors by regulating endogenous phytohormones. Frontiers in plant science 2022, 13, 1035022. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Hao, T.; Hakeem, A.; Ren, Y.; Fang, J. Synergistic variation in abscisic acid and brassinolide treatment signaling component alleviates fruit quality of ’Shine Muscat’ grape during cold storage. Food Chemistry 2025, 464, 141584. [Google Scholar] [CrossRef]
- Eshghi, S.; Kavoosi, B.; Hosseinifarahi, M. Influence of Streptomycin and CuSO4 on Seedlessness and Fruit Quality in ’Rotabi Seyah’ Table Grape. Acta horticulturae 2010, 884, 461–466. [Google Scholar] [CrossRef]
- Osako, Y.; Kaite, T.; Yamane, H.; Morimoto, T.; Itai, A.; Tao, R. Effects of streptomycin, gibberellic acid, and the synthetic cytokinin forchlorfenuron on the seed size of muscadine grape. Acta Horticulturae 2023, pp. 163–170. [CrossRef]
- Parliament, T.E.; the Council of the European Union. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC, 2009.
- Parliament, T.E.; the Council of the European Union. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC, 2005.
- Mok, D.W.; Mok, M.C. CYTOKININ METABOLISM AND ACTION 2001.
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot-Leclercq, M.P. On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective, 2023.
- Dong, Y.; Huang, L.; Zhang, W.; Liu, J.; Nong, H.; Wang, X.; et al. Transcriptomic and functional analysis reveals that VvSAUR43 may be involved the elongation of grape berries. Scientia Horticulturae 2023, 318, 112119. [Google Scholar] [CrossRef]
- Geng, K.; Zhan, Z.; Xue, X.; Hou, C.; Li, D.; Wang, Z. Genome-wide identification of the SWEET gene family in grape (Vitis vinifera L.) and expression analysis of VvSWEET14a in response to water stress. Physiology and Molecular Biology of Plants 2024, 30, 1565–1579. [Google Scholar] [CrossRef]
- Koyama, K.; Kono, A.; Ban, Y.; Bahena-Garrido, S.M.; Ohama, T.; Iwashita, K.; et al. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera). BMC Plant Biology 2022, 22, 458. [Google Scholar] [CrossRef]
- Ren, R.; Wan, Z.; Chen, H.; Zhang, Z. The effect of inter–varietal variation in sugar hydrolysis and transport on sugar content and photosynthesis in Vitis vinifera L. leaves. Plant Physiology and Biochemistry 2022, 189, 1–13. [Google Scholar] [CrossRef]
- Yang, Y.; Cuenca, J.; Wang, N.; Liang, Z.; Sun, H.; Gutierrez, B.; et al. A key ’foxy’ aroma gene is regulated by homology–induced promoter indels in the iconic juice grape ’Concord’. Horticulture Research 2020, 7, 67. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Y.; Zhang, C.; Xu, W.; Lu, J. 葡萄新品种红亚历山大玛斯卡特选育报告 [Breeding report of new grape variety "Red Alexandria (Muscat)"]. 中国南方果树 [South China Fruits] 2008, 37, 65–66. [Google Scholar]
- Cheng, D.; Li, H.; Wang, H. 植物生长调节剂对葡萄果实品质的影响 [Effects of plant growth regulators on grape fruit quality]. 园艺学报 [Acta Horticulturae Sinica] 2015, 42, 1456—-1464.
- Haiyan, L.; Liping, Z.; Li, W.; Yiming, Y.; Huijuan, J. Effects of Two Kinds of Plant Growth Regulators on Fruit Quality of Shine Muscat Grape, 2016.
- Mehretie, S.; Inoue, S.; Hayashi, T.; Nakashima, H.; Panintorn, P.; Ninomiya, K.; Kondo, N. Ultra sensor based on color and UV–excited fluorescence images for predicting quality attributes of Shine–Muscat grape bunches at different maturity stages. Food Chemistry 2024, 461, 140894. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, T.; Bao, S.; Yin, D.; Ge, Q.; Li, C.; Fang, Y.; Sun, X. Suitable crop loading: An effective method to improve "Shine Muscat" grape quality. Food Chemistry 2023, 424, 136451. [Google Scholar] [CrossRef]
- Choi, K.O.; Hur, Y.Y.; Park, S.J.; Lee, D.H.; Kim, S.J.; Im, D. Relationships between Instrumental and Sensory Quality Indices of Shine Muscat Grapes with Different Harvesting Times. Foods 2022, 11, 2482. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, J.; Yang, S.; Ning, J. An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings. Biosystems Engineering 2024, 237, 1–12. [Google Scholar] [CrossRef]
- Dequeker, B.; Šalagovič, J.; Retta, M.; Verboven, P.; Nicolaï, B.M. A biophysical model of apple (Malus domestica Borkh.) and pear (Pyrus communis L.) fruit growth. Biosystems Engineering 2024, 239, 130–146. [Google Scholar] [CrossRef]
- Meng, C.; Yang, W.; Ren, X.; Wang, D.; Li, M. In–situ soil texture classification and physical clay content measurement based on multi–source information fusion. International Journal of Agricultural and Biological Engineering 2023, 16, 203–211. [Google Scholar] [CrossRef]
- Su-Yeon, L.; Jae-Yun, H. Combined treatment with gibberellic acid and thidiazuron improves fruit quality of ‘Red Dream’grape cultivar. Notulae Scientia Biologicae 2023, 15, 11499–11499. [Google Scholar]
- Chen, X. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes. Journal of Integrative Agriculture.
