Submitted:
19 August 2025
Posted:
20 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Sources
2.2. Heatwave Definition and Metrics
- Heatwave Duration (HWD): The average duration (in days) of individual heatwave events per season;
- Heatwave Frequency (HWF): The total number of heatwave days (i.e., days part of a heatwave) within each summer season;
- Heatwave Number (HWN): The count of distinct heatwave events occurring in each season.
2.3. Heatwave-Attributable Mortality Estimation
2.4. Feature Engineering and Machine Learning Modeling
3. Results and Discussion
3.1. Historical Heatwave Characteristics (2000–2024)
3.2. Projected Heatwave Trends Under RCP Scenarios (2026–2050)
3.3. Model Results and Future Mortality Projections
3.3.1. Model Performance
3.3.2. Projected Heatwave-Attributable Mortality (2026–2050)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HWD | Heatwave Duration |
| HWF | Heatwave Frequency |
| HWN | Heatwave Number |
| CVD | Cardiovascular mortality |
| RD | Respiratory mortality |
| MAE | Mean Absolute Error |
| R² | Coefficient of determination |
| RMSE | Root Mean Squared Error |
| ML | Machine Learning |
| XGBoost | eXtreme Gradient Boosting |
| RCP | Representative Concentration Pathways |
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [CrossRef]
- King, A.D.; Harrington, L.J. The Inequality of Climate Change from 1.5 to 2 °C of Global Warming. Geophys. Res. Lett. 2018, 45, 5030–5033. [CrossRef]
- Zafeiratou, S.; Samoli, E.; Analitis, A.; Gasparrini, A.; Stafoggia, M.; de’ Donato, F.K.; Rao, S.; Zhang, S.; Breitner, S.; Masselot, P.; Aunan, K.; Schneider, A.; Katsouyanni, K.; on behalf of the EXHAUSTION project team. Assessing Heat Effects on Respiratory Mortality and Location Characteristics as Modifiers of Heat Effects at a Small Area Scale in Central-Northern Europe. Environ. Epidemiol. 2023, 7 (5), e269. [CrossRef]
- Liu, J.; Varghese, B.M.; Hansen, A.; Zhang, Y.; Driscoll, T.; Morgan, G.; Dear, K.; Gourley, M.; Capon, A.; Bi, P. Heat Exposure and Cardiovascular Health Outcomes: A Systematic Review and Meta-Analysis. Lancet Planet. Health 2022, 6 (6), e484-e495. [CrossRef]
- Kouis, P.; Psistaki, K.; Yiallouros, P.K.; Paschalidou, A.K. The Role of Heatwave Characteristics in Cardiovascular Mortality in the Eastern Mediterranean Region. Environ. Int. 2025, 201, 109563. [CrossRef]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An Integrated Assessment of Climate Change Impacts for Greece in the Near Future. Reg. Environ. Change 2011, 11, 829–843. [CrossRef]
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [CrossRef]
- Faurie, C.; Varghese, B.M.; Liu, J.; Bi, P. Association between High Temperature and Heatwaves with Heat-Related Illnesses: A Systematic Review and Meta-Analysis. Sci. Total Environ. 2022, 852, 158332. [CrossRef]
- Kang, Y.; Park, J.; Jang, D.H. Compound Impact of Heatwaves on Vulnerable Groups Considering Age, Income, and Disability. Sci. Rep. 2024, 14, 24732. [CrossRef]
- Hutton, A.; Maud, K.; Giggins, H.; Peden, A.E.; Caldicott, D.; FitzGerald, G. Are We Adequately Promoting Climate Change Adaptation to Address the Increasing Heatwaves Affecting the Elderly? Int. J. Disaster Risk Sci. 2025, 16, 182–189. [CrossRef]
