Submitted:
22 August 2025
Posted:
25 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Material and Storage Methods
2.2. Quality Assessment
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. Pitting and Rotting
3.3. Marketable Value

3.4. Respiration Intensity
3.5. Color Parameters
3.6. Chemical Value of Zucchini Fruit
| Group of objects | Chemicals | Cold storage temperature | |
| 5 °C | 8 °C | ||
| Control + NA | TSS (%) glucose (g kg-1) fructose (g kg-1) polyphenols (mg kg-1) |
3.6±0.1 b 5.1±0.6 a 10.3±0.8 b 410.1±23.5 a |
3.4±0.2 a 4.5±0.8 a 8.3±0.8 a 421.4±18.5 a |
| CA + DCA (0.5 kPa CO2) + DCA (2.0 kPa CO2 | TSS (%) glucose (g kg-1) fructose (g kg-1) polyphenols (mg kg-1) |
3.6±0.2 a 6.2±0.7 a 9.9±0.8 a 377.8±39.4 a |
4.0±0.2 b 8.0±0.5 b 11.0±0.8 b 436.0±45.2 b |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CA | controlled atmosphere |
| DCA | dynamic controlled atmosphere |
| NA | normal atmosphere |
| CF | chlorophyll fruorescence |
| CI | chilling injury |
| d | day |
| h | hour |
| LOL | low oxygen limit |
| SD | standard deviation |
| TSS | total soluble solids |
| FW | fresh weight |
| TPC | total polyphenols content |
References
- Gajewski, M. , Sensory and physical changes during storage of zucchini squash (Cucurbita Pep var. Giromontina, 2003. [Google Scholar] [CrossRef]
- Palma, F. , Carvajal F., Lluch C., Jamilena M., Garrido D. Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress. Plant Sci. 2014, 217–218: 78–86. [CrossRef]
- Carvajal, F. , Palma F., Jamilena M., Garrido D. Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit. Postharvest Biol. Technol. 2015, 108: 68–77. [CrossRef]
- Watkins, C.B. Postharvest physiological disorders of fresh crops. Encycl. Appl. Plant Sci. 2016. 315–322. [CrossRef]
- Bokhary, S.U.F. , Wang L., Zheng Y., Jin P. Pre-storage hot water treatment enhances chilling tolerance of zucchini (Cucurbita pepo L.) squash by reducing arginine metabolism. Postharvest Biol. Technol. 2020. 1112; 29. [Google Scholar] [CrossRef]
- Cantwell, M. , Suslow T. Squash (soft rind); Recommendations for maintaining postharvest quality. 1984.
- Megias, Z. , Martinez C., Manzano S., Garcia A., del Mar Rebolloso-Feuntes M., Garrido D., Valenzuela J.L., Jamilena M. Individual shrink wrapping of zucchini fruit improves postharvest chilling tolerance associated with a reduction in ethylene production and oxidative stress metabolites. PLoS One. 2015. e: 10(7), 1330. [Google Scholar] [CrossRef]
- Megias, Z. , Gonzalez-Rodriguez L.J., Aguado E., Garcia A., Manzano S., Rebolloso M.M., Valenzuela J.L., Jamilena M. Effect of cold storage on chilling injury in two zucchini cultivars. Acta Hortic. 2018. 1194, 479–486. [CrossRef]
- Balandran-Quintana, R.R. , Mendoza-Wilson A.M., Alvarez-Manilla G., Bergmann C.W., Vargas-Arispuro I., Martonez-Tellez M.A. Effect of pectin oligomers on physiological responses of chilling injury in discs excised from zucchini (Cucurbita pepo L.) Biochem. Biophys. Res. Commun. 2002. 290, 1, 577–584. [CrossRef]
- Martinez-Tellez, M.A. , Ramos-Clamont M.G., Gardea A.A., Vargas-Arispuro I. Effect of infiltrated polyamines on polygalacturonase activity and chilling injury responses in zucchini squash (Cucurbita pepo L.). Biochem. Biophys. Res. Commun. 2002. 295, 98–101. [CrossRef]
