Submitted:
09 August 2025
Posted:
12 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
- Peer-reviewed original research, reviews, or meta-analyses.
- Published between January 2023 and June 2025.
- Written in English.
- Focused on mitochondrial structure, function, or signaling in relation to one of the target lung diseases.
- Were published before January 2023.
- Did not include specific lung pathology context.
- Were preprints, editorials, or non-peer-reviewed sources.
- Focused solely on unrelated organ systems or generalized mitochondrial mechanisms without pulmonary context.
2.3. Screening and Data Extraction
- Type of study (basic, clinical, or translational)
- Mitochondrial parameters examined (e.g., ROS production, ATP levels, mitophagy, biogenesis)
- Key findings related to disease progression, diagnosis, or therapeutic targeting
- Studies were grouped by disease category to allow cross-comparison of mitochondrial dysfunction patterns.
2.4. Limitations
3. Results
3.1. Mitochondrial Dysfunction: A Multidimensional Pathology
3.2. Clinical Relevance: Targeting Mitochondria in Lung Disease
3.2.1. Asthma
3.2.2. Chronic Obstructive Pulmonary Disease (COPD)
3.2.3. Pulmonary Fibrosis
3.2.4. Acute Respiratory Distress Syndrome (ARDS)
3.2.5. Lung Cancer
4. Discussion
4.1. Integration of Key Findings
4.2. Therapeutic Implications
4.3. Limitations and Future Directions
- Elucidating the interplay between mitochondrial dysfunction and genetic/epigenetic factors predisposing individuals to lung disease.
- Developing sensitive, clinically applicable biomarkers for mitochondrial dysfunction to aid diagnosis and guide therapy.
- Advancing clinical trials for mitochondria-targeted interventions across different lung diseases.
- Exploring combinatorial therapies that address mitochondrial dysfunction in conjunction with established anti-inflammatory, anti-fibrotic, or anti-neoplastic drugs.
4.4. Broader Significance
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ROS | Reactive oxygen species |
| COPD | Chronic obstructive pulmonary disorder |
| IPF | Idiopathic pulmonary fibrosis |
| ARDS | Acute respiratory distress syndrome |
| ATII | Alveolar type II |
| OXPHOS | Oxidative phosphorylation |
| ATP | Adenosine triphosphate |
| mtROS | Mitochondrial reactive oxygen species |
| mtDNA | Mitochondrial deoxyribonucleic acid |
| MPTP | Mitochondrial permeability transition pore |
| ETC | Electron transport chain |
| SOD2 | Super oxidase dismutase 2 |
| EIB | Exercise-induced bronchoconstriction |
| ECM | Extracellular matrix |
| EMT | Epithelial mesenchymal transition |
| VILI | Ventilator-induced lung injury |
References
- Rhoades, R.A.; Agarwal, A.R.; Yin, F.; Cadenas, E.; Bishai, J.M.; Mitzner, W.; A Rhoades, R.; E Shaw, M.; Eskew, M.L.; Wali, S. Influence of starvation on the lung: effect on glucose and palmitate utilization. J. Appl. Physiol. 1975, 38, 513–516. [Google Scholar] [CrossRef]
- Holt, P.G.; Strickland, D.H.; Wikström, M.E.; Jahnsen, F.L. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol. 2008, 8, 142–152. [Google Scholar] [CrossRef]
- Alvarado A, Arce I. Metabolic Functions of the Lung, Disorders and Associated Pathologies. J Clin Med Res. 2016 Oct;8(10):689–700.
- Caldeira D de AF, Weiss DJ, Rocco PRM, Silva PL, Cruz FF. Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Front Immunol. 2021 Nov 23;12:782074.
- Saha, U. Clinical Anesthesia for the Newborn and the Neonate. Springer Nature; 2023. 985 p.
- Kosmider, B.; Lin, C.-R.; Karim, L.; Tomar, D.; Vlasenko, L.; Marchetti, N.; Bolla, S.; Madesh, M.; Criner, G.J.; Bahmed, K. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema. EBioMedicine 2019, 46, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, T.; Murakami, K.; Isohama, Y. ATP Increases Ciliary Beat Frequency and Ciliary Bend Angle through Distinct Purinergic Receptors in Bronchial Ciliary Cells Isolated from Mice. Biol. Pharm. Bull. 2024, 47, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Kim, B.R.; Yu, W.; Moninger, T.O.; Karp, P.H.; Wagner, B.A.; Welsh, M.J. Mitochondrial uncoupling proteins protect human airway epithelial ciliated cells from oxidative damage. Proc. Natl. Acad. Sci. 2024, 121, e2318771121. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Li, P.; Han, L.; Yang, C.; Jiang, M.; Wang, Y.; Han, X.; Cao, Y.; Liu, X.; Wu, W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am. J. Physiol. Cell. Mol. Physiol. 2024, 326, L754–L769. [Google Scholar] [CrossRef]
- Woods PS, Mutlu GM. Differences in glycolytic metabolism between tissue-resident alveolar macrophages and recruited lung macrophages. Front Immunol [Internet]. 2025 Feb 28 [cited 2025 Aug 7];16. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1535796/full.
