Submitted:
04 August 2025
Posted:
05 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Study Setting
2.2.1. Sampling of Diarrheic Calves
2.2.2. Experimental Design
2.3. Isolation of Test Organism
2.4. Identification and Collection of the Plant Materials
2.5. Crude Extract Preparation
2.6. Phytochemical Screening
2.7. Antibacterial Activity Assay of Crude Extracts
2.7.1. Inoculum Standardization
2.7.2. Agar Disc Diffusion
2.7.3. Minimum Inhibitory Concentration
2.7.4. Minimum Bactericidal Concentration of Crude Extracts
2.8. Data Analysis
3. Results
3.1. Inhibition of Microbial Growth
3.2. Minimum Inhibitory Concentration
3.3. Minimum Bactericidal Concentration
3.4. Phytochemical constituents and characteristics of the crude extracts
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Authors Declaration
Availability Of Data
Ethics Approval and Consent to Participate
Acknowledgements
Conflict of Interest
References
- Berchtold, J. F.; & Constable, P. D. F.; & Constable, P. D. Antibiotic Treatment of Diarrhea in Preweaned Calves. Food Animal Practice 2009, 520–525. [Google Scholar] [CrossRef]
- Rajat, S.; Amit, K. V.; Amit, K.; Arbind, S.; Aditya, K.; & Afroz, T. K. Prevalence and Antimicrobial Resistance of Klebsiella species Associated with Bovine Diarrhea. In Biol. Forum Inter. J. 2022, 14, 581–585. [Google Scholar]
- Bernal-Córdoba, C.; Branco-Lopes, R.; Alonso-López, Y.; Minjee-Lee, C.; Pérez-Solano, D.; Fausak, E. D.; V Pereira, R.; & Silva-Del-Río, N. Antimicrobial drugs used in the prevention and control of protozoal and bacterial calf diarrhea: A scoping review. Preventive veterinary medicine 2025, 241, 106543. [Google Scholar] [CrossRef]
- Rima, A.; Moghnieh, J.A.; Moussa, M. A.; Aziz Ghassan, M. ; Matar. Phenotypic and Genotypic Characterization of Cephalosporin-, Carbapenem, and Colistin-Resistant Gram-Negative Bacterial Pathogens in Lebanon, Jordan, and Iraq. Journal of Global Antimicrobial Resistance 2021.
- Ababu, A.; Endashaw, D.; Fesseha, H. Isolation and Antimicrobial Susceptibility Profile of Escherichia Coli O157 : H7 from Raw Milk of Dairy Cattle in Holeta District, Central Ethiopia. International Journal of Microbiology 2020, 1–8. [Google Scholar] [CrossRef]
- Hailu, S. Isolation, Identification and Antibiotic Susceptibility of E.coli from Diarrheic Calves in and Around Holeta Town, Central Ethiopia. J Vet Med Res 2020, 7, 1197. [Google Scholar]
- Minda Asfaw, G. , & Shimelis, R. E. coli O15: H7 from food of animal origin in Arsi: Occurrence at catering establishments and antimicrobial susceptibility profile. The Scientific World Journal.
- Fesseha, H.; Mathewos, M.; Aliye, S.; & Mekonnen, E. Isolation and antibiogram of E. coli O157: H7 from diarrhoeic calves in urban and peri-urban dairy farms of Hawassa town. Veterinary medicine and science 2022, 8, 864–876. [CrossRef]
- Wale, Y.; & Kassa, T. Antimicrobial susceptibility pattern of E. coli isolated from dairy calves with diarrhoea in Akaki Kality, Addis Ababa, Ethiopia. Journal of Applied Animal Research 2023, 51, 470–476. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M. Public health risk of antimicrobial resistance transfers from companion animals. Antimicrobial Agents Chemotherapy 2017, 72, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Belete, M.A.; Demlie, T.B.; Chekole, W.S.; Sisay Tessema, T. Molecular identification of diarrheagenic E. coli pathotypes and their antibiotic resistance patterns among diarrheic children and in contact calves in Bahir Dar city, Northwest Ethiopia. PLoS ONE 2022, 17, e0275229. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Abreu, A. C.; Dias, C.; Saavedra, M. J.; Borges, F.; & Simões, M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules (Basel, Switzerland) 2016, 21, 877. [Google Scholar] [CrossRef]
- Khameneh, B.; Eskin, N. A. M.; Iranshahy, M.; & Fazly Bazzaz, B. S. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef]
- Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401–409. [Google Scholar] [CrossRef]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, P. K.; & Kumar, V. Evidence based traditional anti-diarrheal medicinal plants and their phytocompounds. Biomedicine & pharmacotherapy 2017, 96, 1453–1464. [Google Scholar] [CrossRef]
- Oda, B.K.; Lulekal, E.; Warkineh, B.; Asfaw, Z.; & Debella, A. K.; Lulekal, E.; Warkineh, B.; Asfaw, Z.; & Debella, A. Ethnoveterinary medicinal plants and their utilization by indigenous and local communities of Dugda District, Central Rift Valley, Ethiopia. J Ethnobiology Ethnomedicine 2024, 20, 32. [Google Scholar] [CrossRef]
- Plaatjie, M. T. A.; Onyiche, T. E.; Ramatla, T.; Bezuidenhout, J. J.; Legoabe, L.; Nyembe, N. I.; & Thekisoe, O. A.; Onyiche, T. E.; Ramatla, T.; Bezuidenhout, J. J.; Legoabe, L.; Nyembe, N. I.; & Thekisoe, O. A scoping review on efficacy and safety of medicinal plants used for the treatment of diarrhea in sub-Saharan Africa. Tropical medicine and health 2024, 52, 6. [Google Scholar] [CrossRef] [PubMed]
- Sisay, M.; Bussa, N.; Gashaw, T.; & Mengistu, G. Investigating In Vitro Antibacterial Activities of Medicinal Plants Having Folkloric Repute in Ethiopian Traditional Medicine. Journal of evidence-based integrative medicine 2019, 24, 2515690X19886276. [Google Scholar] [CrossRef]
- Manilal, A.; Sabu, K. R.; Shewangizaw, M.; Aklilu, A.; Seid, M.; Merdikios, B.; & Tsegaye, B. In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon 2020, 6, e03303. [Google Scholar] [CrossRef]
- Gadisa, E.; & Tadesse, E. Antimicrobial activity of medicinal plants used for urinary tract infections in pastoralist community in Ethiopia. BMC complementary medicine and Therapies 2021, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammadi Ghezelghaye, P.; Alibegli, M.; Fazelnejad, A.; Davoodi, A.; & Goli, H. R. Antibacterial activity of tannin-free ethanolic extracts from medicinal plants against methicillin-resistant Staphylococcus aureus. BMC Complement Med Ther 2025, 25, 271. [Google Scholar] [CrossRef]
- Ayrle, H.; Mevissen, M.; Kaske, M. Nathues, H, Gruetzner, N.; Melzig, M.; and Walkenhorst, M. Medicinal plants prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets. A systematic review. BMC Veterinary Research 2016. [Google Scholar] [CrossRef] [PubMed]
- Zuo, GY.; Yang, CX.; Ruan, ZJ.; et al. Potent anti-MRSA activity and synergism with aminoglycosides by flavonoid derivatives from the root barks of Morus alba, a traditional Chinese medicine. Med Chem Res. 2019, 28, 1547–1556. [Google Scholar] [CrossRef]
- Gupta, R.; & Sharma, S. Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. The Indian journal of medical research 2022, 156, 464–477. [Google Scholar] [CrossRef]
- Gonçalves, A.S.C.; Leitão, M.M.; Simões, M.; Borges, A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023, 40, 595–627. [Google Scholar] [CrossRef]
- Salmer, E.; Garrido-cardenas, J. A.; and Manzano-agugliaro, F. Worldwide Research Trends on Medicinal Plants. International Journal of Environmental Research and Public Health 2020, 17, 3376. [Google Scholar] [CrossRef] [PubMed]
- Galav, P.; Jain, A.; and Katewa, S. S. Traditional veterinary medicines used by livestock owners of Rajasthan, India. Indian Journal Traditional Knowledge 2013, 12, 47–55. [Google Scholar]
- Belay, H.; and Wondimu, T. Functional food plants in Debre Markos district, East Gojjam, Ethiopia. Asian Journal of Ethnobiology 2019, 2, 8–21. [Google Scholar] [CrossRef]
- Oyda, S. Review On Traditional Ethnoveterinary Medicine and Medicinal Plants Used by Indigenous People in Ethiopia: Practice and Application System. International Journal of Research-Granthaalayah 2017, 5, 109–119. [Google Scholar] [CrossRef]
- WHOGRTCM (World Health Organization Global Report on Traditional and Complementary Medicine). Geneva, Switzerland: World Health Organization. 2019.
