Submitted:
04 August 2025
Posted:
04 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Main clinical achievements of IORT
IORT in Breast Cancer
IORT in Sarcomas
IORT in other cancers
3. Technological advances in IOERT planning and delivery
Automated segmentation and instant dose distribution in IORT: advances in AI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Abe, M.; Takahashi, M. Intraoperative radiotherapy: the Japanese experience. Int J Radiat Oncol Biol Phys 1981, 7, 863–8. [Google Scholar] [CrossRef] [PubMed]
- Gunderson and LL, Intraoperative irradiation: techniques and results. 2nd Edition. 2011: Humana Press.
- Kruszyna-Mochalska, M. M. Bijok, and B. Pawałowski, Zalecenia Polskiego Towarzystwa Fizyki Medycznej dotyczące kontroli jakości w radioterapii śródoperacyjnej, promieniowaniem elektronowym (IOERT)za pomocą mobilnych akceleratorów, in fizyka medyczna / medical physics, D. Murawa and W. Polkowski, Editors. 2019: Poland. p. 7-25.
- Krengli, M.; et al. Clinical and technical characteristics of intraoperative radiotherapy. Analysis of the ISIORT-Europe database. Strahlenther Onkol 2013, 189, 729-37.
- Marco, K. ISIORT pooled analysis 2013 update: clinical and technical characteristics of intraoperative radiotherapy, S. Felix, Editor. 2014, Transl Cancer Res. p. 10.
- Krengli, M. ISIORT-presentation: European Registry achievements. ESTRO 2021 – Multidisciplinary Pre-meeting course on IOeRT, Madrid, Spain, . 2021. 27 August.
- Pisani, C.; et al. Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci Rep 2020, 10, 7050. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; et al. Intraoperative radiotherapy in breast cancer: Alterations to the tumor microenvironment and subsequent biological outcomes (Review). Mol Med Rep, 2023. 28.
- Zaleska, K.; et al. Wound fluids affect miR-21, miR-155 and miR-221 expression in breast cancer cell lines, and this effect is partially abrogated by intraoperative radiation therapy treatment. Oncol Lett 2017, 14, 4029–4036. [Google Scholar] [CrossRef] [PubMed]
- Kulcenty, K.; et al. Wound fluids collected postoperatively from patients with breast cancer induce epithelial to mesenchymal transition but intraoperative radiotherapy impairs this effect by activating the radiation-induced bystander effect. Sci Rep 2019, 9, 7891. [Google Scholar] [CrossRef]
- Veronesi, U.; et al. Intraoperative radiotherapy during breast conserving surgery: a study on 1,822 cases treated with electrons. Breast Cancer Res Treat 2010, 124, 141–51. [Google Scholar] [CrossRef]
- Vaidya, J.S.; et al. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet 2010, 376, 91–102. [Google Scholar] [CrossRef]
- Polgár, C.; et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: recommendations of the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncol 2010, 94, 264–73. [Google Scholar]
- Smith, B.D.; et al. Accelerated partial breast irradiation consensus statement from the American Society for Radiation Oncology (ASTRO). J Am Coll Surg 2009, 209, 269–77. [Google Scholar] [CrossRef]
- Correa, C.; et al. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pract Radiat Oncol 2017, 7, 73–79. [Google Scholar] [CrossRef]
- Orecchia, R.; et al. Intraoperative irradiation for early breast cancer (ELIOT): long-term recurrence and survival outcomes from a single-centre, randomised, phase 3 equivalence trial. Lancet Oncol 2021, 22, 597–608. [Google Scholar] [CrossRef]
- Veronesi, U.; et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial. Lancet Oncol 2013, 14, 1269–77. [Google Scholar] [CrossRef]
- Fastner, G.; et al. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy with electrons (IOERT) in breast cancer. Radiother Oncol 2020, 149, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Fastner, G.; et al. IORT with electrons as boost strategy during breast conserving therapy in limited stage breast cancer: long term results of an ISIORT pooled analysis. Radiother Oncol 2013, 108, 279–86. [Google Scholar] [CrossRef]
- Vaidya, J.S.; et al. The TARGIT-A Randomized Trial: TARGIT-IORT Versus Whole Breast Radiation Therapy: Long-Term Local Control and Survival. Int J Radiat Oncol Biol Phys 2023, 115, 77–82. [Google Scholar] [CrossRef]
- Calvo, F.A.; et al. Intraoperative presacral electron boost following preoperative chemoradiation in T3-4Nx rectal cancer: initial local effects and clinical outcome analysis. Radiother Oncol 2002, 62, 201–6. [Google Scholar] [CrossRef]
- Haddock, M.G.; et al. Combined modality therapy including intraoperative electron irradiation for locally recurrent colorectal cancer. Int J Radiat Oncol Biol Phys 2011, 79, 143–50. [Google Scholar] [CrossRef]
- Krempien, R.; et al. Intraoperative electron-beam therapy for primary and recurrent retroperitoneal soft-tissue sarcoma. Int J Radiat Oncol Biol Phys 2006, 65, 773–9. [Google Scholar] [CrossRef]
- Willett, C.G.; et al. Intraoperative electron beam radiation therapy for primary locally advanced rectal and rectosigmoid carcinoma. J Clin Oncol 1991, 9, 843–9. [Google Scholar] [CrossRef]
