Submitted:
28 August 2025
Posted:
28 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Yatir Forest Study Area and Methods of Study
3. Organic Sequestration
4. Inorganic Sequestration
5. CO2 Gas Phase Within the USZ
6. Microbial Sequestration of Atmospheric CO2 as Inorganic Carbon
7. Water Under the Harshest of Deserts
8. Contaminants in Surface and Groundwater That Would Restrict Their Use Only to Afforestation
9. Sustainability of Afforestation
10. Dryland Carbon Sequestration Cooling and Albedo Reduction Reassessed
11. Limitations
12. Conclusions
Author Contributions
Data Availability Statement
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Quéré, C. Le; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst Sci Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- NOAA Study Finds Ocean Acidification Is More Pervasive Than Previously Thought. Targeted News Service 2025.
- ProOxygen. 2025. Available online: http://CO2.Earth (accessed on 16 August 2025).
- Pilson, M.E.Q. An Introduction to the Chemistry of the Sea; Prentice Hall: Upper Saddle River, N.J, 1998; ISBN 0132589710.
- Linnér, B.-O.; Wibeck, V. Dual High-Stake Emerging Technologies: A Review of the Climate Engineering Research Literature. Wiley Interdiscip Rev Clim Change 2015, 6, 255–268. [Google Scholar] [CrossRef]
- Joos, F.; Hameau, A.; Frölicher, T.L.; Stephenson, D.B. Anthropogenic Attribution of the Increasing Seasonal Amplitude in Surface Ocean PCO2. Geophys Res Lett 2023, 50, n/a. [Google Scholar] [CrossRef]
- Boysen, L.R.; Lucht, W.; Gerten, D.; Heck, V.; Lenton, T.M.; Schellnhuber, H.J. The Limits to Global-warming Mitigation by Terrestrial Carbon Removal. Earths Future 2017, 5, 463–474. [Google Scholar] [CrossRef]
- Ostberg, S.; Boysen, L.R.; Schaphoff, S.; Lucht, W.; Gerten, D. The Biosphere Under Potential Paris Outcomes. Earths Future 2018, 6, 23–39. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.I.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science (American Association for the Advancement of Science) 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Arora, V.K. The Use of the Aridity Index to Assess Climate Change Effect on Annual Runoff. Journal of hydrology (Amsterdam) 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Rohatyn, S.; Rotenberg, E.; Yakir, D.; Carmel, Y. Assessing Climatic Benefits from Forestation Potential in Semi-Arid Lands. Environmental research letters 2021, 16, 104039. [Google Scholar] [CrossRef]
- Rohatyn, S.; Yakir, D.; Rotenberg, E.; Carmel, Y. Limited Climate Change Mitigation Potential through Forestation of the Vast Dryland Regions. Science (American Association for the Advancement of Science) 2022, 377, 1436–1439. [Google Scholar] [CrossRef]
- Minnemeyer, S.; et al. Atlas of Forest and Landscape Restoration Opportunities. World Resources Institute Press: Washington, DC 2014. 2014. Available online: https://Www.Wri.Org/Data/Atlas-Forest-and-Landscape-Restoration-Opportunities (accessed on 16 August 2025).
- Luo, H.; Quaas, J.; Han, Y. Decreased Cloud Cover Partially Offsets the Cooling Effects of Surface Albedo Change Due to Deforestation. Nat Commun 2024, 15, 7345–7348. [Google Scholar] [CrossRef] [PubMed]
- Rohatyn, S.; Rotenberg, E.; Yakir, D.; Carmel, Y. Assessing forestation potential in Semi-arid lands: Queensland as a case study. Authorea 2024. [Google Scholar] [CrossRef]
- Healey, S.P.; Yang, Z.; Erb, A.M.; Bright, R.M.; Domke, G.M.; Frescino, T.S.; Schaaf, C.B. Enhanced Observation of Forest Albedo Reveals Significant Offsets to Reported Carbon Benefits. Environmental research letters 2025, 20, 74025. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J. V.; Smith, P.; et al. Natural Climate Solutions. Proceedings of the National Academy of Sciences - PNAS 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science (American Association for the Advancement of Science) 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Potapov, P.; Laestadius, L.; Minnemeyer, S. Global Map of Forest Landscape Restoration Opportunities. World Resources Institute: Washington, DC., 2011. Available online: Https://Resourcewatch.Org/Data/Explore/For013-Forest-Landscape-Restoration-Opportunity (accessed on 26 July 2025).
