Submitted:
30 July 2025
Posted:
12 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Qubits
- Quantum superposition principle: If a quantum system can be in the state and can also be in the state , then quantum mechanics allows the system to be in any arbitrary state . The state is said to be in a superposition of and with probability amplitude α and β. Two well-known states are provided by
-
What is the physical realization of qubits?
- One possible representation of the qubits would be two states of an electron orbiting an atom.
- Two directions of a particle’s spin could be used to represent the qubits; for instance, up or down would be used to measure a particle’s spin along the z-axis, that is ( direction) and ( direction) or and . For computational purpose it is convenient to use and .
- A photon with two polarizations could be used to represent the qubits.
- The computational basis is typically used to represent two exclusive states of a quantum system used as quantum-0 and quantum-1. For instance, if our quantum bit is the energy of an electron in an atom, we could say that our quantum-0 is the ground state (the state with the lowest energy) and our quantum-1 is the excited state (the state with the highest energy). Since the ground state and the excited states are mutually exclusive, the representation could be: ground state ↔, excited state ↔.
3. Quantum Entanglement
3.1. Bell-CHSH Inequalities
3.2. Criteria of Separability
- Entropy of entanglement criterion.
4. Quantum Teleportation
4.1. Teleportation Through a Nonmaximally Entangled Channel
4.2. Quantum Teleportation Fidelity
4.2.1. Definition
- that is the overlap of the input information state with the normalized output teleported state .
- where is the input information state, and , the output information state.
- The following definition has been used in [68]where represents the information state, to be teleported, and represents the teleported copy of the initial information state that the receiver has after application of the unitary transformation.
4.2.2. Computation of the Fidelity
- for the mesurement of , Bouba applies the unit operator to and normalizes to obtain
- for the mesurement of , Bouba applies the operator on and after normalization the outcome is
- for the mesurement of , Bouba applies the operator on ; and after normalization the outcome is
- for the mesurement of , Bouba applies the operator on ; and after normalization the outcome is
5. Conclusion
- The separability of quantum states is directly linked to unsolved challenges of mathematics concerning linear algebra and geometry, functional analysis and, in particular, the theory of -algebra. The distillability problem, which involves determining when a composite quantum system’s state can be converted into an entangled pure state via local operations, is yet another issue connected to difficult unresolved questions in contemporary mathematics.
- Deterministic perfect teleportation is not possible in the case of entangled non-orthogonal coherent states.
- The fidelity of teleportation depends on the parameters of the initial state to be teleported. For the protocol, the unitary operators used by the receiver are the Pauli matrices. It may be interesting to find the convenient unitary operators that give a perfect teleportation.
References
- Schrödinger, E. Naturwissenschaften 1935, 23, 807. [CrossRef]
- Schrödinger, E. Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 1935, 31, 555. [Google Scholar] [CrossRef]
- Einstein attacks quantum theory. In New York Times; 4 May 1935.
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 1981, 47, 460. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 1982, 49, 91. [Google Scholar] [CrossRef]
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in Many-Body Systems. Rev. Mod. Phys. 2008, 80, 517. [Google Scholar] [CrossRef]
- Nielsen, M. A.; Chuang, I. L. Quantum Computation and Quantum Information; Cambridge University Press, 2000. [Google Scholar]
- Bennett, C. H.; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K. Teleporting an unknown quantum state vis dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1895, 70, 1993. [Google Scholar]
- Schumacher, B. (1995) “Quantum coding". Physical Review A. 51 (4): 2738-2747.
- A. Neven and T. Bastin, The quantum separability problem is a simultaneous hollowisation matrix analysis problem, J. Phys. A: Math. Theor. 51 (315305), (2018).
- M. Horodecki, P. M. Horodecki, P. Horodecki and R. Horodecki, Separability of mixed states: necessity and sufficient condition: Phys. Lett. A, 223(1), (1996).
- Dagmar Bruss, Characterizing entanglement. J. Math. Phys. 2002, 43, 4237. [CrossRef]
- D. Bohm, Quantum theory (Prentice-Hall, Englewood Cliffs, N. J., (1951).
- N. Gisin, Phys. Lett. A 154, 201 (1991), Bell’s inequality holds for all non-product states.
- J. F. Clauser, M. A. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt: Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880-884 (1969).
- B. S. Cirelson, Quantum generalizations of Bell’s inequality, Lett. Math. Phys. 4, 93 (1980).
- Werner R., F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model. Phys. Rev. A 1989, 40, 4277. [Google Scholar] [CrossRef]
- N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopic distinct states, Phys. Rev. Lett. 65, 1838 (1990).
- N. Gisin and H. Bechmann-Pasquinucci, Bell inequality, Bell states and maximally entangled states for N qubits, Phys. Lett. A 246, 1, 1998.
- M. Zukowski and Cˇ. Brukner, Bell’s theorem for general N qubit states, Phys. Rev. Lett. 88, 210401(2002).
- Gnonfin, H.; Gouba, L. The Separability Problem in Two Qubits Revisited. Symmetry 2023, 15, 2089. [Google Scholar] [CrossRef]
- Schmidt, E. Math. Ann. 1907, 63, 433. [CrossRef]
- A. Ekert and P. L. Knight, Entangled quantum systems and the Schmidt decomposition, Am. J. Phys. 63 (1995) 415.
- A. Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, The Netherlands, 1995.