- Carvajal, F. , Martinez C. Differential response of zucchini to low storage temperature. Sci Hortic. 1, 90–95. [CrossRef]
- Gualanduzzi, S. , Baraldi E., Braschi I., Carnevali F., Gessa C.E., De Santis A. Respiration, hydrogen peroxide levels and antioxidant enzyme activities during cold storage of zucchini squash fruit. Postharvest Biol. Technol. 2009. 52: 16–23. [CrossRef]
- Zhao, H. , Jiao W. Food Chem. 2019. 289, 426–435. [CrossRef] [PubMed]
- Zuo, X. , Cao S., Zhang M., Cheng Z., Cao T., Jin P., Zheng Y. High relative humidity (HRH) storage alleviates chilling injury of zucchini fruit by promoting the accumulation of proline and ABA. Postharvest Biol. and Technol. 2021. 17, 111344. [CrossRef]
- Zuo, X. , Cao S. High relative humidity enhances chilling injury tolerance of zucchini fruit by regulating sugar and ethanol metabolisms during cold storage. Postharvest Biol. Technol. 2022. 189, 111932. [CrossRef]
- Castro-Cegri, A. , Garcia-Perez P., Jamilena M., Garrido D., Palma F., Lucini L. Exogenous abscisic acid mitigates chilling injury in zucchini during cold storage by eliciting a time-dependent shaping of specialized metabolites. Postharvest Biol. Technol. 2024. 1128; 64. [Google Scholar] [CrossRef]
- Ali, S. , Nawaz A., Naz S., Ali M., Ejaz S., Azam M., Razzaq K. Exogenous melatonin mitigates chilling injury in zucchini fruit by enhancing antioxidant system activity, promoting endogenous proline and GABA accumulation, and preserving cell wall stability. Postharvest Biol. Technol. 2023. 1124; 45. [Google Scholar] [CrossRef]
- Mencarelli, F. , Lipton W.J., Peterson S.J. Responses of ‘Zucchini’ squash to storage in low-O2 atmospheres at chilling and nonchilling temperatures. J. Amer. Hort. Sci. 1983. 108, 6, 884–890.
- Mencarelli, F. Effect of high CO2 atmospheres on stored Zucchini squash. J. Amer. Hort. Sci. 112(6), 985–988. [CrossRef]
- Wang C., Y. , Ji Z. L.. Effect of low-oxygen storage on chilling injury and polyamines in Zucchini squash. Sci Hortic 1989. 39, 1, 1–7. [CrossRef]
- Manjunantha, M. , Anurag R. K. Effect of modified atmosphere packaging and storage conditions on quality characteristics of cucumber. J Food Sci Technol. 11, 3470–3475. [CrossRef]
- Wang, C.Y. , Qi L. Controlled atmosphere storage affects quality and chilling susceptibility of cucumbers. Controlled atmosphere storage affects quality and chilling susceptibility of cucumbers. J Food Qual. 1997. 20, 559–566. [CrossRef]
- Prange, R.K. DeLong J. Acta Hortic. 107, 823–830.
- Zanella, A. , Cazzanelli P., Rossi O. Dynamic controlled atmosphere (DCA) storage by the means of chlorophyll fluorescence response for firmness retention in apple. Acta Hortic. 2008. 796, 77–82. [CrossRef]
- Prange, R.K. , DeLong J.M., Leyte JC., Harrison P.A. Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit. Postharvest Biol. Technol. 2003. 24. [CrossRef]
- Prange, R.K. , DeLong J.M., Harrison P.A., Leyte JC., McLean S.D. Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit and vegetables. J. Amer. Soc. Hort. Sci. 2003. 128, 603–607. [CrossRef]
- Neuwald, D.A. , Thewes F.R., Wirth R., Buchele F., Klein N., Brackmann A. Dynamic controlled atmosphere (DCA) a chance for sustainable fruit storage. Acta Hortic. 2024. 1386, 95-100. [CrossRef]
- Watkins, C.B. Dynamic controlled atmosphere storage – A new technology for the New York Storage Industry? New York fruit Quarterly 1, 23–25.