- Qubaja, R.; Grünzweig, J.M.; Rotenberg, E.; Yakir, D. Evidence for Large Carbon Sink and Long Residence Time in Semi-arid Forests Based on 15-year Flux and Inventory Records. Glob Chang Biol 2019, gcb.14927. [Google Scholar] [CrossRef]
- KKL-JNF. 2022. Available online: Https://Www.Kkl-Jnf.Org/Tourism-and-Recreation/Forests-and-Parks/Yatir-Forest/ (accessed on 16 August 2025).
- Qubaja, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Partitioning of Canopy and Soil CO2 Fluxes in a Pine Forest at the Dry Timberline across a 13-Year Observation Period. Biogeosciences 2020, 17, 699–714. [Google Scholar] [CrossRef]
- Qubaja, R.; Amer, M.; Tatarinov, F.; Rotenberg, E.; Preisler, Y.; Sprintsin, M.; Yakir, D. Partitioning Evapotranspiration and Its Long-Term Evolution in a Dry Pine Forest Using Measurement-Based Estimates of Soil Evaporation. Agric For Meteorol 2020, 281, 107831. [Google Scholar] [CrossRef]
- Carmi, I.; Yakir, D.; Yechieli, Y.; Kronfield, J.; Stiller, M. Variations in the Isotopic Composition of Dissolved Inorganic Carbon in the Unsaturated Zone of a Semi-Arid Region. Radiocarbon 2015, 57, 397–406. [Google Scholar] [CrossRef]
- Kaufman, A.; Bar-Matthews, M.; Ayalon, A.; Carmi, I. The Vadose Flow above Soreq Cave, Israel; a Tritium Study of the Cave Waters. Journal of hydrology (Amsterdam) 2003, 273, 155–163. [Google Scholar] [CrossRef]
- GRÜNZWEIG, J.M.; LIN, T.; ROTENBERG, E.; SCHWARTZ, A.; YAKIR, D. Carbon Sequestration in Arid-Land Forest. Glob Chang Biol 2003, 9, 791–799. [Google Scholar] [CrossRef]
- Johnson, I.; Coburn, R. Trees for Carbon Sequestration. Primefacts, 981, 1-6. 2010.
- Kell, D.B. Large-Scale Sequestration of Atmospheric Carbon via Plant Roots in Natural and Agricultural Ecosystems: Why and How. Philos Trans R Soc Lond B Biol Sci 2012, 367, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- TANS, P.P.; WALLACE, D.W.R. Carbon Cycle Research after Kyoto. Tellus B Chem Phys Meteorol 1999, 51, 562–571. [Google Scholar] [CrossRef]
- Watson, C.A.; Ross, J.M.; Bagnaresi, U.; Minotta, G.F.; Roffi, F.; Atkinson, D.; Black, K.E.; Hooker, J.E. Environment-Induced Modifications to Root Longevity in Lolium Perenne and Trifolium Repens. Ann Bot 2000, 85, 397–401. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons. Forest science 1999, 45, 573–593. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H.; Enquist, B.J. A General Model for the Origin of Allometric Scaling Laws in Biology. Science (American Association for the Advancement of Science) 1997, 276, 122–126. [Google Scholar] [CrossRef]
- Grünzweig, J.M.; Gelfand, I.; Fried, Y.; Yakir, D. Biogeochemical Factors Contributing to Enhanced Carbon Storage Following Afforestation of a Semi-Arid Shrubland. Biogeosciences 2007, 4, 891–904. [Google Scholar] [CrossRef]
- Carmi, I.; Yakir, D.; Yechieli, Y.; Kronfeld, J.; Stiller, M. Variations in Soil CO2 Concentrations and Isotopic Values in a Semi-Arid Region Due to Biotic and Abiotic Processes in the Unsaturated Zone. Radiocarbon 2013, 55, 932–942. [Google Scholar] [CrossRef]
- Huang, Y.; Song, X.; Wang, Y.-P.; Canadell, J.G.; Luo, Y.; Ciais, P.; Chen, A.; Hong, S.; Wang, Y.; Tao, F.; et al. Size, Distribution, and Vulnerability of the Global Soil Inorganic Carbon. Science (American Association for the Advancement of Science) 2024, 384, 233–239. [Google Scholar] [CrossRef]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrology, 2nd Edition. Lewis Publishers, Boca Raton, USA. 1997.