- Chiofalo P, Berno E, Cinquetti R, Pulze L, Valci S, Guzzeloni V, et al. Emerging role of Proline dehydrogenase in 2D and 3D growth of lung cancer cells resistant to tyrosine kinase inhibitors. In 2024 [cited 2025 Aug 7]. Available from: https://irinsubria.uninsubria.it/handle/11383/2184081.
- Dong, T.; Chen, X.; Xu, H.; Song, Y.; Wang, H.; Gao, Y.; Wang, J.; Du, R.; Lou, H. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacol. Ther. 2022, 239, 108208. [Google Scholar] [CrossRef]
- Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol [Internet]. 2025 Mar 24 [cited 2025 Aug 7];16. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1520814/full.
- Yu, H.; Liu, J.; He, X. From Glucotoxicity to Lung Injury: Emerging Perspectives on Diabetes-Associated Respiratory Complications. Lung 2025, 203, 80. [Google Scholar] [CrossRef]
- Dua N, Badrinarayanan A. Mechanisms regulating mitochondrial DNA quality control. jtgg. 2023 June 12;7(2):110–25.
- Dubey, S.; Yu, Z.; Stephens, E.M.; Lazrak, A.; Ahmad, I.; Aggarwal, S.; Andrabi, S.; Hossain, M.I.; Jilling, T.; Fernandez, S.R.; et al. Oxidative damage to lung mitochondrial DNA is a key contributor to the development of chemical lung injury. Redox Biol. 2025, 82, 103624. [Google Scholar] [CrossRef]
- Xu Z. Defining the role of epithelial LKB1 in idiopathic pulmonary fibrosis [Internet] [phd]. University of Southampton; 2024 [cited 2025 Aug 7]. Available from: https://eprints.soton.ac.uk/488472/.
- Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation | Science [Internet]. [cited 2025 Aug 7]. Available from: https://www.science.org/doi/abs/10.1126/science.1160809.
- Huang, T.; Lin, R.; Su, Y.; Sun, H.; Zheng, X.; Zhang, J.; Lu, X.; Zhao, B.; Jiang, X.; Huang, L.; et al. Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis. Nat. Commun. 2023, 14, 5781. [Google Scholar] [CrossRef]
- Shao, M.; Cheng, H.; Li, X.; Qiu, Y.; Zhang, Y.; Chang, Y.; Fu, J.; Shen, M.; Xu, X.; Feng, D.; et al. Abnormal mitochondrial iron metabolism damages alveolar type II epithelial cells involved in bleomycin-induced pulmonary fibrosis. Theranostics 2024, 14, 2687–2705. [Google Scholar] [CrossRef]
- Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2015, 12, 5–23. [Google Scholar] [CrossRef]
- Jiang, J.-J.; Zhang, G.-F.; Zheng, J.-Y.; Sun, J.-H.; Ding, S.-B. Targeting Mitochondrial ROS-Mediated Ferroptosis by Quercetin Alleviates High-Fat Diet-Induced Hepatic Lipotoxicity. Front. Pharmacol. 2022, 13, 876550. [Google Scholar] [CrossRef] [PubMed]
- Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage | Particle and Fibre Toxicology [Internet]. [cited 2025 Aug 7]. Available from: https://link.springer.com/article/10.1186/s12989-022-00512-8.