- Khalil, U.; Rajwana, I.A.; Razzaq, K.; Farooq, U.; Saleem, B.A. Physical, Biochemical and Phytochemical Quality Variations in Grapes Treated by Exogenous Application of Gibberellic Acid. Erwerbs–Obstbau 2023, 65, 2031–2044. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, W.; Wang, W.; Nieuwenhuizen, N.J.; Atkinson, R.G.; Gao, L.; et al. Integrated Transcriptomic and Proteomic Analysis Identifies Novel Regulatory Genes Associated with Plant Growth Regulator–Induced Astringency in Grape Berries. Journal of Agricultural and Food Chemistry 2024, 72, 4433–4447. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, K.; Maoz, I.; Kochanek, B.; Sela, N.; Lerno, L.; Ebeler, S.E.; et al. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research 2021, 8, 51. [Google Scholar] [CrossRef]
- Li, J.; Javed, H.U.; Wu, Z.; Wang, L.; Han, J.; Zhang, Y.; et al. Improving berry quality and antioxidant ability in ’Ruidu Hongyu’grapevine through preharvest exogenous 2, 4–epibrassinolide, jasmonic acid and their signaling inhibitors by regulating endogenous phytohormones. Frontiers in Plant Science 2022, 13, 1035022. [Google Scholar] [CrossRef]
- Ghimire, U.; Abeli, P.; Brecht, J.K.; Pliakoni, E.; Liu, T. Unique molecular mechanisms revealed for the effects of temperature, CA, ethylene exposure, and 1–MCP on postharvest senescence of broccoli. Postharvest Biology and Technology 2024, 213, 112919. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Zhang, S.; Gong, Y.; Wang, N.; Zhang, Z.; et al. Auxin responsive factor MdARF17 promotes ethylene synthesis in apple fruits by activating MdERF003 expression. Plant Cell Reports 2024, 43, 212. [Google Scholar] [CrossRef]
- Ordoñez Trejo, E.J.; Brizzolara, S.; Cardillo, V.; Ruperti, B.; Bonghi, C.; Tonutti, P. The impact of PGRs applied in the field on the postharvest behavior of fruit crops. Scientia Horticulturae 2023, 318, 112103. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.; Feng, W.; Wan, S.; Bian, Y.; Xie, Z. Differential regulation of xylem and phloem differentiation in grape berries by GA3 and CPPU. Scientia Horticulturae 2024, 337, 113582. [Google Scholar] [CrossRef]
- Cheng, D.; He, S.; Li, L.; Tong, X.; Gu, H.; Sun, X.; et al. Effects of Mepiquat Chloride and Chlormequat Chloride on the Growth and Fruit Quality of ’Shine Muscat’ Grapevines. Agriculture 2025, 15, 1267. [Google Scholar] [CrossRef]
- Huang, H.; He, X.; Sun, Q.; Liu, G.; Tang, Y.; Sun, J. Differential changes in cuticular wax affect the susceptibility to fruit decay in pitaya after harvest: A cultivar comparative study. Postharvest Biology and Technology 2024, 210, 112751. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Minhas, P.S.; Kumar, S.; Khapte, P.S.; Dalvi, S.G.; Rane, J.; et al. Pod quality, yields responses and water productivity of okra (Abelmoschus esculentus L.) as affected by plant growth regulators and deficit irrigation. Agricultural Water Management 2023, 282, 108267. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Hayasaka, Y.; Vidal, S.; Waters, E.J.; Jones, G.P. Composition of Grape Skin Proanthocyanidins at Different Stages of Berry Development. Journal of Agricultural and Food Chemistry 2001, 49, 5348–5355. [Google Scholar] [CrossRef]
- Wang, L.; Brouard, E.; Prodhomme, D.; Hilbert, G.; Renaud, C.; Petit, J.P.; Edwards, E.; Betts, A.; Delrot, S.; Ollat, N.; et al. Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exogenous ABA application. Food Research International 2022, 160, 111478. [Google Scholar] [CrossRef]
- Li, F.; Wu, Q.; Liao, B.; Yu, K.; Huo, Y.; Meng, L.; et al. Thidiazuron Promotes Leaf Abscission by Regulating the Crosstalk Complexities between Ethylene, Auxin, and Cytokinin in Cotton. International Journal of Molecular Sciences 2022, 23, 2696. [Google Scholar] [CrossRef]