- Carmi, I.; Kronfeld, J.; Moinester, M. Sequestration of Atmospheric Carbon Dioxide as Inorganic Carbon in the Unsaturated Zone under Semi-Arid Forests. Catena (Giessen) 2019, 173, 93–98. [Google Scholar] [CrossRef]
- Monger, H.C.; Kraimer, R.A.; Khresat, S.; Cole, D.R.; Wang, X.; Wang, J. Sequestration of Inorganic Carbon in Soil and Groundwater. Geology (Boulder) 2015, 43, 375–378. [Google Scholar] [CrossRef]
- Singer, A. The Soils of Israel; 1st ed. 2007.; Springer: Berlin, 2007; ISBN 1-281-04373-7.
- Loewengart, S. The Precipitation of Air Born Salts in the Haifa Bay, Israel. Israel J. Earth Science, 13, 111-124. 1964.
- Cerling, T.E. The Stable Isotopic Composition of Modern Soil Carbonate and Its Relationship to Climate. Earth Planet Sci Lett 1984, 71, 229–240. [Google Scholar] [CrossRef]
- Carmi, I.; Stiller, M.; Kronfeld, J. Dynamics of Water Soil Storage in the Unsaturated Zone of a Sand Dune in a Semi-Arid Region Traced by Humidity and Carbon Isotopes: The Case of Ashdod, Israel. Radiocarbon 2018, 60, 1259–1267. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum Rooting Depth of Vegetation Types at the Global Scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Ma, J.; Liu, R.; Tang, L.S.; Lan, Z.D.; Li, Y. A Downward CO2 Flux Seems to Have Nowhere to Go. Biogeosciences 2014, 11, 6251–6262. [Google Scholar] [CrossRef]
- Zamanian, K. Deep-Root Respiration: The Unknown CO2 Removed from the Atmosphere. Sci Total Environ 2024, 949, 175294. [Google Scholar] [CrossRef]
- Wen, H.; Sullivan, P.L.; Macpherson, G.L.; Billings, S.A.; Li, L. Deepening Roots Can Enhance Carbonate Weathering by Amplifying CO 2 -Rich Recharge. Biogeosciences 2021, 18, 55–75. [Google Scholar] [CrossRef]
- Gorka, M.; Sauer, P.E.; Lewicka-Szczebak, D.; Jardrysek, M.-O. Carbon Isotope Signature of Dissolved Inorganic Carbon (DIC) in Precipitation and Atmospheric CO Sub(2). Environmental pollution (1987) 2011, 159, 294–301. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water / by John D. Hem; U.S. Govt. Print. Off, 1970: District of Columbia, 1970.
- Desimone, L.A. Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991-2004; Geological Survey (U.S.), National Water-Quality Assessment Program (U.S.), Eds.; Scientific investigations report; 2008-5227; U.S. Dept. of the Interior, U.S. Geological Survey: Reston, Va, 2009.