- Petrou, I.; Kyriazis, N.; Kassomenos, P. Evaluating the Spatial and Temporal Characteristics of Summer Urban Overheating through Weather Types in the Attica Region, Greece. Sustainability 2023, 15, 10633. [CrossRef]
- Votsi, N.; Papangelis, G.; Varotsos, K.V.; Giannakopoulos, C.; Tiniakou, A.; Efthymiou, D. A Multi-Faceted, Integrated Methodological Approach to Identify Hotspots of Combined Urban Environmental Pressures in the Climate Change Context. Euro-Mediterr. J. Environ. Integr. 2025. [CrossRef]
- Geronikolou, S.; Zimeras, S.; Tsitomeneas, S.; Chrousos, G.P. Heatwave 1987: The Piraeus versus Athens Case. F1000Research 2024, 12, 115. [CrossRef]
- Giannaros, C.; Agathangelidis, I.; Papavasileiou, G.; Galanaki, E.; Kotroni, V.; Lagouvardos, K.; Giannaros, T.M.; Cartalis, C.; Matzarakis, A. The Extreme Heat Wave of July–August 2021 in the Athens Urban Area (Greece): Atmospheric and Human-Biometeorological Analysis Exploiting Ultra-High Resolution Numerical Modeling and the Local Climate Zone Framework. Sci. Total Environ. 2023, 857, 159300. [CrossRef]
- Founda, D.; Giannakopoulos, C. The Exceptionally Hot Summer of 2007 in Athens, Greece—A Typical Summer in the Future Climate? Glob. Planet. Change 2009, 67 (3–4), 227–236. [CrossRef]
- Psistaki, K.; Kouis, P.; Michanikou, A.; Yiallouros, P.K.; Papatheodorou, S.I.; Paschalidou, A.K. Temporal Trends in Temperature-Related Mortality and Evidence for Maladaptation to Heat and Cold in the Eastern Mediterranean Region. Sci. Total Environ. 2024, 943, 173899. [CrossRef]
- Kouis, P.; Kakkoura, M.; Ziogas, K.; Paschalidou, A.K.; Papatheodorou, S.I. The Effect of Ambient Air Temperature on Cardiovascular and Respiratory Mortality in Thessaloniki, Greece. Sci. Total Environ. 2019, 647, 1351–1358. [CrossRef]
- Nastos, P.; Saaroni, H. Living in Mediterranean Cities in the Context of Climate Change: A Review. Int. J. Climatol. 2024, 44 (10), 3169–3190. [CrossRef]
- Wedler, M.; Pinto, J.G.; Hochman, A. More Frequent, Persistent, and Deadly Heat Waves in the 21st Century over the Eastern Mediterranean. Sci. Total Environ. 2023, 870, 161883. [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 US Communities. Environ. Health Perspect. 2011, 119 (2), 210–218. [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Armstrong, B. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386 (9991), 369–375. [CrossRef]
- Vicedo-Cabrera, A.M.; Sera, F.; Guo, Y.; et al. The Burden of Heat-Related Mortality Attributable to Recent Human-Induced Climate Change. Nat. Clim. Change 2021, 11 (6), 492–500. [CrossRef]
- Kovats, R.S.; Hajat, S.; Wilkinson, P. Contrasting Patterns of Mortality and Hospital Admissions during Hot Weather and Heat Waves in Greater London, UK. Occup. Environ. Med. 2004, 61 (11), 893–898. [CrossRef]
- Pyrgou, A.; Santamouris, M. Probability Risk of Heat- and Cold-Related Mortality to Temperature, Gender, and Age Using GAM Regression Analysis. Climate 2020, 8, 40. [CrossRef]
- Sahani, J.; Kumar, P.; Debele, S.; Emmanuel, R. Heat Risk of Mortality in Two Different Regions of the United Kingdom. Sustain. Cities Soc. 2022, 80, 103758. [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2021.