- Chandel, J.; Naura, A.S. Dynamics of Inflammatory and Pathological Changes Induced by Single Exposure of Particulate Matter (PM2.5) in Mice: Potential Implications in COPD. Cell Biochem. Biophys. 2024, 82, 3463–3475. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, S.; Cui, R.; Lee, H.; Choi, H.; Farh, M.E.-A.; Jo, H.I.; Lee, J.H.; Song, H.J.; Lee, Y.-J.; et al. NXC736 Attenuates Radiation-Induced Lung Fibrosis via Regulating NLRP3/IL-1β Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 16265. [Google Scholar] [CrossRef] [PubMed]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef]
- Sun, Z.; Ji, Z.; Meng, H.; He, W.; Li, B.; Pan, X.; Zhou, Y.; Yu, G. Lactate facilitated mitochondrial fission-derived ROS to promote pulmonary fibrosis via ERK/DRP-1 signaling. J. Transl. Med. 2024, 22, 479. [Google Scholar] [CrossRef]
- Pekson, R.; Liang, F.G.; Axelrod, J.L.; Lee, J.; Qin, D.; Wittig, A.J.H.; Paulino, V.M.; Zheng, M.; Peixoto, P.M.; Kitsis, R.N. The mitochondrial ATP synthase is a negative regulator of the mitochondrial permeability transition pore. Proc. Natl. Acad. Sci. 2023, 120, e2303713120. [Google Scholar] [CrossRef]
- Harada, K.; Yahata, T.; Onizuka, M.; Ishii, T.; Ibrahim, A.A.; Kikkawa, E.; Gondo, Y.; Ando, K. Mitochondrial Electron Transport Chain Complex II Dysfunction Causes Premature Aging of Hematopoietic Stem Cells. STEM CELLS 2023, 41, 39–49. [Google Scholar] [CrossRef]
- Mohanan, A.; Washimkar, K.R.; Mugale, M.N. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. Biochim. et Biophys. Acta (BBA) - Mol. Cell Res. 2024, 1871, 119676. [Google Scholar] [CrossRef]
- Chang-Chien, J.; Huang, J.-L.; Tsai, H.-J.; Wang, S.-L.; Kuo, M.-L.; Yao, T.-C. Vitamin D ameliorates particulate matter induced mitochondrial damages and calcium dyshomeostasis in BEAS-2B human bronchial epithelial cells. Respir. Res. 2024, 25, 321. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Q.; Wang, X.; Lv, K.; Huang, H.; Feng, J.; Luo, B. Integrated bioinformatics and experimental analysis of mitochondrial-associated membrane function and mechanism in acute respiratory distress syndrome. Sci. Rep. 2025, 15, 24602. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.M.; Tu, S. Screening of mitochondrial-related biomarkers connected with immune infiltration for acute respiratory distress syndrome through WGCNA and machine learning. Medicine 2025, 104, e41497. [Google Scholar] [CrossRef] [PubMed]
- Onuzulu, C.D.; Lee, S.; Basu, S.; Comte, J.; Hai, Y.; Hizon, N.; Chadha, S.; Fauni, M.S.; Halayko, A.J.; Pascoe, C.D.; et al. Novel DNA methylation changes in mouse lungs associated with chronic smoking. Epigenetics 2024, 19, 2322386. [Google Scholar] [CrossRef] [PubMed]
- Cloer, C.M.; Givens, C.S.; Buie, L.K.; Rochelle, L.K.; Lin, Y.-T.; Popa, S.; Shelton, R.V.; Zhan, J.; Zimmerman, T.R.; Jones, B.G.; et al. Mitochondrial transplant after ischemia reperfusion promotes cellular salvage and improves lung function during ex-vivo lung perfusion. J. Hear. Lung Transplant. 2023, 42, 575–584. [Google Scholar] [CrossRef]
- Bechet, N.B.; Celik, A.; Mittendorfer, M.; Wang, Q.; Huzevka, T.; Kjellberg, G.; Boden, E.; Hirdman, G.; Pierre, L.; Niroomand, A.; et al. Xenotransplantation of mitochondria: A novel strategy to alleviate ischemia-reperfusion injury during ex vivo lung perfusion. J. Hear. Lung Transplant. 2025, 44, 448–459. [Google Scholar] [CrossRef]
- Norheim, K.L.; Ben Ezra, M.; Heckenbach, I.; Andreasson, L.M.; Eriksen, L.L.; Dyhre-Petersen, N.; Damgaard, M.V.; Berglind, M.; Pricolo, L.; Sampson, D.; et al. Effect of nicotinamide riboside on airway inflammation in COPD: a randomized, placebo-controlled trial. Nat. Aging 2024, 4, 1772–1781. [Google Scholar] [CrossRef]
- Nambiar, A.; Kellogg, D.; Justice, J.; Goros, M.; Gelfond, J.; Pascual, R.; Hashmi, S.; Masternak, M.; Prata, L.; LeBrasseur, N.; et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. EBioMedicine 2023, 90, 104481. [Google Scholar] [CrossRef]
- Virginia Commonwealth University. The Influence of Mitochondrial Derived Reactive Oxygen Species on Cardiovascular Health in Patients With Chronic Obstructive Pulmonary Disease [Internet]. clinicaltrials.gov; 2025 Feb [cited 2025 Aug 8]. Report No.: NCT05605548. Available from: https://clinicaltrials.gov/study/NCT05605548.