- Möller, P.; Rosenthal, E.; Inbar, N.; Magri, F. Hydrochemical Considerations for Identifying Water from Basaltic Aquifers: The Israeli Experience. J Hydrol Reg Stud 2016, 5, 33–47. [Google Scholar] [CrossRef]
- Kronfeld, J.; Rosenthal, E.; Weinberger, G.; Flexer, A.; Berkowitz, B. The Interaction of Two Major Old Water Bodies and Its Implication for the Exploitation of Groundwater in the Multiple Aquifer System of the Central and Northern Negev, Israel. Journal of hydrology (Amsterdam) 1993, 143, 169–190. [Google Scholar] [CrossRef]
- Vogel, J.C.; Fuls, A.; Danin, A. Geographical and Environmental Distribution of C3 and C4 Grasses in the Sinai, Negev, and Judean Deserts. Oecologia 1986, 70, 258–265. [Google Scholar] [CrossRef]
- Li Yan; Wang Yugang; Houghton, R.A.; Tang Lisng. Hidden Carbon Sink beneath Desert. Geophys Res Lett 2015, 42, 5880–5887. [CrossRef]
- Kessler, T.J.; Harvey, C.F. The Global Flux of Carbon Dioxide into Groundwater. Geophys Res Lett 2001, 28, 279–282. [Google Scholar] [CrossRef]
- BOQUET, E.; BORONAT, A.; RAMOS-CORMENZANA, A. Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria Is a General Phenomenon. Nature (London) 1973, 246, 527–529. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front Bioeng Biotechnol 2016, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Xiao, L.Q.; Wan, X.; Yu, T.; Liu, Y.F.; Liu, M. Research Progress on Microbial Carbon Sequestration in Soil; a Review. Eurasian soil science 2022, 55, 1395–1404. [Google Scholar] [CrossRef]
- McCutcheon, J.; Power, I.M.; Harrison, A.L.; Dipple, G.M.; Southam, G. A Greenhouse-Scale Photosynthetic Microbial Bioreactor for Carbon Sequestration in Magnesium Carbonate Minerals. Environ Sci Technol 2014, 48, 9142–9151. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Zhang, Y.; Qin, S.; Sun, Y.; Mao, H.; Miao, L. Desert Soil Sequesters Atmospheric CO2 by Microbial Mineral Formation. Geoderma 2020, 361, 114104. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, B.; Fang, X.; Fa, K.; Liu, Z. Dryland Farm Soil May Fix Atmospheric Carbon through Autotrophic Microbial Pathways. Catena (Giessen) 2022, 214, 106299. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; Sinsabaugh, R.L. Subsoil Carbon Loss. Nat Geosci 2023, 16, 284–285. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Wu, Y.; Zhang, L.; Cheng, J.; Wei, G.; Lin, Y. Natural Revegetation of a Semiarid Habitat Alters Taxonomic and Functional Diversity of Soil Microbial Communities. Sci Total Environ 2018, 635, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Tian, T.; Chen, L.; Dong, X.; Yu, X.; Wang, G. Damage Caused to the Environment by Reforestation Policies in Arid and Semi-Arid Areas of China. Ambio 2010, 39, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Scheibe, A.; Sierra, C.A.; Spohn, M. Recently Fixed Carbon Fuels Microbial Activity Several Meters below the Soil Surface. Biogeosciences 2023, 20, 827–838. [Google Scholar] [CrossRef]
- CEDARE [Centre for Environment and Development for the Arab Region and Europe] Regional Strategy for the Utilization of the Nubian Sandstone System, Executive Summary, Vol 1, 72 Pp. 2000.
- Godfrey-Smith, D.I.; Kronfeld, J.; Wiseman, M.R.; Hawkins, A.L. The Timing of the Final Recharge of the Nubian Sandstone Aquifer, Researchgate.Net. 2008.
