Submitted:
02 September 2025
Posted:
04 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Canonical Role of Centrioles in Mitosis
3. Cellular Dichotomy in Planarians
- Neoblasts: Small, undifferentiated cells characterized by piwi gene expression (e.g., *smedwi-1*). Ultrastructural and molecular analyses confirm they completely lack centrioles and do not express core centriolar components.
- Differentiated Somatic Cells: Cells forming functional tissues (neurons, ciliated cells, etc.). These cells possess canonical centrioles, which serve as basal bodies to nucleate motile cilia. They reside in a permanent state of quiescence (G0 phase), with their cell cycle machinery epigenetically silenced.
4. Mechanism of Acentriolar Division in Neoblasts
- Chromatin-Mediated Nucleation: The small GTPase Ran, activated by RCC1 on chromatin, creates a RanGTP gradient around chromosomes. This gradient releases spindle assembly factors (SAFs) from importins, promoting microtubule nucleation in the immediate vicinity of the chromosomes.
- Motor-Driven Self-Organization: The initial cloud of microtubules is organized into a bipolar spindle by motor proteins. Plus-end-directed kinesins (e.g., kinesin-5/Eg5) push microtubules apart, while minus-end-directed dynein (with NuMA/dynactin) focuses microtubule minus ends to form stable spindle poles. This self-organizing process is robust enough to form spindles around artificial chromosomes in cell-free systems.
5. Advantages of Acentriolar Division for Stem Cells
- Enforced Asymmetry: Without centrioles, which can influence symmetric division, neoblasts may rely more heavily on extrinsic niche signals and intrinsic cortical cues to execute asymmetric cell division, crucial for maintaining the stem cell pool.
- Metabolic Economy: The biogenesis and maintenance of centrioles are energetically costly. By eliminating this process, neoblasts can reallocate resources towards core stem cell functions like pluripotency maintenance and rapid proliferation.
- Suppression of Oncogenic Potential: Centrosome amplification is a major driver of chromosomal instability (CIN) in cancer. Neoblasts are immune to this defect, as they lack the template for centriole duplication. Their acentrosomal pathway is inherently constrained to form bipolar spindles, safeguarding genomic integrity over the planarian's indefinite lifespan and contributing to their noted resistance to tumors.
6. Why Differentiated Cells with Centrioles Do Not Divide
- Epigenetic Cell Cycle Silencing: Terminal differentiation involves the epigenetic silencing of core cell cycle genes (e.g., cyclins, CDKs) through mechanisms like repressive histone marks (H3K27me3) and the sustained activity of the Rb and p53 tumor suppressor pathways.
- Centriole Repurposing: The differentiation program activates pathways for centriole biogenesis and ciliogenesis (e.g., via FoxJ1). Centrioles are synthesized de novo to function exclusively as basal bodies for cilia, essential for locomotion and osmoregulation. They are molecularly configured for this role and are not competent to form mitotic centrosomes.
- Irreversible Quiescence: The post-mitotic state is robustly enforced. Any attempt to force cell cycle re-entry likely triggers apoptosis, protecting tissue architecture and function.
7. Comparison with Other Biological Systems
- Early Mammalian Embryogenesis: The first cleavage divisions in mice and humans are acentriolar, relying on the same RanGTP/motor protein mechanism. Centrioles appear de novo only later, coinciding with differentiation.
- Cancer Cells: Provide a stark contrast, where centrosome amplification drives the genomic instability that planarian neoblasts elegantly avoid.
- Drosophila Male Germline Stem Cells (GSCs): Asymmetrically inherit the mother centriole, leaving the stem cell daughter acentriolar. This demonstrates a convergent evolutionary strategy where the stem cell state is associated with acentriolar division.
8. Biological Significance and Future Perspectives
- Identifying the complete genetic repertoire controlling the "acentriolar switch" in neoblasts.
- Visualizing the high-fidelity process of chromosome segregation in vivo using advanced live-cell imaging.
- Investigating niche-derived signals that reinforce the post-mitotic state.
- Conducting comparative studies with other highly regenerative organisms to determine if acentriolar stem cells are a convergent evolutionary strategy.