- Peres, A. Higher order Schmidt decomposition. Phys. Lett. A 1995, 202. [Google Scholar] [CrossRef]
- Peres, A. Separability criterion for density matrices, 1996 Phys. Rev. Lett. 77 1413 -5.
- Horodecki, P. Separability criterion and inseparable mixed states with positive partial transposition, 1997 Phys. Lett. A 232 333-9.
- N. Cerf, C. Adami, and R. M. Gingrich, Reduction criterion for separability. Phys. Rev. 1999, 60, 898. [CrossRef]
- Hill, S.; Wootters, W. K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef]
- Wootters, W. Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
- Wootters W., K. Entanglement of formation of concurrence, quantum Inf. Comput. 2001, 1, 27–44. [Google Scholar]
- Fei, S. M. , Zhao, M., J., Chen, K., Wang, Z. X., Experimental determination of entanglement with a single measurement.
- Marshall A., W. , Olkin I., and Arnold B. C., Inequalities: theory of majorization and its applications, volume 143., Springer, 1979.
- Nielsen M., A. and Kempe J., Separable states are more disordered globally than locally, Physical Review Letters, 86(22): 5184, 2001.
- Rudolph, O. Computable cross-norm criterion for separability. Lett. Math. Phys, 2004, 70: 57-64.
- Rudolph, O. , Further results on the cross norm criterion for separability, arxiv: quant-ph/0202121 v1, (2002) Quantum Inf. Process. 4, 219 - 239 (2005).
- Chen, K. and Wu, L. A. A matrix realignment method for recognizing entanglement, Quantum Inf. Comput. 3, 193 - 202 (2003).
- J. de Vicente, Separability criteria based on the Block representation of density matrices, Quant. Inf. Comput., 7 (624), 2007.
- Bloch, F. , Nuclear induction, 1946 Phys. Rev. 70 460.
- Hioe F., T. and Eterly J. H., N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics, 1981 Phys. Rev. Lett. 47 838.
- Fano, U. , Pairs of two-level systems, 1983 Rev. Mod. Phys.
- J. Shang, A. J. Shang, A. Asadian, H. Zhu and O. Gühne, Enhanced entanglement criterion via symmetric informationnally complete measurement, Phys. Rev. A, 98 (022309), 2018.
- I. Bengtsson and K. Zyczkowski. Geometry of quantum states: an introduction to quantum entanglement. Cambridge University Press, Cambridge, UK, 2006.
- A. Jamio Ikowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Rep. Math. Phys. 3, 275 (1972).
- S. L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10, 165 (1976).
- M. D. Choi, Positive linear maps, Proc. Sympos. Pure Math 38, 583 (1982).
- E. St⌀rmer, Positive linear maps of operators algebras, Acta Math. 110, 233 (1963).
- E. St⌀rmer, Decomposable positive maps on C*-algebras, Proc. Amer. Math. Soc. 86, 402 (1982).
- B. Terhal, A family of indecomposable positive linear maps based on entangled states, Lin. Algebr. Appl. 323, 61 (2000).
- O. Gühne and G. Toth. Entanglement detection, Phys. Rep., 474(1-6), 2009.
- N. Ganguly, S. N. Ganguly, S. Adhikari, and A. Majumdar. Common entanglement witnesses and their characteristics. Quant. Inf. Pro., 12(425-436), 2013.
- Philipp Hyllus, Otfried Gühne, Dagmar Bruss, and Maciej Lewenstein, Relations between entanglement witnesses and Bell inequalities, Phys. Rev. A72, 012321-2005.
- Hofmann, H. F. and Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003).
- O. Gühne and M. Lewenstein, Entropic uncertainty relations and entanglement, Phys. Rev. A 70 022316 (2004).
- Gühne, O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 2004, 92, 117903. [Google Scholar] [CrossRef] [PubMed]
- Gühne, Entanglement criteria based pn local uncertainty relations are strictly stronger than the computable cross norm criteria, 2006 Phys. Rev. A 74 010301(R).
- Jun-Li Li and Cong-Feng Qiao, A necessary and sufficient criterion for the separability of quantum state, Sci. Rep. 8, 1442 (2018).
- R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, (Cambridge University Press, Cambridge 1991).
- R. A. Horn and C. R. Johnson, Matrix Analysis second edition, (Cambridge University Press, Cambridge 2013).
- Bercovici, H. , Collins, B., Dykema, K. and Li, W. S. Characterization of singular numbers of products of operators in matrix algebras and finite von Neumann algebras, Bull. Sci. Math. 139, 400-419 (2015).
- Isiaka Aremua and Laure Gouba, Teleportation of a qubit using quasi-Bell states. J. Phys. Commun. 2024, 8, 095001. [CrossRef]
- Laure Gouba, Quantum fidelity. International Journal of Geometric Methods in Modern Physics, 2025. [CrossRef]
- R. Jozsa, Fidelity for mixed quantum states. J. Mod. Opt. 1994, 41, 2315. [CrossRef]
- Nielsen, M. A. , Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press.
- Prakash et al. Effect of decoherence on fidelity in teleportation using entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 2007, 40, 1613. [CrossRef]
- S. Popescu Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 1994, 72, 797.
- R. Horodecki, M. R. Horodecki, M. Horedecki, P. Horodecki Teleportation, Bell’s inequalities and inseparability Phys. Lett. A 222, Issues 1-2, (1996), 21-25.
- Henderson, L.; Hardy, L.; Vedral, V. Phys. Rev. A 2000, 61, 062306. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