- Edmunds, W.M.; Guendouz, A.H.; Mamou, A.; Moulla, A.; Shand, P.; Zouari, K. Groundwater Evolution in the Continental Intercalaire Aquifer of Southern Algeria and Tunisia; Trace Element and Isotopic Indicators. Applied geochemistry 2003, 18, 805–822. [Google Scholar] [CrossRef]
- Elliot, T. Environmental Tracers. Water (Basel) 2014, 6, 3264–3269. [Google Scholar] [CrossRef]
- Rausch, R.; Dirks, H. A Hydrogeological Overview of the Upper Mega Aquifer System on the Arabian Platform. Hydrogeol J 2024, 32, 621–634. [Google Scholar] [CrossRef]
- Lloyd, J.W.; Pim, R.H. The Hydrogeology and Groundwater Resources Development of the Cambro-Ordovician Sandstone Aquifer in Saudi Arabia and Jordan. Journal of hydrology (Amsterdam) 1990, 121, 1–20. [Google Scholar] [CrossRef]
- Edgell, H.S. Aquifers of Saudi Arabia and their geological framework. Arabian journal for science and engineering (2011) 1997, 22, 3–31. [Google Scholar]
- SADC-GMI Hydrogeology of the Eastern Kalahari-Karoo Basin Transboundary Aquifer System (EKK-TBA), SADC-GMI Report: Bloemfontein, South Africa, 2000. Available online: https://Sadc-Gmi.Org/Wp-Content/Uploads/2024/09/Hydrogeology-of-the-Eastern-Kalahari-Karoo-Basin-Aquifer-System-Final-Report.Pdf (accessed on 16 August 2025).
- Heaton, T.H.E. Sources of the Nitrate in Phreatic Groundwater in the Western Kalahari. Journal of hydrology (Amsterdam) 1984, 67, 249–259. [Google Scholar] [CrossRef]
- de Vries, J.J.; Selaolo, E.T.; Beekman, H.E. Groundwater Recharge in the Kalahari, with Reference to Paleo-Hydrologic Conditions. Journal of hydrology (Amsterdam) 2000, 238, 110–123. [Google Scholar] [CrossRef]
- Harkness, J.S.; Swana, K.; Eymold, W.K.; Miller, J.; Murray, R.; Talma, S.; Whyte, C.J.; Moore, M.T.; Maletic, E.L.; Vengosh, A.; et al. Pre-Drill Groundwater Geochemistry in the Karoo Basin, South Africa. Ground Water 2018, 56, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Castellazzi, P.; Ransley, T.R.; McPherson, A.; Slatter, E.; Frost, A.; Shokri, A.; Wallace, L.; Crosbie, R.S.; Janardhanan, S.; Kilgour, P.; et al. Assessing Groundwater Storage Change in the Great Artesian Basin Using GRACE and Groundwater Budgets. Water Resour Res 2024, 60, n/a. [Google Scholar] [CrossRef]
- Collon, P.; Kutschera, W.; Loosli, H.H.; Lehmann, B.E.; Purtschert, R.; Love, A.; Sampson, L.; Anthony, D.; Cole, D.; Davids, B.; et al. 81Kr in the Great Artesian Basin, Australia: A New Method for Dating Very Old Groundwater. Earth Planet Sci Lett 2000, 182, 103–113. [Google Scholar] [CrossRef]
- Bentley, H.W.; Phillips, F.M.; Davis, S.N.; Habermehl, M.A.; Airey, P.L.; Calf, G.E.; Elmore, D.; Gove, H.E.; Torgersen, T. Chlorine 36 Dating of Very Old Groundwater; 1, The Great Artesian Basin, Australia. Water Resour Res 1986, 22, 1991–2001. [Google Scholar] [CrossRef]
- Herczeg, A.L.; Torgersen, T.; Chivas, A.R.; Habermehl, M.A. Geochemistry of Ground Waters from the Great Artesian Basin, Australia. Journal of hydrology (Amsterdam) 1991, 126, 225–245. [Google Scholar] [CrossRef]
- IVANOVICH, M.; FROHLICH, K.; HENDRY, M. DATING VERY OLD GROUNDWATER, MILK RIVER AQUIFER, ALBERTA, CANADA STUDY SPONSORED BY THE INTERNATIONAL-ATOMIC-ENERGY-AGENCY - PREFACE. Applied geochemistry 1991, 6, 367–367. [Google Scholar] [CrossRef]
- Kronfeld, J.; Adams, J.A.S. Hydrologic Investigations of the Groundwaters of Central Texas Using [Formula Omitted] Disequilibrium. Journal of hydrology (Amsterdam) 1974, 22, 77–88. [Google Scholar] [CrossRef]
- Verhagen, B.T.; et al. Isotope Hydrology Methods for the Quantitative Evaluation of Groundwater Resources in Arid and Semi-Arid Areas. Development of a Methodology. Research Reports of the Federal Ministry of Economic Cooperation of the Federal Republic of Germany, Bonn; 164pp. 1991.