9. Conclusion
References
- Ahmad, F. J., & Baas, P. W. (1995). Microtubules released from the neuronal centrosome are transported into the axon. Journal of Cell Science, *108*(Pt 8), 2761–2769. [CrossRef]
- Azimzadeh, J., Wong, M. L., Downhour, D. M., Sánchez Alvarado, A., & Marshall, W. F. (2012). Centrosome loss in the evolution of planarians. Science, *335*(6067), 461-463. [CrossRef]
- Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., & Raff, J. W. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell, *133*(6), 1032–1042. [CrossRef]
- Burbank, K. S., Mitchison, T. J., & Fisher, D. S. (2007). Slide-and-cluster models for spindle assembly. Current Biology, *17*(16), 1373–1383. [CrossRef]
- Burkhart, D. L., & Sage, J. (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Reviews Cancer, *8*(9), 671–682. [CrossRef]
- Caudron, M., Bunt, G., Bastiaens, P., & Karsenti, E. (2005). Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science, *309*(5739), 1373–1376. [CrossRef]
- Clarke, P. R., & Zhang, C. (2008). Spatial and temporal coordination of mitosis by Ran GTPase. Nature Reviews Molecular Cell Biology, *9*(6), 464–477. [CrossRef]
- Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, *16*(10), 611-624. [CrossRef]
- Conduit, P. T., Wainman, A., & Raff, J. W. (2015). Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, *16*(10), 611-624. [CrossRef]
- Courtois, A., Schuh, M., Ellenberg, J., & Hiiragi, T. (2012). The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. The Journal of Cell Biology, *198*(3), 357–370. [CrossRef]
- Cowles, M. W., Brown, D. D., Nisperos, S. V., Stanley, B. N., Pearson, B. J., & Zayas, R. M. (2013). Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development, *140*(23), 4691-4702. [CrossRef]
- Dumont, J., & Desai, A. (2012). Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends in Cell Biology, *22*(5), 241-249. [CrossRef]
- Elliott, S. A., & Sánchez Alvarado, A. (2013). The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, *2*(3), 301-326. [CrossRef]
- Gaglio, T., Saredi, A., & Compton, D. A. (1996). NuMA is required for the organization of microtubules into aster-like mitotic arrays. The Journal of Cell Biology, *131*(3), 693–708. [CrossRef]
- Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, *460*(7252), 278–282. [CrossRef]
- Gentile, L., Cebrià, F., & Bartscherer, K. (2011). The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease Models & Mechanisms, *4*(1), 12-19. [CrossRef]
- Godinho, S. A., & Pellman, D. (2014). Causes and consequences of centrosome abnormalities in cancer. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, *369*(1650), 20130467. [CrossRef]
- Gonzalez-Sastre, A., de Sousa, N., Adell, T., & Saló, E. (2017). The mystery of the regeneration of the planarian excretory system. Developmental Biology, *433*(2), 394-403. [CrossRef]
- Grill, S. W., Gönczy, P., Stelzer, E. H., & Hyman, A. A. (2001). Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature, *409*(6820), 630–633. [CrossRef]
- Gönczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nature Reviews Molecular Cell Biology, *9*(11), 855–868. [CrossRef]
- Heald, R. , Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P., Hyman, A., & Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature, *382*(6590), 420–425. [CrossRef]
- Holubcová, Z. , Blayney, M., Elder, K., & Schuh, M. (2015). Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science, *348*(6239), 1143-1147. [CrossRef]
- Iismaa, S. E. , Kaidonis, X., Nicks, A. M., Bogush, N., Kikuchi, K., Naqvi, N., Harvey, R. P., Husain, A., & Graham, R. M. (2018). Comparative regenerative mechanisms across different mammalian tissues. NPJ Regenerative Medicine, *3*, 6. [CrossRef]
- Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
- Juliano, C. E. , Swartz, S. Z., & Wessel, G. M. (2011). A conserved germline multipotency program. Development, *138*(24), 5423-5433. [CrossRef]
- Knoblich, J. A. (2010). Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, *11*(12), 849–860. [CrossRef]
- Kwon, M. , Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., & Pellman, D. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, *22*(16), 2189–2203. [CrossRef]
- Labbe, R. M. , Irimia, M., Currie, K. W., Lin, A., Zhu, S. J., Brown, D. D., Ross, E. J., Voisin, V., Bader, G. D., Blencowe, B. J., & Pearson, B. J. (2012). A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells, *30*(8), 1734-1745. [CrossRef]
- Levine, M. S. , & Holland, A. J. (2018). The impact of mitotic errors on cell proliferation and tumorigenesis. Genes & Development, *32*(9-10), 620-638. [CrossRef]
- Loncarek, J. , & Khodjakov, A. (2009). Ab ovo or de novo? Mechanisms of centriole duplication. Molecular Cells, *27*(2), 135–142. [CrossRef]
- Malumbres, M. , & Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, *9*(3), 153–166. [CrossRef]
- McKim, K. S. , & Hawley, R. S. (1995). Chromosomal control of meiotic cell division. Science, *270*(5242), 1595–1601. [CrossRef]
- Merdes, A. , Ramyar, K., Vechio, J. D., & Cleveland, D. W. (1996). A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell, *87*(3), 447–458. [CrossRef]
- Meunier, S. , & Vernos, I. (2012). Microtubule assembly during mitosis - from distinct origins to distinct functions? Journal of Cell Science, *125*(Pt 12), 2805–2814. [CrossRef]