- Ren, M.; Wang, Y.; Yi, S.; Chen, J.; Zhang, W.; Li, H.; et al. Combined Transcriptome Analysis Reveals the Mechanism of ’Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment. Horticulturae 2025, 11, 549. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, P.; Bai, W.; Chen, Z.; Cheng, Z.; Su, L.; et al. Fine mapping and functional validation of the candidate gene BhGA2ox3 for fruit pedicel length in wax gourd (Benincasa hispida). Theoretical and Applied Genetics 2024, 137, 272. [Google Scholar] [CrossRef]
- Niu, S.; He, Y.; Yan, S.; Sun, Z.; Cai, R.; Zhang, Y. Histological, transcriptomic, and gene functional analyses reveal the regulatory events underlying gibberellin–induced parthenocarpy in tomato. Horticultural Plant Journal 2024, 10, 156–170. [Google Scholar] [CrossRef]
- Li, B.; Zang, Y.; Xun, J.; Wang, X.; Lu, H.; Qi, J.; et al. 24–Epibrassinolide improves quality and resistance against Botrytis cinerea of harvest table grapes through modulating reactive oxygen species homeostasis. Postharvest Biology and Technology 2024, 215, 113016. [Google Scholar] [CrossRef]
- Massolo, J. Brassinosteroid biology, potential uses in post–harvest technology and future challenges. Postharvest Biology and Technology 2024. [Google Scholar] [CrossRef]
- Vrobel, O.; Ćavar Zeljković, S.; Dehner, J.; Spíchal, L.; De Diego, N.; Tarkowski, P. Multi–class plant hormone HILIC–MS/MS analysis coupled with high–throughput phenotyping to investigate plant–environment interactions. The Plant Journal 2024, 120, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, P.; Pan, J.; Li, Y.; Zhou, J.; Kuang, H.; Lian, H. Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. Plant Science 2020, 298, 110578. [Google Scholar] [CrossRef]
- Wang, Y.T. Involvement of ABA and antioxidant system in brassinosteroid–induced water stress tolerance of grapevine (Vitis vinifera L.). Scientia Horticulturae 2019.
- Quamruzzaman, M.; Manik, S.M.N.; Shabala, S.; Zhou, M. Improving Performance of Salt–Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules 2021, 11, 788. [Google Scholar] [CrossRef]
- Liang, C.; Jie, H.; Xiao-lei, H.; Ji-zhao, Z.; Hao-da, W. Environmental Behaviors of Plant Growth Regulators in Soil:A Review. Huan Jing Ke Xue = Huanjing Kexue 2022.
- Xiu-li, H.; Hai-rong, Y.; Chao-hai, L. Regulating Mechanism of Drought in Maize with ABA. Acta Botanica Boreali–Occidentalia Sinica 2009.
- Tetali, S., Role of Plant Growth Regulators in the Cultivation of Grapes. In Plant Growth Regulators in Tropical and Sub–tropical Fruit Crops; CRC Press, 2022; pp. 241–249. [CrossRef]
- Wu, X.; Gong, D.; Zhao, K.; Chen, D.; Dong, Y.; Gao, Y.; Wang, Q.; Hao, G.F. Research and development trends in plant growth regulators. Advanced Agrochem 2024, 3, 99–106. [Google Scholar] [CrossRef]
- Crupi, P.; Alba, V.; Masi, G.; Caputo, A.R.; Tarricone, L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Research International 2019, 126, 108667. [Google Scholar] [CrossRef]
- Qian, W.; Hu, Y.; Lin, X.; Yu, D.; Jia, S.; Ye, Y.; Mao, Y.; Yi, L.; Gao, S. Phenological Growth Stages of Abelmoschus manihot: Codification and Description According to the BBCH Scale. Agronomy 2023, 13, 1328. [Google Scholar] [CrossRef]
- Yirmibeş, B.; Lachin, A.; Ülger, N.; Karaçam, E. The Utilization of Plant Growth Regulators (PGRs) in Agricultural Application and The Effecting Mechanisms. Research in Agricultural Sciences 2025, 56, 180–185. [Google Scholar] [CrossRef]



| Treatment | Cultivar | Days After Anthesis (DAA) | ||||||
|---|---|---|---|---|---|---|---|---|
| D0 | D5 | D14 | D24 | D44 | D74 | D104 | ||
| T2 | Red | 1 | 1 | 1 | 2 | 2 | 2 | 1 |
| Shine | 1 | 1 | 2 | 2 | 2 | 1 | 2 | |
| T6 | Red | 1 | 1 | 1 | 2 | 2 | 3 | 2 |
| Shine | 1 | 1 | 2 | 3 | 3 | 3 | 3 | |
| T8 | Red | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
| Shine | 1 | 1 | 1 | 2 | 2 | 3 | 3 | |
| T11 | Red | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| Shine | 1 | 1 | 2 | 3 | 2 | 3 | 2 | |
| CK | Red | 1 | 1 | 1 | 2 | 1 | 3 | 2 |
| Shine | 1 | 1 | 2 | 2 | 1 | 3 | 3 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