- Thewes, F.R. , Wood R.M., Both V., Keshri n., Geyere M., Pansera-Espindola B., Hagemann M.H., Brackmann A., Wunche J.N., Neuwald D.A. Dynamic controlled atmosphere; A review of methods for monitoring fruit responses for low oxygen. Comun. Sci. 2021. 12: e3782. [CrossRef]
- Mditshwa, A. , Fawole O. A., Opara U.L. Recent developments on dynamic controlled atmosphere storage of apples-A review. Food Packag. Shelf Life. 2018, 16, 59–68. [Google Scholar] [CrossRef]
- Van der Sluis, A.A. , Dekker, M. Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. J. Agric. Food Chem. 2002. 50, 7211–7219. [PubMed]
- Balandrán-Quintana, R.R. , Mendoza-Wilson A.M., Gardea-Bejar A.A,. Vargas-Arispuro I, Martínez-Téllez M.A. Irreversibility of chilling injury in zucchini squash (Cucurbita pepo L.) could be a programmed event long before the visible symptoms are evident. Biochem. Biophys. Res. Commun. 2003. 307, 553–557.
- Jacobi, K.K. , Wong L.S., Giles J.E. Postharvest quality of zucchini (Cucurbita pepo L.) following high humidity hot air disinfestation treatments and cool storage. Postharvest Biol. Technol. 1996. 7. [CrossRef]
- Megias, Z. , Barrera A. Physical and chemical treatments enhancing postharvest fruit quality in zucchini. Acta Hortic. 2015. 1091, 141–146. [Google Scholar] [CrossRef]
- Kopczyńska, K. , Średnicka-Tober D. , Hallmann E., Wilczak J., Wasiak-Zys G., Wyszynski Z., Kucinska K., Perzanowska A., Szacki P., Baranski M., Gawron P., Góralska-Walczak R., Rembiałkowska E., Kazimierczak R. Bioactive compounds, sugar, and sensory attributes of organic and conventionally produced courgetti (Cucurbita pepo). Foods 2021, 10, 2475. [Google Scholar] [CrossRef]
- Ninfali, P. , Mea G., Giorgini S., Rocchi M., Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr. 2005. 93. [CrossRef]
- Cieślik, E. , Greda A. Contents of polyphenols in fruit and vegetables. Food Chem. 2006. 94, 135–142. [CrossRef]
- Seleim, M.A.A. , Hassa M.A.M., Saleh A.S.M. Changes in nutritional quality of zucchini (Cucurbita pepo L.) vegetables during the maturity. J of Food and Dairy Sci. 2015. 6. [CrossRef]


| Cold storage temperature | Storage method | Storage time at 15 °C (d) | ||
| 0 | 4 | 8* | ||
| 8 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
1.7±0.9 ab 1.2±0.4 a 1.2±0.4 a 1.4±0.6 ab 4.2±1.3 d |
2.4±1.1 c 1.7±0.7 a 1.6±0.5 a 1.8±0.6 ab 5.1±1.5 e |
3.3±2.1 ab 2.3±0.8 a 2.4±12.5 a 2.6±0.9 ab 6.0±1.8 d |
| Mean | 2.0±1.3 B | 2.5±1.6 A | 3.3±1.7 A | |
| 5 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
1.8±1.1 b 1.3±0.3 a 1.4±0.4 ab 1.3±0.4 a 2.7±1.1 c |
2.4±1.3 bc 1.8 ±0.4abc 1.9±0.6 abc 1.8 ±0.5abc 3.3±1.4 d |
3.5±2.3 bc 2.7±0.6 ab 2.9±0.8 ab 2.6±0.7 ab 4.5±1.5 c |
| Mean | 1.7±0.9 A | 2.3±1.1 A | 3.2±1.4 A | |
| Cold storage temperature | Storage method | Chilling injury |
|---|---|---|
| 8 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 + 21.0 kPa O2 |
1.1±0.6 ab 1.0±0.0 a 1.0±0.0 a 1.1± 0.3 ab 1.1±0.7 ab |