- V, R.C.; Johnvictor, A.C.; N, P.S. Comparative Analysis of Machine Learning Approaches for Heatwave Event Prediction in India. Sci. Rep. 2025, 15, 22431. [CrossRef]
- Georgiades, P.; Economou, T.; Proestos, Y.; Araya, J.; Lelieveld, J.; Neira, M. Global Projections of Heat Stress at High Temporal Resolution Using Machine Learning. Earth Syst. Sci. Data 2025, 17, 1153–1171. [CrossRef]
- Boudreault, J.; Campagna, C.; Chebana, F. Machine and Deep Learning for Modelling Heat-Health Relationships. Sci. Total Environ. 2023, 892, 164660. [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Environ. Change 2014, 14, 563–578. [CrossRef]
- Bouchama, A.; Knochel, J.P. Heat Stroke. N. Engl. J. Med. 2002, 346 (25), 1978–1988. [CrossRef]
- Basu, R. High Ambient Temperature and Mortality: A Review of Epidemiologic Studies from 2001 to 2008. Environ. Health 2009, 8 (1), 40. [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 US Communities. Environ. Health Perspect. 2011, 119 (2), 210–218. [CrossRef]
- Eurostat. EUROPOP2023 Population Projections. Statistical Office of the European Union, 2023. https://ec.europa.eu/eurostat.
- Smith, T.T.; Zaitchik, B.F.; Gohlke, J.M. Heat Waves in the United States: Definitions, Patterns and Trends. Clim. Change 2013, 118, 811–825. [CrossRef]
- Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of Heatwave on Mortality under Different Heatwave Definitions: A Systematic Review and Meta-Analysis. Environ. Int. 2016, 89–90, 193–203. [CrossRef]
- Kovats, R.S.; Ebi, K.L. Heatwaves and Public Health in Europe. Eur. J. Public Health 2006, 16 (6), 592–599. [CrossRef]
- Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an Extremely Hot Summer (2012). Sci. Rep. 2017, 7, 10973. [CrossRef]
- Barcena-Martin, E.; Molina, J.; Ruiz-Sinoga, J.D. Issues and Challenges in Defining a Heat Wave: A Mediterranean Case Study. Int. J. Climatol. 2019, 39, 331–342. [CrossRef]
- Luo, M.; Lau, N.C.; Liu, Z. Different Mechanisms for Daytime, Nighttime, and Compound Heatwaves in Southern China. Weather Clim. Extremes 2022, 36, 100449. [CrossRef]
- Su, Q.; Dong, B. Recent Decadal Changes in Heat Waves over China: Drivers and Mechanisms. J. Clim. 2019, 32, 4215–4234. [CrossRef]
- Wu, S.; Luo, M.; Zhao, R.; et al. Local Mechanisms for Global Daytime, Nighttime, and Compound Heatwaves. npj Clim. Atmos. Sci. 2023, 6, 36. [CrossRef]
- Galanaki, E.; Giannaros, C.; Kotroni, V.; Lagouvardos, K.; Papavasileiou, G. Spatio-Temporal Analysis of Heatwaves Characteristics in Greece from 1950 to 2020. Climate 2023, 11, 5. [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of Extreme Heat Waves in Present Climate and Their Projection in a Warming World. J. Geophys. Res. Atmos. 2014, 119, 12,500–12,512. [CrossRef]
- Rennie, J.J.; Palecki, M.A.; Heuser, S.P.; Diamond, H.J. Developing and Validating Heat Exposure Products Using the U.S. Climate Reference Network. J. Appl. Meteor. Climatol. 2021, 60, 543–558. [CrossRef]
- Perkins-Kirkpatrick, S.E.; et al. Projections of Heatwave-Attributable Mortality under Climate Change and Future Population Scenarios in China. Environ. Res.: Climate 2025, 4, 015004. [CrossRef]
- Chen, H.; et al. Projections of Heatwave-Attributable Mortality under Climate Change and Future Population Scenarios in China. Lancet Reg. Health – West. Pac. 2023, 28, 100582. [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16; ACM: New York, NY, USA, 2016; pp. 785–794. [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. Int. J. Climatol. 2020, 40, 4800–4827. [CrossRef]
- Kuglitsch, F.G.; Toreti, A.; Xoplaki, E.; Della-Marta, P.M.; Zerefos, C.S.; Türkeş, M.; Luterbacher, J. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 2010, 37, L04802. [CrossRef]
- Scherrer, S. C., Fischer, E. M., Posselt, R., Liniger, M. A., Croci-Maspoli, M., & Knutti, R. (2016). Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. Journal of Geophysical Research: Atmospheres, 121, 2626–2637. [CrossRef]