- Gebremedhin, G.; Shewit, D.; Samson, S.; Shewit, D. ; Samson, S. An ethno-veterinary survey of medicinal plants in Woredas of Tigray region, Northern Ethiopia. International Journal of Biodiversity 2013, 1, 120–132. [Google Scholar]
- Kebede, T.; Gadisa, E.; & Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLOS One 2021, 16, e0249253. [Google Scholar] [CrossRef]
- Ashraf, M. V.; Pant, S.; Khan, M. A. H.; Shah, A. A.; Siddiqui, S.; Jeridi, M.; Alhamdi, H. W. S.; & Ahmad, S. V.; Pant, S.; Khan, M. A. H.; Shah, A. A.; Siddiqui, S.; Jeridi, M.; Alhamdi, H. W. S.; & Ahmad, S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals (Basel, Switzerland) 2023, 16, 881. [Google Scholar] [CrossRef]
- Jia, D.; Arbab, S.; Ullah, H.; Alzahrani, K. J.; Alzahrani, F. M.; Alsharif, K. F.; Zhang, J.; & Li, K. Antibacterial Activity of Traditional Medicinal Plants: Combating Antibiotics Resistance in Animal Wound Infections. Veterinary Medicine and Science 2025, 11, e70361. [Google Scholar] [CrossRef] [PubMed]
- Palombo, E.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytotherapy Research 2006, 20, 717–724. [Google Scholar] [CrossRef]
- Adedapo, A.A.; Jimoh, F.O.; Koduru, S.; Afolayan, A.J.; and Masika, P.J. A.; Jimoh, F.O.; Koduru, S.; Afolayan, A.J.; and Masika, P.J. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of Calpurnia aurea. BMC Complementary and Alternative Medicine 2008, 8, 8–53. [Google Scholar] [CrossRef]
- Umer, S.; Tekewe, A.; and Kebede, N. Antidiarrheal and antimicrobial activity of Calpurnia aurea leaf extract. BMC Complementary and Alternative Medicine 2013, 13. [Google Scholar] [CrossRef]
- Voukeng, I.K.; Beng, V.P.; and Kuete, V. K.; Beng, V.P.; and Kuete, V. Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug resistant phenotypes. BMC Complementary and Alternative Medicine 2016, 16, 388. [Google Scholar] [CrossRef]
- Wasihun, Y.; Alekaw Habteweld, H.; & Dires Ayenew, K. Antibacterial activity and phytochemical components of leaf extract of Calpurnia aurea. Scientific Reports 2023, 13, 9767. [Google Scholar] [CrossRef]
- Djouahri, A.; Boualem, S.; Boudarene, L.; & Baaliouamer, A. Geographic's variation impact on chemical composition, antioxidant and anti-inflammatory activities of essential oils from wood and leaves of Tetraclinis articulata (Vahl) Masters. Industrial Crops and Products 2015, 63, 138–146. [Google Scholar] [CrossRef]
- Oncho, D.A.; Ejigu, M.C. A.; Ejigu, M.C. & Urgessa, O.E. Phytochemical constituent and antimicrobial properties of guava extracts of east Hararghe of Oromia, Ethiopia. Clin Phytosci. 2021, 7, 37. [Google Scholar] [CrossRef]
- JWLRDO (Jarso Woreda Livestock Resource Development Office). Reports of Jarso Woreda Livestock Resource Development Office 2021.
- Quinn, P. J.; Markey, B. K.; Leonard, F. C.; FitzPatrick, E. S.; Fanning, S.; and Hartigan, P. J. Veterinary Microbiology and Microbial Disease Second edition. Oxford, Wiley-Blackwell. 2011. pp. 912.
- ISO 6579-1:2017. Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella Part 1: Detection of Salmonella spp. International Organization for Standardization, Geneva.
- Bauer, A.W.; Kirby W., M.; Sherris J., C. W.; Kirby W. M.; Sherris J. C.; and Turck. M.; Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Parekh, J.; Chanda, S.V. In vitro Antimicrobial Activity and Phytochemical Analysis of Some Indian Medicinal Plants. Turkey Journal of Biology 2007, 31, 53–58. [Google Scholar]
- Trease, G.E.; and Evans, W.C. Pharmacognosy, W. B. Scandars, London. Bailliere Tindall, 1989. pp. 45–50.
- Sofowora, A. Medicinal Plants and Traditional Medicines in Africa, Spectrum Books Ltd.; Sunshine House, Ibadan, Nigeria. 1993.
- CLSI (Clinical Laboratory and Standard Institute). M100 performance standards for antimicrobial susceptibility testing, CLSI, Wayne, USA, 30th edition. 2020.