| Mean | 1.0±0.5 A | |
| 5 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
1.1±0.4 ab 1.3±0.8 ab 1.4±0.9 ab 1.2±0.5 ab 1.5± 1.0 b |
| Mean | 1.3±0.8 B |
| Cold storage temperature | Storage method | Storage time at 15 °C (d) | ||
| 0 | 4 | 8 | ||
| 8 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DC 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
1.2±0.5 a 1.1±0.3 a 1.0± 0.0 a 1.0±0.0 a 1.2±0.8 a |
4.7±3.3 e 1.6±1.2 ab 1.4±1.2 a 1.5±1.4 a 4.1±3.0 de |
7.2±3.1 bc 3.1±2.4 a 2.2±2.4 a 2.1±2.2 a 7.0±3.0 bc |
| Mean | 1.1±0.4 B | 2.6± 2.6 A | 4.3±2.6 A | |
| 5 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
1.0±0.0 a 1.0±0.0 a 1.0±0.0 a 1.0±0.0 a 1.0±0.0 a |
3.6±1.9 cde 1.9±1.6 ab 2.6±1.9 abc 1.4±0.9 a 2.9±1.4 bcd |
8.5±0.8 c 7.9±1.7 c 7.6±2.0 bc 6.1±2.3 b 8.2±1.2 c |
| Mean | 1.0±0.0 A | 2.5±1.8 A | 7.7± 1.9 B | |
| Cold storage temperature | Cold storage method | Storage time at 15 °C (d) | ||
| 0 | 4 | 8 | ||
| 8 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
6.5±2.4 a 8.8±0.9 c 8.7±1.2 c 8.4±1.6 bc 7.5±2.4 ab |
3.8±2.7 a 7.7±2.1 c 8.3±1.8 c 7.6±2.4 bc 5.2±2.4 a-d |
2.0±1.7 a 5.7±2.4 c 6.5±2.2 c 6.2±2.4 c 2.9±1.6 ab |
| Mean | 8.0±2.0 A | 6.5±2,9 B | 4.7±2,8 B | |
| 5 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
8.4±1.5 bc 8.5±1.3 bc 8.6±0.9 c 8.8±0.8 b c 7.9±1.7 bc |
4.6±1.9 ab 5.6±1.9 bcd 5.9±1.8 cd 6.7±2.2 de 4.7±2.2 abc |
2.4±1.4 a 2.8±1.2 ab 2.8±1.1 ab 3.9±1.7 b 2.7±1.4 ab |
| Mean | 8.4±1.3 B | 5.5±2.2 A | 2.9±1.5 A | |
|
Cold storage temperature [°C] |
žCold storage method | Storage time at 15 °C (d) | ||
| 0 | 1 | 4 | ||
| 8 | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
16.9±2.5 bc 16.3±6.7 bc 5.8±4.7 a 11.3±3.0 ab 14.5±5.2 ab |
44.6± 17.6 abc 23.2±14.7 ab 22.5±8.1 ab 19.6±6.4 a 49.5±23.1 bc |
46.9±15.6 ab 32.9±4.0 a 32.1±8.2 a 31.4±4.9 a 36.2± 10.5 ab |
| Mean | 13.0±6.0 A | 31.9±19.1 A | 35.9±10.6 A | |
| 5 | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
20.0±3.1 bc 25.0±8.1 c 11.6±2.4 ab 20.4±4.3 bc 17.6± 4.2 bc |
57.2±7.8 c 62.1±20.9 c 47.0± 7.1 abc 51.6±20.4 bc 55.6±13.9 c |
59.7 ±24.6 b 49.0±7.2 ab 44.2±13 ab 55.9±15.1 ab 48.4± 13.1 ab |
| Mean | 18.9±6.3 B | 54.7±15 B | 51.4± 15.6 B | |
| Cold storage temperature | Cold storage method | L | C | h |
| 8 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
33.3±1.8 c 30.4±3.0 ab 32.4±2.8 abc 31.1±2.5 abc 32.4±3.1 abc |
18.6±2.6 c 13.5±3.9 a 14.5±3.9 ab 14.4±3.7 ab 13.3 ±3.8 abc |
115.9 ±2.2 a 118.9±2.5 bc 120.0±2.8 c 119.9±2.3 bc 116.9 ±2.1 ab |
| Mean | 31.9±2.8 A | 16.1±4.0 A | 118.1±2.8 B | |
| 5 °C | Control CA 5.0 kPa CO2 + 2.0 kPa O2 DCA 0.5 kPa CO2 DCA 2.0 kPa CO2 NA 0.0 kPa CO2 +21.0 kPa O2 |
33.1± 3.4 bc 29.9±2.6 a 32.3±3.1 abc 31.8±2.9 abc 32.2±2.0 abc |
17.5±4.8 bc 14.0±3.1 ab 16.8±4.0 abc 15.9± 3.9 abc 16.31±2.3 abc |
116.5±4.1 ab 118.8±2.0 bc 116.1±1.9 a 117.3±2.4 ab 117.3±1.8 ab |
| Mean | 3.91±3.0. A | 15.5±3.8 A | 117.2±2.7 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