- Choi, G.; Ju, H.-Y.; Bok, J.; Choi, J.; Shin, J.W.; Oh, H.; Jeon, Y.; Kim, J.; Kim, D.; Moon, H.; et al. NRF2 is a spatiotemporal metabolic hub essential for the polyfunctionality of Th2 cells. Proc. Natl. Acad. Sci. 2024, 121, e2319994121. [Google Scholar] [CrossRef]
- Tu W, Xiao X, Lu J, Liu X, Wang E, Yuan R, et al. Vanadium exposure exacerbates allergic airway inflammation and remodeling through triggering reactive oxidative stress. Front Immunol. 2022;13:1099509.
- I Ahn, S.; Choi, S.K.; Kim, M.J.; Wie, J.; You, J.S. Mdivi-1: Effective but complex mitochondrial fission inhibitor. Biochem. Biophys. Res. Commun. 2024, 710, 149886. [Google Scholar] [CrossRef]
- Wang, J.; Meng, S.; Chen, Y.; Wang, H.; Hu, W.; Liu, S.; Huang, L.; Xu, J.; Li, Q.; Wu, X.; et al. MSC-mediated mitochondrial transfer promotes metabolic reprograming in endothelial cells and vascular regeneration in ARDS. Redox Rep. 2025, 30, 2474897. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Wang, Y.; Ren, G.; Chu, D.; Li, Y.; Yang, Y.; Sang, T. Urolithin A exerts a protective effect on lipopolysaccharide-induced acute lung injury by regulating HMGB1-mediated MAPK and NF-κB signaling pathways. Naunyn-Schmiedeberg's Arch. Pharmacol. 2024, 397, 5765–5777. [Google Scholar] [CrossRef] [PubMed]
- Cooley JC, Javkhlan N, Wilson JA, Foster DG, Edelman BL, Ortiz LA, et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight [Internet]. 2023 Feb 8 [cited 2025 Aug 8];8(3). Available from: https://insight.jci.org/articles/view/163762.
- Bao, S.; Chen, T.; Chen, J.; Zhang, J.; Zhang, G.; Hui, Y.; Li, J.; Yan, S. Multi-omics analysis reveals the mechanism of action of ophiopogonin D against pulmonary fibrosis. Phytomedicine 2023, 121, 155078. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Yu, Z.; Stephens, E.M.; Lazrak, A.; Ahmad, I.; Aggarwal, S.; Andrabi, S.; Hossain, M.I.; Jilling, T.; Fernandez, S.R.; et al. Oxidative damage to lung mitochondrial DNA is a key contributor to the development of chemical lung injury. Redox Biol. 2025, 82, 103624. [Google Scholar] [CrossRef]
- Takamatsu H. Mitochondrial DNA: leakage, recognition and associated human diseases. J Biochem. 2025 July 31;178(2):79–87.
- Szögi, T.; Borsos, B.N.; Masic, D.; Radics, B.; Bella, Z.; Bánfi, A.; Ördög, N.; Zsiros, C.; Kiricsi, Á.; Pankotai-Bodó, G.; et al. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2025, 47, 2245–2261. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, F.; Wang, S.; Jiao, H.; Dang, M.; Zhou, K.; Guo, W.; Guo, S.; Zhang, H.; Song, W.; et al. Aberrant fragmentomic features of circulating cell-free mitochondrial DNA as novel biomarkers for multi-cancer detection. EMBO Mol. Med. 2024, 16, 3169–3183. [Google Scholar] [CrossRef]
- Rondeau, J.D.; Lipari, S.; Mathieu, B.; Beckers, C.; Van de Velde, J.A.; Mignion, L.; Morais, M.D.S.; Kreuzer, M.; Colauzzi, I.; Capeloa, T.; et al. Mitochondria-targeted antioxidant MitoQ radiosensitizes tumors by decreasing mitochondrial oxygen consumption. Cell Death Discov. 2024, 10, 514. [Google Scholar] [CrossRef]
- Li, X.; Tie, J.; Sun, Y.; Gong, C.; Deng, S.; Chen, X.; Li, S.; Wang, Y.; Wang, Z.; Wu, F.; et al. Targeting DNM1L/DRP1-FIS1 axis inhibits high-grade glioma progression by impeding mitochondrial respiratory cristae remodeling. J. Exp. Clin. Cancer Res. 2024, 43, 273. [Google Scholar] [CrossRef]
- Lin, L.; Liao, Z.-H.; Li, C.-Q. Insight into the role of mitochondrion-related gene anchor signature in mitochondrial dysfunction of neutrophilic asthma. J. Asthma 2024, 61, 912–929. [Google Scholar] [CrossRef]
- Wang J, Zhang X, Zhang L, Liu Y, Wang G, Zhang HP, et al. Age-Related Clinical Characteristics, Inflammatory Features, Phenotypes, and Treatment Response in Asthma. J Allergy Clin Immunol Pract. 2023 Jan;11(1):210-219.e3.