- Paredes-Fortuny, L., & Khodayar, S. (2023). Understanding the magnification of heatwaves over Spain: Relevant changes in the most extreme events. Weather and Climate Extremes, 42, 100631. [CrossRef]
- Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., et al. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of Geophysics, 60, e2021RG000762. [CrossRef]
- Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104. [CrossRef]
- Lorenzo, N., Díaz-Poso, A., & Royé, D. (2021). Heatwave intensity on the Iberian Peninsula: Future climate projections. Atmospheric Research, 258, 105655. [CrossRef]
- Lhotka, O., Kyselý, J., & Plavcová, E. (2018). Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Climate Dynamics, 50, 4249–4262. [CrossRef]
- Molina, M. O., Sánchez, E., & Gutiérrez, C. (2020). Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Scientific Reports, 10, 8801. [CrossRef]
- Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., & Goodess, C. M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global and Planetary Change, 68(3), 209–224. [CrossRef]
- Papadopoulos, G.; Keppas, S.C.; Parliari, D.; Kontos, S.; Papadogiannaki, S.; Melas, D. Future Projections of Heat Waves and Associated Mortality Risk in a Coastal Mediterranean City. Sustainability 2024, 16, 1072. [CrossRef]
- Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2–3), 90–104. [CrossRef]
- Georgoulias, A. K., Akritidis, D., Kalisoras, A., Kapsomenakis, J., Melas, D., Zerefos, C. S., & Zanis, P. (2022). Climate change projections for Greece in the 21st century from high-resolution EURO-CORDEX RCM simulations. Atmospheric Research, 271, 106049. [CrossRef]
- Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A. M., Huber, V., Tong, S., de Sousa Zanotti Stagliorio Coelho, M., Nascimento Saldiva, P. H., Lavigne, E., Matus Correa, P., Valdes Ortega, N., Kan, H., Osorio, S., Kyselý, J., Urban, A., Jaakkola, J. J. K., Ryti, N. R. I., Pascal, M., Goodman, P. G., ... Armstrong, B. (2017). Projections of temperature-related excess mortality under climate change scenarios. The Lancet Planetary Health, 1(9), e360–e367. [CrossRef]
- Honda, Y., Kondo, M., McGregor, G., Kim, H., Guo, Y. L., Hijioka, Y., Yoshikane, T., Oka, K., Takano, S., Hales, S., & Tong, S. (2014). Heat-related mortality risk model for climate change impact projection. Environmental Health and Preventive Medicine, 19(1), 56–63. [CrossRef]
- Kendrovski, V.; Baccini, M.; Martinez, G.S.; Wolf, T.; Paunovic, E.; Menne, B. Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries. Int. J. Environ. Res. Public Health 2017, 14, 729. [CrossRef]
- Relvas, H., Monjo, R., Coelho, S., Rodríguez, R., Trigo, R. M., & Russo, S. (2025). Rising temperatures, rising risks: Heat-related mortality in Europe under climate change. Earth Systems and Environment. Advance online publication. [CrossRef]
- Paravantis, J., Santamouris, M., Cartalis, C., Efthymiou, C., & Kontoulis, N. (2017). Mortality associated with high ambient temperatures, heatwaves, and the urban heat island in Athens, Greece. Sustainability, 9(4), 606. [CrossRef]
- Parliari, D.; Keppas, S.; Papadogiannaki, S.; Papadopoulos, G.; Kontos, S.; Melas, D. Projections of Heat-Related Mortality under the Impact of Climate Change in Thessaloniki, Greece. Environ. Sci. Proc. 2023, 26, 72. [CrossRef]










| Disease Type | Scenario | MAE | RMSE | R2 | Interpretation |
|---|---|---|---|---|---|
| CVD | RCP4.5 | 0.7274 | 3.2359 | 0.9926 | Excellent fit; high accuracy under moderate warming. |
| RCP8.5 | 0.7344 | 3.5984 | 0.9909 | Slight increase in error under extreme warming, still robust. | |
| RD | RCP4.5 | 0.3818 | 2.5487 | 0.9677 | Strong fit with relatively low error; captures RD trends effectively. |
| RCP8.5 | 0.3701 | 2.6682 | 0.9646 | Comparable accuracy under extreme warming; slight decline in R². |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).