- Mummed, B.; Abraha, A.; Assefa, S.; Feyera, T.; and Nigusse, A. In Vitro Antibacterial Activity of Selected Medicinal Plants in the Traditional Treatment of Skin and Wound Infections in Eastern Ethiopia. BioMed Research International 2018, 1, 1862401. [Google Scholar] [CrossRef]
- Smulski, S.; Turlewicz-Podbielska, H.; Wylandowska, A.; and Włodarek, J. Non-antibiotic possibilities in prevention and treatment of calf diarrhoea. Journal of Veterinary Research 2020, 64, 119–126. [Google Scholar] [CrossRef]
- Nmema, E.E.; Oladimeji, A.O.; Akinmade, R.F. O.; Akinmade, R.F. and Akinnusi, P.O. Activities of leaves extracts of Vernonia amygdalina and Abrus precatorius against selected antibiotic resistant bacterial pathogens. Scientia Africana 2023, 22, 95–106. [Google Scholar] [CrossRef]
- Sa’idu, H.; Ahmad, H. I.; Olanrewaju, S. A.; & Mahmoud, A. B. Antibacterial Effect of Bitter Leave (Vernonia amygdalina) on K. pneumoniae. Journal of Biochemistry, Microbiology and Biotechnology 2020, 8, 16–20. [Google Scholar] [CrossRef]
- Ugwu, C.A.; Mbah-Omeje, C.C.; Ozochi, K.N. C.; Ozochi, K.N. Antibacterial Efficacy of Vernonia Amygdalina (Bitter Leaf) on Some Bacteria Isolated from Locally Produced Soymilk Sold in Different Markets in Enugu Metropolis. International Journal Of Innovative Research & Development 2023, 12, 13–20. [Google Scholar]
- Evbuomwan, L.; Chukwuka, E. P.; Obazenu, E. I.; & Ilevbare, L. Antibacterial activity of Vernonia amygdalina leaf extracts against multidrug-resistant bacterial isolates. Journal of applied sciences and environmental management 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Abike, T. O.; Debbie, O.; Olusola, O. C.; Modupe, A. O.; Boyede, D.; and A, O. A. O.; Debbie, O.; Olusola, O. C.; Modupe, A. O.; Boyede, D.; and A, O. A. Antibacterial Efficacy of Vernonia Amygdalina Against Bacteria Strains Recovered from Hospital Fomites, Nigeria. Current Trends on Biotechnology & Microbiology 2020, 2, 381–388. [Google Scholar]
- Adetunde, L. A.; Ninkuu, V.; Sacky, I. A.; Ninkuu, V.; Sacky, I. Evaluating the antimicrobial potency of crude extracts of Psidium guajava bark, leaves of Vernonia amygdalina, Carica papaya and whole plant of Phyllanthus niruri against specific pathogenic bacteria. J. Bacteriol. Res. 2017, 9, 15–20. [Google Scholar] [CrossRef]
- Ugochi, U. J.; Obinna, A. C.; Emeka, E. A.; Oluchi, A. E.; Makeri, D.; Theophilus, P.; & Agwu, E. J.; Obinna, A. C.; Emeka, E. A.; Oluchi, A. E.; Makeri, D.; Theophilus, P.; & Agwu, E. Therapeutic potential of Chromolaena odorata, Vernonia amygdalina, and Cymbopogon citratus against pathogenic Bacteria. Scientific Reports 2025, 15, 217. [Google Scholar] [CrossRef]
- Jarmai, Adamu Hassan, Abdullahi Mohammed Sheikh, ThankGod E. Onyiche, Harun Yunus, Mustapha Abba Aji, and Sadiya Mohammed Umar. Antimicrobial Activity and Phytochemical Screening of Methanolic Leaf Extract of Vernonia Amygdalina. South Asian Journal of Research in Microbiology 2022, 14, 23–35. [CrossRef]
- Adebayo, O. L.; James, A.; Kasim, S. B. L.; James, A.; Kasim, S. B. and Jagri, O. P. Leaf Extracts of Vernonia amygdalina Del. from Northern Ghana Contain Bioactive Agents that Inhibit the Growth of Some Beta-lactamase Producing Bacteria in vitro. Journal of Pharmaceutical Research International 2013, 4, 192–202. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.; & Usman, H. D. Antibacterial Activity of Vernonia Amygdalina (Bitter Leaf) Extracts against Clinical Isolates of Salmonella Species. UMYU Journal of Microbiology Research 2024, 9, 308–314. [Google Scholar]