- Morrison, S. J. , & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, *441*(7097), 1068–1074. [CrossRef]
- Mountain, V. , Simerly, C., Howard, L., Ando, A., Schatten, G., & Compton, D. A. (1999). The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. The Journal of Cell Biology, *147*(2), 351–366. [CrossRef]
- Musacchio, A. , & Desai, A. (2017). A molecular view of kinetochore assembly and function. Biology, *6*(1), 5. [CrossRef]
- Müller-Reichert, T. , Rüthmann, M., Matos, I., & Ozlü, N. (2022). The ultrastructure of the mitotic spindle and its implications for chromosome segregation in planarian stem cells. Cells, *11*(10), 1603. [CrossRef]
- Newmark, P. A. , & Sánchez Alvarado, A. (2002). Not your father's planarian: a classic model enters the era of functional genomics. Nature Reviews Genetics, *3*(3), 210-219. [CrossRef]
- Nigg, E. A. , & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, *19*(5), 297-312. [CrossRef]
- Nigg, E. A. , & Raff, J. W. (2009). Centrioles, centrosomes, and cilia in health and disease. Cell, *139*(4), 663-678. [CrossRef]
- Onal, P. , Grün, D., Adamidi, C., Rybak, A., Solana, J., Mastrobuoni, G., Wang, Y., Rahn, H. P., Chen, W., Kempa, S., Ziebold, U., & Rajewsky, N. (2012). Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. The EMBO Journal, *31*(12), 2755-2769. [CrossRef]
- Pearson, B. J. , & Sánchez Alvarado, A. (2010). A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development, *137*(2), 213-221. [CrossRef]
- Petrovská, B. , Černá, H., & Seifertová, D. (2014). From microtubule to the cell shape: the role of plant-specific microtubule-associated proteins in shaping plant cells. New Phytologist, *203*(1), 66–80. [CrossRef]
- Plass, M. , Solana, J., Wolf, F. A., Ayoub, S., Misios, A., Glažar, P., Obermayer, B., Theis, F. J., Kocks, C., & Rajewsky, N. (2018). Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science, *360*(6391), eaaq1723. [CrossRef]
- Prosser, S. L. , & Pelletier, L. (2017). Mitotic spindle assembly in animal cells: a fine balancing act. Nature Reviews Molecular Cell Biology, *18*(3), 187-201. [CrossRef]
- Reddien, P. W. (2018). The cellular and molecular basis for planarian regeneration. Cell, *175*(2), 327-345. [CrossRef]
- Reddien, P. W. , Bermange, A. L., Murfitt, K. J., Jennings, J. R., & Sánchez Alvarado, A. (2005). Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Developmental Cell, *8*(5), 635-649. [CrossRef]
- Rink, J. C. , Gurley, K. A., Elliott, S. A., & Sánchez Alvarado, A. (2009). Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science, *326*(5958), 1406-1410. [CrossRef]
- Schuh, M. , & Ellenberg, J. (2007). Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell, *130*(3), 484–498. [CrossRef]
- Shcherbik, N. , Pestov, D. G., & Pearson, B. J. (2016). Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. eLife, *5*, e14140. [CrossRef]
- Tanenbaum, M. E. , Macůrek, L., Janssen, A., Geers, E. F., Alvarez-Fernández, M., & Medema, R. H. (2008). Kif15 cooperates with eg5 to promote bipolar spindle assembly. Current Biology, *19*(20), 1703–1711. [CrossRef]
- Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.
- Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. Front Pharmacol. 2024 Mar 6;14:1324446. [CrossRef] [PubMed] [PubMed Central]
- Vander Heiden, M. G. , Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, *324*(5930), 1029–1033. [CrossRef]
- van Wolfswinkel, J. C. , Wagner, D. E., & Reddien, P. W. (2014). Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell, *15*(3), 326-339. [CrossRef]
- Venkei, Z. G. , & Yamashita, Y. M. (2018). The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis. Development, *145*(14), dev162511. [CrossRef]
- Vertii, A. , Hehnly, H., & Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. Cold Spring Harbor Perspectives in Biology, *8*(12), a025049. [CrossRef]
- Vladar, E. K. , & Brody, S. L. (2013). Analysis of ciliogenesis in primary culture mouse tracheal epithelial cells. Methods in Enzymology, *525*, 285–309. [CrossRef]
- Wagner, D. E. , Wang, I. E., & Reddien, P. W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, *332*(6031), 811-816. [CrossRef]
- Walczak, C. E. , Vernos, I., Mitchison, T. J., Karsenti, E., & Heald, R. (1998). A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Current Biology, *8*(16), 903–913. [CrossRef]
- Wenemoser, D. , & Reddien, P. W. (2010). Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, *344*(2), 979-991. [CrossRef]
- Witchley, J. N. , Mayer, M., Wagner, D. E., Owen, J. H., & Reddien, P. W. (2013). Muscle cells provide instructions for planarian regeneration. Cell Reports, *4*(4), 633-641. [CrossRef]
- Woodruff, J. B. , Wueseke, O., & Hyman, A. A. (2014). Pericentriolar material structure and dynamics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, *369*(1650), 20130459. [CrossRef]
- Yamashita, Y. M. , Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, *315*(5811), 518–521. [CrossRef]
- Zayas, R. M. , Hernández, A., Habermann, B., Wang, Y., Stary, J. M., & Newmark, P. A. (2005). The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proceedings of the National Academy of Sciences, *102*(51), 18491-18496. [CrossRef]
- Zhu, S. J. , Hallows, S. E., Currie, K. W., Xu, C., & Pearson, B. J. (2015). A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife, *4*, e07025. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