- Vengosh, A.; Hirschfeld, D.; Vinson, D.; Dwyer, G.; Raanan, H.; Rimawi, O.; Al-Zoubi, A.; Akkawi, E.; Marie, A.; Haquin, G.; et al. High Naturally Occurring Radioactivity in Fossil Groundwater from the Middle East. Environ Sci Technol 2009, 43, 1769–1775. [Google Scholar] [CrossRef]
- Sherif, M.I.; Sturchio, N.C. Elevated Radium Levels in Nubian Aquifer Groundwater of Northeastern Africa. Sci Rep 2021, 11, 78–11. [Google Scholar] [CrossRef]
- Faraj, T.; Ragab, A.; El Alfy, M. Geochemical and Hydrogeological Factors Influencing High Levels of Radium Contamination in Groundwater in Arid Regions. Environ Res 2020, 184, 109303. [Google Scholar] [CrossRef]
- Tripler, E.; Haquin, G.; Koch, J.; Yehuda, Z.; Shani, U. Sustainable Agricultural Use of Natural Water Sources Containing Elevated Radium Activity. Chemosphere (Oxford) 2014, 104, 205–211. [Google Scholar] [CrossRef]
- Zafrir, H.; Waisel, Y.; Agami, M.; Kronfeld, J.; Mazor, E. Uranium in Plants of Southern Sinai. J Arid Environ 1992, 22, 363–368. [Google Scholar] [CrossRef]
- Podgorski, J.E.; Eqani, S.A.M.A.S.; Khanam, T.; Ullah, R.; Shen Heqing; Berg, M. Extensive Arsenic Contamination in High-PH Unconfined Aquifers in the Indus Valley. Sci Adv 2017, 3, e1700935. [CrossRef]
- Shah, A.Q.; Kazi, T.G.; Arain, M.B.; Baig, J.A.; Afridi, H.I.; Kandhro, G.A.; Khan, S.; Jamali, M.K. Hazardous Impact of Arsenic on Tissues of Same Fish Species Collected from Two Ecosystem. J Hazard Mater 2009, 167, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Arain, M.B.; Kazi, T.G.; Baig, J.A.; Jamali, M.K.; Afridi, H.I.; Shah, A.Q.; Jalbani, N.; Sarfraz, R.A. Determination of Arsenic Levels in Lake Water, Sediment, and Foodstuff from Selected Area of Sindh, Pakistan: Estimation of Daily Dietary Intake. Food and chemical toxicology 2009, 47, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, O.; Eşen, D.; Sargıncı, M.; Çetin, B.; Toprak, B.; Dönmez, A.H. Restoration Success in Afforestation Sites Established at Different Times in Arid Lands of Central Anatolia. For Ecol Manage 2022, 503, 119808. [Google Scholar] [CrossRef]
- Abobatta, W.F. Overview of Simmondsia Chinensis (Jojoba Shrubs) Cultivation and Propagation Methods. Agri Res Tech, 19, 556089. 2019.
- Cadman, B. Why Is Moringa Good for You? Medical News Today 2024. [Google Scholar]
- Wiser, W. Uses and Benefits of Jojoba Oil. Health, 2024. Available online: https://Www.Health.Com/Jojoba-Oil-Benefits-8625319 (accessed on 16 August 2025).
- FMNR. 2025. Available online: Https://Www.Worldvision.Com.Au/Donate/Fmnr?Srsltid=AfmBOopz9h6H0kFxG0qSuHITJ1udlMVwh4riXeH87Q0BTciqSDosXSYj (accessed on 16 August 2025).