- Magaji, A.; Mahmud, Z.; & Mustafa, A. Phytochemical analysis and assessment of antibacterial efficacy of Vernonia amygdalina (Bitter Leaf) against some selected clinical bacterial isolates. UMYU Journal of Microbiology Research 2023, 8, 174–180. [Google Scholar] [CrossRef]
- Assefa, A.; Belay, S.; & Kloos, H. Evaluation of in-vitro antibacterial activity of extracts of Calpurina aurea, Vernonia amygdalina and Rumex nepalensis in Goba district, southeastern Ethiopia. Egyptian Journal of Basic and Applied Sciences 2024, 11, 69–83. [Google Scholar] [CrossRef]
- Zubairu, A.Y.; Mukhtar, M.; Saidu, I.; Ibrahim, Z.; Isah, S.; Garga, M.A. Y.; Mukhtar, M.; Saidu, I.; Ibrahim, Z.; Isah, S.; Garga, M.A. and Kebbi, H.S. Antibacterial activity of methanolic extract of bitter leaf (Vernonia amygdalina) from various component fractions using column chromatography. GSC Biological and Pharmaceutical Sciences 2019, 7, 16–21. [Google Scholar] [CrossRef]
- Noumedem. J.A.K.; Mihasan, M.; Kuiate, J.R.; Stefan, M.; Cojocaru, D. In Vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species. BMC Complementary and Alternative Medicine 2013, 13, 19. [Google Scholar]
- Demeke, D.; Mastewal, B.; Amebaye, K.; and Muluken, Y. Assessments of Antibacterial Effects of Aqueous-Ethanol Extracts of Sida rhombifolia’s Aerial Part. The Scientific World Journal 2018, 1, 8429809. [Google Scholar]
- Mulatu, G. Antibacterial Activities of Calpurnia aurea against Selected Animal Pathogenic Bacterial Strains. Advances in pharmacological and pharmaceutical sciences 2020, 8840468. [Google Scholar] [CrossRef] [PubMed]
- Abise, Z. Antibacterial Activity of the Extracts of the Leaves and Stem Barks of Calpurnia aurea Against Selected Human Pathogenic Bacteria. MSc. Thesis, Adama University, Adama, Ethiopia. 2020. [Google Scholar]
- Tanver, A.; Peng, M.; Hongxin, G. Anti-quorum sensing and anti-biofilm activity of Amomumtsaoko on foodborne pathogens. Saudi Journal of Biological Sciences 2017, 24, 3–12. [Google Scholar]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; and Iranshahi, M. Antibacterial activity of flavonoids and their structure activity relationship: An update review. Phytotherapy Research. 2019, 33, 13–40. [Google Scholar] [CrossRef]
- Achika, J. I.; Ayo, R. G.; Oyewale, A. O.; and Habila, J. D. I.; Ayo, R. G.; Oyewale, A. O.; and Habila, J. D. Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon 2020, e03381. [Google Scholar] [CrossRef] [PubMed]
- Alhadi, E.A.; Khalid, H.S.; Alhassan, M.S.; Kabbashi, A.S.; and Noor, M.O. A.; Khalid, H.S.; Alhassan, M.S.; Kabbashi, A.S.; and Noor, M.O. Antimicrobial and phytochemical screening of Cordia Africana in Sudan. World Journal of Pharmacy Research 2015, 4, 257–269. [Google Scholar]
- Isa, A. I.; Saleh, M. I. A.; Abubakar, A.; Dzoyem, J. P.; Adebayo, S. A.; Musa, I.; & Daru, P. A. I.; Saleh, M. I. A.; Abubakar, A.; Dzoyem, J. P.; Adebayo, S. A.; Musa, I.; & Daru, P. A. Evaluation of anti-inflammatory, antibacterial and cytotoxic activities of Cordia africana leaf and stem bark extracts. Bayero Journal of Pure and Applied Sciences 2016, 9, 228–235. [Google Scholar]
- Wagay Sendeku, Bewekete Alefew, Dejenie Mengiste, Kassahun Seifu, Shito Girma, Elsabet Wondimu. Antibacterial activity of croton macrostachyus against some selected pathogenic bacteria. Biotechnology International 2015, 8, 11–20. [Google Scholar]