- Qiu, C.; Feng, D. Efficacy and anti-inflammatory analysis of glucocorticoid, antihistamine and leukotriene receptor antagonist in the treatment of allergic rhinitis. World J. Clin. Cases 2023, 11, 6725–6732. [Google Scholar] [CrossRef]
- Huang, Z.; Li, L.; Zhang, B.; Yao, D.; Xiao, B.; Mo, B. Investigation of the mechanistic impact of CBL0137 on airway remodeling in asthma. BMC Pulm. Med. 2025, 25, 129. [Google Scholar] [CrossRef]
- Yu, X.; Li, L.; Cai, B.; Zhang, W.; Liu, Q.; Li, N.; Shi, X.; Yu, L.; Chen, R.; Qiu, C. Single-cell analysis reveals alterations in cellular composition and cell-cell communication associated with airway inflammation and remodeling in asthma. Respir. Res. 2024, 25, 76. [Google Scholar] [CrossRef]
- Dasgupta, D.; Bhat, S.M.; Creighton, C.; Cortes, C.; Delmotte, P.; Sieck, G.C. Molecular mechanisms underlying TNFα-induced mitochondrial fragmentation in human airway smooth muscle cells. Am. J. Physiol. Cell. Mol. Physiol. 2024, 326, L190–L205. [Google Scholar] [CrossRef]
- Rai, P.; Fessler, M.B. Mechanisms and effects of activation of innate immunity by mitochondrial nucleic acids. Int. Immunol. 2025, 37, 133–142. [Google Scholar] [CrossRef]
- Chenuet, P.; Mellier, M.; Messaoud-Nacer, Y.; Culerier, E.; Marquant, Q.; Fauconnier, L.; Rouxel, N.; Ledru, A.; Rose, S.; Ryffel, B.; et al. Birch pollen allergen-induced dsDNA release activates cGAS-STING signaling and type 2 immune response in mice. iScience 2025, 28, 112324. [Google Scholar] [CrossRef] [PubMed]
- Su B, Li R, Song F, Liu M, Sun X. S14G-Humanin ameliorates ovalbumin-induced airway inflammation in asthma mediated by inhibition of toll-like receptor 4 (TLR4) expression and the nuclear factor κ-B (NF-κB)/early growth response protein-1 (Egr-1) pathway. Aging (Albany NY). 2023 July 14;15(14):6822–33.
- Wu, Y. Metformin inhibits mitochondrial dysfunction and apoptosis in cardiomyocytes induced by high glucose via upregulating AMPK activity. Exp. Biol. Med. 2023, 248, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jing, X.; Yu, L.; Jiang, Z.; Lu, Y.; Peng, J.; Xu, X.; Liu, H.; Li, R.; Tang, H. Metformin alleviates inflammatory responses in acute allergic asthma by inhibiting ILC2s function. Int. Immunopharmacol. 2025, 159, 114897. [Google Scholar] [CrossRef] [PubMed]
- Lingitz, M.-T.; Kühtreiber, H.; Auer, L.; Mildner, M.; Krenn, C.G.; Aigner, C.; Moser, B.; Bekos, C.; Ankersmit, H.J. Circulating Antimicrobial Peptides as Biomarkers of Inflammation and Airway Dysfunction After Marathon Running. Biology 2025, 14, 825. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Z.; Jiang, L.; Xuan, L.; Ma, Y.; Wang, J.; Gu, Y.; Zhang, Y. Activation of Pink1/Parkin-mediated mitochondrial autophagy alleviates exertional heat stroke-induced acute lung injury in rats. Clin. Hemorheol. Microcirc. 2024, 88, 13–31. [Google Scholar] [CrossRef]
- Wu Z, Bezwada D, Harris RC, Pan C, Nguyen PT, Faubert B, et al. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. bioRxiv. 2023 May 11;2023.05.11.540429.