- Chesire, M.; Kigen, C.; Munyao, C.; Korir, J.; Too, P. Farmer Managed Natural Regeneration and Community Development: An Analysis of Impact in Selected Countries. Int J Environ Sci 2025, 8, 60–79. [Google Scholar] [CrossRef]
- Walker, B.; Rinaudo, T.; Radkovic, A.; Mulherin, A. Global Movements for Accelerating Climate Change Action: The Case of Farmer-Managed Natural Regeneration. J Glob Ethics 2024, 20, 251–274. [Google Scholar] [CrossRef]
- Otterman, J. Baring High-Albedo Soils by Overgrazing; a Hypothesized Desertification Mechanism. Science (American Association for the Advancement of Science) 1974, 186, 531–533. [Google Scholar] [CrossRef]
- Charney, J.G. Dynamics of Deserts and Drought in the Sahel. Qtr. J. Royal Meteorol. Soc., 101, 193-202. 1975.
- Yosef, G.; Walko, R.; Avisar, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Large-Scale Semi-Arid Afforestation Can Enhance Precipitation and Carbon Sequestration Potential. Sci Rep 2018, 8, 996–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Liu, H. Biophysical Feedback of Forest Canopy Height on Land Surface Temperature over Contiguous United States. Environmental research letters 2022, 17, 34002. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, Z.; Zhao, C.; Qu, Y.; Liu, Q.; Zhang, H.; Tong, Y.; Wang, C.; Li, S.; Guo, J.; et al. Review of Land Surface Albedo: Variance Characteristics, Climate Effect and Management Strategy. Remote sensing (Basel, Switzerland) 2022, 14, 1382. [Google Scholar] [CrossRef]
- Miralles, D.G.; Vilà-Guerau de Arellano, J.; McVicar, T.R.; Mahecha, M.D. Vegetation–Climate Feedbacks across Scales. Ann N Y Acad Sci 2025, 1544, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Gu, H.; Jiao, T. Climate Impacts of U.S. Forest Loss Span Net Warming to Net Cooling. Sci Adv 2021, 7. [Google Scholar] [CrossRef]
- Liang, S.; Liang, L.; Wang, D.; Zeng, Z. Dryland Forestation: Uncovering the Carbon Sequestration Potential. The Innovation Geoscience 2024, 2, 100058. [Google Scholar] [CrossRef]
- King, J.A.; Weber, J.; Lawrence, P.; Roe, S.; Swann, A.L.S.; Val Martin, M. Global and Regional Hydrological Impacts of Global Forest Expansion. Biogeosciences 2024, 21, 3883–3902. [Google Scholar] [CrossRef]
- McMahon, P.B.; Boehlke, J.K.; Christenson, S.C. Geochemistry, Radiocarbon Ages, and Paleorecharge Conditions along a Transect in the Central High Plains Aquifer, Southwestern Kansas, USA. Applied geochemistry 2004, 19, 1655–1686. [Google Scholar] [CrossRef]
- Nativ, R.; Smith, D.A. Hydrogeology and Geochemistry of the Ogallala Aquifer, Southern High Plains. Journal of hydrology (Amsterdam) 1987, 91, 217–253. [Google Scholar] [CrossRef]
- Little, J.B. Saving the Ogallala Aquifer. Sci Am 2009, 19, 32–39. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater Depletion and Sustainability of Irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences - PNAS 2012, 109, 9320–9325. [Google Scholar] [CrossRef]
- DeNicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.; Carpenter, D.O. Climate Change and Water Scarcity: The Case of Saudi Arabia. Ann Glob Health 2015, 81, 342–353. [Google Scholar] [CrossRef]
- StanleyBecker, I.; Partlow, J. Yvonne Wingett Sanchez How a Saudi Firm Tapped a Gusher of Water in Drought-Stricken Arizona. The Washington post (Washington, D.C. 1974. Online) 2023.
- Aljawzi, A.A.; Fang, H.; Abbas, A.A.; Khailah, E.Y. Assessment of Water Resources in Sana’a Region, Yemen Republic (Case Study). Water (Basel) 2022, 14, 1039. [Google Scholar] [CrossRef]
- Pearce, F. Saudi Arabia Stakes a Claim on the Nile. 2012. Available online: https://www.Nationalgeographic.com/Science/Article/121217-Saudi-Arabia-Water-Grabs-Ethiopia (accessed on 16 August 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