- Jackie, K.; Obey A., W.; Jimmy, O.; Jussi, K.; Carina, T.K. Antimicrobial Activity of Croton macrostachyus Stem Bark Extracts against Several Human Pathogenic Bacteria. Hindawi Publishing Corporation Journal of Pathogens 2016, 2, 516–522. [Google Scholar]
- Bimakr, M. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bio Product Process 2010, 1, 6. [Google Scholar] [CrossRef]
- Wagate, G. Cyrus; Gakuya, W. Daniel; Mark, O. Nanyingi; Francis, K. Njonge; James M Mbaria. Antibacterial and cytotoxic activity of Kenyan medicinal plants. Memorials do Institute Oswaldo Cruz, Rio de Janeiro 2008, 103, 650–652. [Google Scholar]
- Alemu, A.; Mathewos, A.; Desta, E.; Ashenafi, K.; Gewado, A.; Kagnuro, G. In-vitro and In-vivo antibacterial activities of Croton macrostachyus methanol extract against E. coli and Staphylococcus aureus. Advanced Animal Veterinary Science 2017, 5, 107–14. [Google Scholar]
- Kiristos, T. G.; Mengesha, Z. T.; Kebede, A.; and Chaithanya, K. K. G.; Mengesha, Z. T.; Kebede, A.; and Chaithanya, K. K. Phytochemical screening and evaluation of antibacterial activities of Croton macrostachyus stem bark extracts. Drug Invention Today 2018, 10, 2727–2733. [Google Scholar]
- Millogo-Kone, H.; Guissou, I. P.; Nacoulma, O.; & Traore, A. S. Comparative study of leaf and stem bark extracts of Parkia biglobosa against enterobacteria. African journal of traditional, complementary, and alternative medicines: AJTCAM 2008, 5, 238–243. AJTCAM 2008, 5, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. JARMAR 2015, 2, 113. [Google Scholar] [CrossRef]
- Touzout, S. N.; Merghni, A.; Laouani, A.; Boukhibar, H.; Alenazy, R.; Alobaid, A.; Alenazy, M.; Ben-Attia, M.; Saguem, K.; & El-Bok, S. N.; Merghni, A.; Laouani, A.; Boukhibar, H.; Alenazy, R.; Alobaid, A.; Alenazy, M.; Ben-Attia, M.; Saguem, K.; & El-Bok, S. Antibacterial Properties of Methanolic Leaf Extracts of Melia azedarach L. against Gram-Positive and Gram-Negative Pathogenic Bacteria. Microorganisms 2023, 11, 2062. [Google Scholar] [CrossRef]
- Obat, R.; Shiundu, M.; Gikaru, R.; Bett, C.; & Ouma, S. E. coli. African Journal of Pharmacy and Alternative Medicine 2023, 1, 12–20. [Google Scholar] [CrossRef]
- Al-Khafaji, N. J.; Al-Zubaedi, R. M.; & Al-Azawi, S. J. J.; Al-Zubaedi, R. M.; & Al-Azawi, S. J. Evaluation of antibacterial effects of melia azedarach fruit extracts against some isolated pathogenic bacteria. Veterinary Science Development 2016, 6. [Google Scholar] [CrossRef]
- Deb, K.; Kaur, A.; Ambwani, S.; and Ambwani, T. K. Preliminary phytochemical analyses of hydromethanolic leaf extract of Melia azedarach L. Journal of Medicinal Plants Study 2018, 6, 4–8. [Google Scholar]
- Amak, K.; Meno, Y.; Takade, A. Fine Structures of the Capsules of K. pneumoniae and E. coli K1. J Bacteriol. 1988, 170, 4960–4962. [Google Scholar] [CrossRef]
- Schembri, M. A.; Blom, J.; Krogfelt, K. A.; and Klemm, P. A. ; Blom, J.; Krogfelt, K. A.; and Klemm, P. Capsule and Fimbria Interaction in Klebsiella pneumonia. Infection and immunity 2005, 73, 4626–4633. [Google Scholar] [PubMed]
- Diago-Navarro, E.; Chen, L.; Passet, V.; Burack, S.; Ulacia-Hernando, A.; Kodiyanplakkal, R. P.; Levi, M. H.; Brisse, S.; Kreiswirth, B. N.; & Fries, B. C. Carbapenem-resistant K. pneumoniae exhibit variability in capsular polysaccharide and capsule-associated virulence traits. The Journal of Infectious Diseases 2014, 210, 803–813. [Google Scholar] [CrossRef]
- Paczosa MK, Mecsas J..K. pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 2016, 80. [CrossRef]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. 1999, 12. [Google Scholar] [CrossRef] [PubMed]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiology 2012, 7, 979–990. [Google Scholar] [CrossRef]