- Rai, A.; Patwardhan, R.S.; Jayakumar, S.; Pachpatil, P.; Das, D.; Panigrahi, G.C.; Gota, V.; Patwardhan, S.; Sandur, S.K. Clobetasol propionate, a Nrf-2 inhibitor, sensitizes human lung cancer cells to radiation-induced killing via mitochondrial ROS-dependent ferroptosis. Acta Pharmacol. Sin. 2024, 45, 1506–1519. [Google Scholar] [CrossRef]
- Saha, P.; Jain, S.; Mukherjee, I.; Panda, S.R.; Zeki, A.A.; Naidu, V.; Sharma, P. The effects of dual IQOS and cigarette smoke exposure on airway epithelial cells: implications for lung health and respiratory disease pathogenesis. ERJ Open Res. 2023, 9, 00558–2022. [Google Scholar] [CrossRef]
- Decker, S.T.; Matias, A.A.; Cuadra, A.E.; Bannon, S.T.; Madden, J.P.; Erol, M.E.; Serviente, C.; Fenelon, K.; Layec, G. Tissue-specific mitochondrial toxicity of cigarette smoke concentrate: consequence to oxidative phosphorylation. Am. J. Physiol. Circ. Physiol. 2023, 325, H1088–H1098. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Huang, Q.; Kang, T.; Shen, S.; Cao, C.; Wu, J. An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages. Biol. Direct 2025, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- MG53 Deficiency Mediated Skeletal Muscle Dysfunction In Chronic Obstructive Pulmonary Disease Via Impairing Mitochondrial Fission. - SCWD [Internet]. [cited 2025 Aug 8]. Available from: https://society-scwd.org/mg53-deficiency-mediated-skeletal-muscle-dysfunction-in-chronic-obstructive-pulmonary-disease-via-impairing-mitochondrial-fission/.
- Abdellaoui, A.; Gouzi, F.; Notarnicola, C.; Bourret, A.; Suc, A.; Laoudj-Chenivesse, D.; Héraud, N.; Mercier, J.; Préfaut, C.; Hayot, M.; et al. Mitochondrial Dysfunction and Defects in Mitochondrial Adaptation to Exercise Training in the Muscle of Patients With COPD: Disease Versus Disuse. Acta Physiol. 2025, 241, e70079. [Google Scholar] [CrossRef]
- mLumiOpto Is a Mitochondrial-Targeted Gene Therapy for Treating Cancer | Cancer Research | American Association for Cancer Research [Internet]. [cited 2025 Aug 8]. Available from: https://aacrjournals.org/cancerres/article/84/23/4049/750183/mLumiOpto-Is-a-Mitochondrial-Targeted-Gene-Therapy.
- Wijngaarden, J.E.; Slebe, M.; Pouw, J.E.E.; Oprea-Lager, D.E.; Schuit, R.C.; Dickhoff, C.; Levi, J.; Windhorst, A.D.; Oordt, C.W.M.-V.d.H.v.; Thiele, A.; et al. Pharmacokinetic analysis and simplified uptake measures for tumour lesion [18F]F-AraG PET imaging in patients with non-small cell lung cancer. Eur. J. Nucl. Med. 2025, 52, 719–729. [Google Scholar] [CrossRef]
- Han, M.; Bushong, E.A.; Segawa, M.; Tiard, A.; Wong, A.; Brady, M.R.; Momcilovic, M.; Wolf, D.M.; Zhang, R.; Petcherski, A.; et al. Spatial mapping of mitochondrial networks and bioenergetics in lung cancer. Nature 2023, 615, 712–719. [Google Scholar] [CrossRef]
- Chen Y, Guo X, Zeng Y, Mo X, Hong S, He H, et al. Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci Rep. 2023 Sept 19;13(1):15515.
- Zhang, H.; Chen, L.; Li, J.; Sun, J.; Zhao, Q.; Wang, S.; Li, G. STAT3 phosphorylation at Tyr705 affects DRP1 (dynamin-related protein 1) controlled-mitochondrial fission during the development of apoptotic-resistance in pulmonary arterial endothelial cells. Genes Genom. 2024, 46, 751–762. [Google Scholar] [CrossRef]
- Tong, Z.; Du, X.; Zhou, Y.; Jing, F.; Ma, J.; Feng, Y.; Lou, S.; Wang, Q.; Dong, Z. Drp1-mediated mitochondrial fission promotes pulmonary fibrosis progression through the regulation of lipid metabolic reprogramming by ROS/HIF-1α. Cell. Signal. 2024, 117, 111075. [Google Scholar] [CrossRef]
- Sun, Z.; Ji, Z.; Meng, H.; He, W.; Li, B.; Pan, X.; Zhou, Y.; Yu, G. Lactate facilitated mitochondrial fission-derived ROS to promote pulmonary fibrosis via ERK/DRP-1 signaling. J. Transl. Med. 2024, 22, 479. [Google Scholar] [CrossRef]
- Cai, X.; Ng, C.P.; Jones, O.; Fung, T.S.; Ryu, K.W.; Li, D.; Thompson, C.B. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol. Cell 2023, 83, 3904–3920.e7. [Google Scholar] [CrossRef] [PubMed]
- Kidwell CU, Casalini JR, Pradeep S, Scherer SD, Greiner D, Bayik D, et al. Transferred mitochondria accumulate reactive oxygen species, promoting proliferation. Finley LW, Kornmann B, editors. eLife. 2023 Mar 6;12:e85494.