- Awolola, G.V.; Koorbanally, N.A.; Chenia, H.; Shode, F.O.; Baijnath, H. V.; Koorbanally, N.A.; Chenia, H.; Shode, F.O.; Baijnath, H. Antibacterial and Anti-Biofilm Activity of Flavonoids and Triterpenes Isolated from The Extracts of Ficus Sansibarica Warb. Subsp. Sansibarica (Moraceae) Extracts. African Journal of Traditional, Complementary and Alternative Medicine 2014, 11, 124. [Google Scholar] [CrossRef]
- Gorniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemicals. Review 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Megersa, A.; Dereje, B.; Adugna, M.; Ayalew Getahun, K.; & Birru, E. M. Evaluation of Anti-Diarrheal Activities of the 80% Methanol Extract and Solvent Fractions of Maesa lanceolata Forssk (Myrsinaceae) Leaves in Mice. Journal of Experimental Pharmacology 2023, 15, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; & Ren, L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Current medicinal chemistry 2015, 22, 132–149. [Google Scholar] [CrossRef]
- Zewdie, K.A.; Bhoumik, D.; Wondafrash, D.Z. A.; Bhoumik, D.; Wondafrash, D.Z. & Tuem, K. B. Evaluation of in-vivo antidiarrhoeal and in-vitro antibacterial activities of the root extract of Brucea antidysenterica J. F. Mill (Simaroubaceae). BMC complementary medicine and therapies 2020, 20, 201. [Google Scholar] [CrossRef]
| Group | Treatment | Concentration (mg/mL) |
| i | leave extract | 1000 (Original extract) |
| ii | leave extract | 780 |
| iii | leave extract | 390 |
| iv | leave extract | 195 |
| v | +ve control (Gentamicin 10 µg) | Not applicable |
| vi | -ve control (DMSO 99.2 %) | Not applicable |
| Scientific name | Local name | Family name | Parts used | Voucher No |
| Calpurnia aurea | Ceekaa | Polygonaceae | Leaf | HUHE0000009429 |
| Melia azedarach | Kiniinaa | Meliaceae | Leaf | HUHE00000010959 |
| Cordia africana | Waddeeysa | Boraginaceae | Leaf | HUHE0000002154 |
| Croton macrostachyus | Makkanniisa | Fabaceae | Leaf | HUHE0000006858 |
| Vernonia amygdaline | Eebichaa | Asteraceae | Leaf | HUHE0000005110 |
| Plants | Concentrations (mg/ml) | K. pneumonia | Salmonella | E. coli | |||
| Clinical | Standard | Clinical | Standard | Clinical | Standard | ||
| Calpurnia aurea | 1000 | 15.67±0.3b | 20.00±0.6a,b | 15.00±0.0f | 17.67±1.2b,f | 17.0 ±0.3 | 15.33±0.3 |
| 780 | 13.00±0.0c | 16.00±2.5c | 14.33±0.3cz | 15.67±0.3c | 14.5±0.3 | 15.33±0.3 | |
| 390 | 13.00±0.6d | 13.00±0.6d | 14.00±0.6d | 14.00±0.6d | 14.5±0.5d | 15.00±0.6d | |
| 195 | 11.00±0.0e | 11.67±0.3e | 13.00±0.0e | 12.67±0.3e | 13.0±0.3e | 13.33±0.3e | |
| Cordia africana | 1000 | 15.00±0.6b | 12.00±0.0 | 13.00±0.3f,g | 21.33±0.9b | 15.5±0.3 | 14.00±0.6 |
| 780 | 12.33±0.9c | 13.00±0.6c | 14.33±0.3d | 13.33±0.3c | 14.67±0.3 | 13.67±0.7 | |
| 390 | 12.33±1.2d | 12.00±0.6d | 14.00±0.3cz | 14.00±0.6d | 14.3±0.9d | 13.00±0.0d | |
| 195 | 11.00±0.0e | 11.00±0.0 | 12.00±0.3 | 12.33±0.3e | 13.67±0.3e | 12.00±0.0e | |
| Croton macrostachyus | 1000 | 14.33±0.3 | 13.00±0.6 | 15.00±0.0f | 15.00±0.0f | 16.67±0.3 | 15.00±0.0 |
| 780 | 12.00±0.0c | 12.67±0.3c | 14.00±0.6cz | 15.33±0.3c | 14.67±0.3 | 14.67±0.3 | |
| 390 | 11.67±0.3d | 12.00±0.6d | 15.33±0.3d | 15.00±0.6d | 15.00±0.6d | 14.00±0.0d | |
| 195 | 10.00±0.0e | 11.00±0.6e | 14.00±0.0e | 13.00±0.0e | 14.00±0.0e | 12.00±0.0e | |
| Melia azedarach | 1000 | 17.00±0.0ab | 15.33±0.3 | 14.33±0.3f,g | 19.67±0.3b | 15.67±0.3 | 15.33±0.3 |