- Jackson, M.V.; Morrison, T.J.; Doherty, D.F.; McAuley, D.F.; Matthay, M.A.; Kissenpfennig, A.; O'Kane, C.M.; Krasnodembskaya, A.D. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. STEM CELLS 2016, 34, 2210–2223. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Zaragoza, L.D.; Dahal, D.; Koschel, M.; Boshnakovska, A.; Zheenbekova, A.; Yilmaz, M.; Morgenstern, M.; Dohrke, J.-N.; Bender, J.; Valpadashi, A.; et al. Silencing mitochondrial gene expression in living cells. Science 2025, 389, eadr3498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, W.-J.; Chen, S.-Q.; Chen, Z.; Zhang, C.; Ying, R.; Liu, H.-B.; Chen, L.-W.; Tang, Y.-H.; Lu, Z.-Q.; et al. Mutual promotion of mitochondrial fission and oxidative stress contributes to mitochondrial-DNA-mediated inflammation and epithelial-mesenchymal transition in paraquat-induced pulmonary fibrosis. World J. Emerg. Med. 2023, 14, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhang, L.; Sun, Y.; Ma, Y.; Zhang, Y. Alveolar epithelial cell dysfunction and epithelial-mesenchymal transition in pulmonary fibrosis pathogenesis. Front. Mol. Biosci. 2025, 12, 1564176. [Google Scholar] [CrossRef]
- Ma, A.; Feng, Z.; Li, Y.; Wu, Q.; Xiong, H.; Dong, M.; Cheng, J.; Wang, Z.; Yang, J.; Kang, Y. Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome. Respir. Res. 2023, 24, 154. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, W.; Zhou, Y.; Zhao, K.; Kuang, J.; Liu, X.; Li, G.; Xi, Y. Engineered mitochondrial ROS scavenger nanocomplex to enhance lung biodistribution and reduce inflammation for the treatment of ARDS. Adv. Compos. Hybrid Mater. 2024, 7, 194. [Google Scholar] [CrossRef]
- Lu, P.; Li, X.; Wang, J.; Li, X.; Shen, Z.; Qi, Y.; Chu, M.; Yao, X.; Zhang, X.; Zheng, Y.; et al. Circulating Mitochondrial N-Formyl Peptides Are Associated with Acute Respiratory Distress Syndrome after Cardiopulmonary Bypass and Regulate Endothelial Barrier through FPR2. Am. J. Respir. Cell Mol. Biol. 2025, 72, 533–550. [Google Scholar] [CrossRef]
- Alipanah-Lechner, N.; Neyton, L.; Mick, E.; Willmore, A.; Leligdowicz, A.; Contrepois, K.; Jauregui, A.; Zhuo, H.; Hendrickson, C.; Gomez, A.; et al. Plasma metabolic profiling implicates dysregulated lipid metabolism and glycolytic shift in hyperinflammatory ARDS. Am. J. Physiol. Cell. Mol. Physiol. 2023, 324, L297–L306. [Google Scholar] [CrossRef]
- Shrestha, J.; Paudel, K.R.; Nazari, H.; Dharwal, V.; Bazaz, S.R.; Johansen, M.D.; Dua, K.; Hansbro, P.M.; Warkiani, M.E. Advanced models for respiratory disease and drug studies. Med. Res. Rev. 2023, 43, 1470–1503. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, X.; Hochrein, S.M.; Eckstein, M.; Gubert, G.F.; Knöpper, K.; Mansilla, A.M.; Öner, A.; Doucet-Ladevèze, R.; Schmitz, W.; et al. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat. Commun. 2023, 14, 6858. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.; Guo, Z.; Ren, H.; Hu, W.; Yao, Q.; Huo, Y.; Qi, Y.; Huang, K. Mechanical Stress Induced NOX2 Promotes Endothelial Dysfunction in Ventilator-Induced Lung Injury: Potential Treatment with Quercetin. Adv. Sci. 2025, 12, e2502639. [Google Scholar] [CrossRef]