| 780 | 13.00±0.0c | 13.00±0.0c | 13.33±0.3z | 15.00±0.0c | 15.00±0.0 | 14.00±0.0 | |
| 390 | 12.00±0.0d | 11.00±0.6d | 14.00±0.0d | 14.00±0.0d | 15.00±0.0d | 13.00±0.0d | |
| 195 | 10.33±0.3e | 10.00±0.0e | 12.00±0.0 | 12.00±0.0e | 13.00±0.0e | 12.00±0.0e | |
| Vernonia amygdaline | 1000 | 15.33±0.3b | 15.33±0.7 | 19.33±0.3ab | 20.00±1.2b | 21.33±0.9a,b | 21.0±1.2a,b |
| 780 | 13.00±0.0c | 12.00±0.3c | 15.00±0.0c | 14.67±0.3c | 19.00±2.0a,c | 19.00±1.5c | |
| 390 | 12.00±0.0d | 12.00±0.0d | 12.67±0.3 | 14.00±0.6d | 15.00±0.0d | 14.00±0.6d | |
| 195 | 10.00±0.0e | 10.00±0.0e | 12.00±0.0 | 11.00±0.0e | 13.00±0.0e | 13.00±0.0e | |
| Gentamycin | 10µ | 18.00±0.5a | 19.67±0.9a | 19.00±0.3a | 29.67±0.7a | 22.33±1.06a | 23.67±0.78a |
| The values are Mean ± S.E.M (n=3), mean values with different superscript letters differ significantly at P < 0.05, acomparison is between different concentrations of extracts to gentamicin, b,f,g comparison was made among plant extracts only for 1000 mg/ml, c, zcomparison was made among plant extracts only for 780 mg/ml, dcomparison was made among plant extracts only for 390 mg/ml, ecomparison was made among plant extracts only for 195 mg/ml, the negative control has shown no antibacterial activity. | |||||||
| Plants | K. pneumonia | Salmonella | E. coli | |||
| Clinical | Standard | Clinical | Standard | Clinical | Standard | |
| Vernonia Amygdaline | 12.18±0.00 | 12.18±0.00 | 48.75±0.00 | 24.38±0.00 | 6.09±0.00 | 6.09±0.00 |
| Calpurnia Aurea | 12.18±0.00 | 12.18±0.00 | 48.75±0.0 | 48.75±0.0 | 6.09±0.0 | 6.09±0.0 |
| Cordia Africana | 12.18±0.00 | 12.18±0.00 | 48.75±0.00 | 48.75±0.00 | 6.09±0.00 | 6.09±0.00 |
| Croton Macrostachyus | 12.18±0.00 | 12.18±0.00 | 48.75±0.00 | 48.75±0.00 | 6.09±0.00 | 6.09±0.00 |
| Melia Azedarach | 24.38±0.00 | 24.38±0.00 | 24.38±0.00 | 24.38±0.00 | 12.18±0.00 | 12.18±0.00 |
| The values are Mean ± S.E.M (n=3). | ||||||
| Plants | K. pneumonia | Salmonella | E. coli | |||
| Clinical | Standard | Clinical | Standard | Clinical | Standard | |
| Vernonia amygdaline | 24.38±0.00 | 24.38±0.00 | 48.75±0.00 | 48.75±0.00 | 12.18±0.00 | 12.18±0.00 |
| Calpurnia aurea | 24.38±0.00 | 24.38±0.00 | 97.5±0.00 | 97.5±0.00 | 12.18±0.00 | 12.18±0.00 |
| Cordia africana | 24.38±0.00 | 24.38±0.00 | 97.5±0.00 | 97.5±0.00 | 12.18±0.00 | --- |
| Croton macrostachyus | 24.38±0.00 | 24.38±0.00 | 97.5±0.00 | 97.5±0.00 | 24.38±0.00 | 24.38±0.00 |
| Melia azedarach | 48.75±0.00 | 48.75±0.00 | 48.75±0.00 | 48.75±0.00 | 24.38±0.00 | 24.38±0.00 |
| The values are Mean ± S.E.M (n=3), --- = no activity. | ||||||
| Secondary metabolite tested | Tested plants | ||||
| Calpurnia aurea | Cordia africana | Croton macrostachyus | Melia azedarach | Vernonia amygdaline | |
| Flavonoids | + | + | + | + | + |
| Alkaloids | + | _ | + | + | + |
| Saponins | + | _- | + | _- | + |
| Tannins | + | + | _- | _- | + |
| Steroid | + | + | + | + | + |
| Terpenoids | + | + | + | + | + |
| Phenols | + | _- | -_ | _- | + |
| Cardiac Glycoides | -_ | _- | _- | _- | _- |
| - Absence, + Presence | |||||
| Plant names | Part used | Amount macerated(g) |
Yield (g) |
Yield (%) | Color of extract |
| Calpurnia aurea | Leaf | 100 | 19.05 | 11.9 | Green |
| Cordia africana | Leaf | 100 | 18.89 | 11.9 | Green |
| Croton macrostachyus | Leaf | 100 | 16.54 | 7.9 | Green |
| Melia azedarach | Leaf | 100 | 18.15 | 9 | Green |
| Vernonia amygdaline | Leaf | 100 | 20.79 | 10.9 | Green |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