- Deng, Z.; Gao, Y.; Nguyen, T.; Chai, J.; Wu, J.; Li, J.; Abdel-Rahman, M.A.; Xu, X.; Chen, X. The Potent Antitumor Activity of Smp43 against Non-Small-Cell Lung Cancer A549 Cells via Inducing Membranolysis and Mitochondrial Dysfunction. Toxins 2023, 15, 347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cui, Y.; Zhou, G.; Zhang, Z.; Zhang, P. Leveraging mitochondrial-programmed cell death dynamics to enhance prognostic accuracy and immunotherapy efficacy in lung adenocarcinoma. J. Immunother. Cancer 2024, 12, e010008. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Wang, L.; Liu, Y.; Wang, W.; Chen, J.; Liang, H.; Chen, Y.Q.; Zhu, S. FFAR4 activation inhibits lung adenocarcinoma via blocking respiratory chain complex assembly associated mitochondrial metabolism. Cell. Mol. Biol. Lett. 2024, 29, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Xu, Y.; Huang, Y.; Ye, G.; Luo, L.; Song, Z. Comprehensive genomic profiling of Chinese lung cancer characterizes germline-somatic mutation interactions influencing cancer risk. J. Transl. Med. 2025, 23, 199. [Google Scholar] [CrossRef]
- Ghosh, M.; Lingaraju, S.M.; C. R, K.; Balaram, G.; Kodandapani, R.; E, V.; K, V.; N, S.; H, D.; Patil, S.; et al. Comprehensive genomic profiling reveals a unique genomic landscape in solid tumors in an Indian cancer cohort of 1000 patients: a single institutional experience. Sci. Rep. 2025, 15, 12455. [Google Scholar] [CrossRef]
- Reuss, J.E.; Zaemes, J.; Gandhi, N.; Walker, P.; Patel, S.P.; Xiu, J.; Aggarwal, C.; Vanderwalde, A.; Ramalingam, S.S.; Halmos, B.; et al. Comprehensive molecular profiling of squamous non-small cell lung cancer reveals high incidence of actionable genomic alterations among patients with no history of smoking. Lung Cancer 2025, 200, 108101. [Google Scholar] [CrossRef]
- Kim, S.; Yang, K.; Kim, K.; Kim, H.J.; Kim, D.Y.; Chae, J.; Ahn, Y.-H.; Kang, J.L. The interplay of cancer-associated fibroblasts and apoptotic cancer cells suppresses lung cancer cell growth through WISP-1-integrin ανβ3-STAT1 signaling pathway. Cell Commun. Signal. 2025, 23, 98. [Google Scholar] [CrossRef]
- Lior, C.; Barki, D.; Halperin, C.; Iacobuzio-Donahue, C.A.; Kelsen, D.; Shouval, R.S. Mapping the tumor stress network reveals dynamic shifts in the stromal oxidative stress response. Cell Rep. 2024, 43, 114236. [Google Scholar] [CrossRef]
- Discovery and Preclinical Pharmacology of NX-2127, an Orally Bioavailable Degrader of Bruton’s Tyrosine Kinase with Immunomodulatory Activity for the Treatment of Patients with B Cell Malignancies. Journal of Medicinal Chemistry. 2024 Feb 22;67(4):2321–36.
- Ren, X.; Shi, P.; Su, J.; Wei, T.; Li, J.; Hu, Y.; Wu, C. Loss of Myo19 increases metastasis by enhancing microenvironmental ROS gradient and chemotaxis. Embo Rep. 2024, 25, 971–990. [Google Scholar] [CrossRef]
- Lee, C.; Park, S.; Yoon, S.K. Genetic mutations affecting mitochondrial function in cancer drug resistance. Genes Genom. 2023, 45, 261–270. [Google Scholar] [CrossRef]
- Xu Y, Yang Y, Wang Y, Su J, Chan T, Zhou J, et al. Molecular fingerprints of nuclear genome and mitochondrial genome for early diagnosis of lung adenocarcinoma. Journal of Translational Medicine. 2023 Apr 10;21(1):250.
| Disease | Keyword Used | Initial Hits | Screened1 |
| Asthma | “mitochondrial dysfunction” AND “asthma” | 903 | 90 |
| COPD | “mitochondria” AND “COPD” OR “chronic obstructive pulmonary disorder” | 503 | 65 |
| IPF | “mitochondrial ROS” AND “IPF” OR “idiopathic pulmonary fibrosis” | 125 | 43 |
| ARDS | “mitochondria” AND “ARDS” OR “acute respiratory distress syndrome” | 253 | 58 |
| Lung cancer | “mitochondrial dysfunction” AND “lung cancer” OR “small cell lung cancer” OR “NSCLC” | 2,208 | 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