- Kusters, M.; et al. Results of European pooled analysis of IORT-containing multimodality treatment for locally advanced rectal cancer: adjuvant chemotherapy prevents local recurrence rather than distant metastases. Ann Oncol 2010, 21, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Dubois, J.B.; et al. Intra-operative radiotherapy of rectal cancer: results of the French multi-institutional randomized study. Radiother Oncol 2011, 98, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Masaki, T.; et al. Intraoperative radiotherapy for resectable advanced lower rectal cancer-final results of a randomized controlled trial (UMIN000021353). Langenbecks Arch Surg 2020, 405, 247–254. [Google Scholar] [CrossRef]
- Amarnath, S.R. The Role of Intraoperative Radiotherapy Treatment of Locally Advanced Rectal Cancer. Clin Colon Rectal Surg 2024, 37, 239–247. [Google Scholar] [CrossRef]
- Calvo, F.A.; et al. ESTRO/ACROP IORT recommendations for intraoperative radiation therapy in locally recurrent rectal cancer. Clin Transl Radiat Oncol 2020, 24, 41–48. [Google Scholar] [CrossRef]
- Roeder, F.; et al. Intraoperative Electron Radiation Therapy in Retroperitoneal Sarcoma. Int J Radiat Oncol Biol Phys 2018, 100, 516–527. [Google Scholar] [CrossRef]
- Davis, A.M.; et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol 2005, 75, 48–53. [Google Scholar] [CrossRef]
- Seddon, B.; et al. The IMRiS Trial: A Phase 2 Study of Intensity Modulated Radiation Therapy in Extremity Soft Tissue Sarcoma. Int J Radiat Oncol Biol Phys 2024, 120, 978–989. [Google Scholar] [CrossRef]
- Roeder, F. and R. Krempien, Intraoperative radiation therapy (IORT) in soft-tissue sarcoma. Radiat Oncol, 2017. 12(1): p. 20. [CrossRef]
- Azinovic, I.; et al. Intraoperative radiotherapy electron boost followed by moderate doses of external beam radiotherapy in resected soft-tissue sarcoma of the extremities. Radiother Oncol 2003, 67, 331–7. [Google Scholar] [CrossRef] [PubMed]
- Petersen, I.A.; et al. Use of intraoperative electron beam radiotherapy in the management of retroperitoneal soft tissue sarcomas. Int J Radiat Oncol Biol Phys 2002, 52, 469–75. [Google Scholar] [CrossRef] [PubMed]
- Oertel, S.; et al. Intraoperative electron boost radiation followed by moderate doses of external beam radiotherapy in limb-sparing treatment of patients with extremity soft-tissue sarcoma. Int J Radiat Oncol Biol Phys 2006, 64, 1416–23. [Google Scholar] [CrossRef] [PubMed]
- Krempien, R.; et al. Long-term results of intraoperative presacral electron boost radiotherapy (IOERT) in combination with total mesorectal excision (TME) and chemoradiation in patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 2006, 66, 1143–51. [Google Scholar] [CrossRef]
- Sindelar, W.F.; et al. Intraoperative radiotherapy in retroperitoneal sarcomas. Final results of a prospective, randomized, clinical trial. Arch Surg 1993, 128, 402-10.
- Roeder, F.; et al. Intraoperative radiation therapy (IORT) for soft tissue sarcoma - ESTRO IORT Task Force/ACROP recommendations. Radiother Oncol 2020, 150, 293–302. [Google Scholar] [CrossRef]
- Van De Voorde, L.; et al. Radiotherapy and surgery-an indispensable duo in the treatment of retroperitoneal sarcoma. Cancer 2011, 117, 4355–64. [Google Scholar] [CrossRef]
- Seidensaal, K.; et al. Preoperative Dose-Escalated Intensity-Modulated Radiotherapy (IMRT) and Intraoperative Radiation Therapy (IORT) in Patients with Retroperitoneal Soft-Tissue Sarcoma: Final Results of a Clinical Phase I/II Trial. Cancers (Basel), 2023. 15.
- Callegaro, D.; et al. Preoperative Radiotherapy in Patients With Primary Retroperitoneal Sarcoma: EORTC-62092 Trial (STRASS) Versus Off-trial (STREXIT) Results. Ann Surg 2023, 278, 127–134. [Google Scholar] [CrossRef]
- Calvo, F.A.; et al. Limb-sparing management with surgical resection, external-beam and intraoperative electron-beam radiation therapy boost for patients with primary soft tissue sarcoma of the extremity: a multicentric pooled analysis of long-term outcomes. Strahlenther Onkol 2014, 190, 891–8. [Google Scholar] [CrossRef]
- Tepper, J.E.; et al. Intraoperative radiation therapy of pancreatic carcinoma: a report of RTOG-8505. Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 1991, 21, 1145–9. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Ravina, A. R. Almazán Ortega, and F. Guedea, Intraoperative radiotherapy in pancreatic cancer: a systematic review. Radiother Oncol 2008, 87, 318-25.
- Valentini, V.; et al. Intra-operative radiotherapy (IORT) in pancreatic cancer: joint analysis of the ISIORT-Europe experience. Radiother Oncol 2009, 91, 54–9. [Google Scholar] [CrossRef] [PubMed]
- Krempien, R. and F. Roeder, Intraoperative radiation therapy (IORT) in pancreatic cancer. Radiat Oncol 2017, 12, 8.
- Ogawa, K.; et al. Intraoperative radiotherapy for resected pancreatic cancer: a multi-institutional retrospective analysis of 210 patients. Int J Radiat Oncol Biol Phys 2010, 77, 734–42. [Google Scholar] [CrossRef]
- Hiraoka, T.; et al. Combination of intraoperative radiation with resection of cancer of the pancreas. Int J Pancreatol 1990, 7, 201–7. [Google Scholar] [CrossRef]
- Calvo, F.A.; et al. Chemoradiation for resected pancreatic adenocarcinoma with or without intraoperative radiation therapy boost: Long-term outcomes. Pancreatology 2013, 13, 576–82. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; et al. Intraoperative radiotherapy vs concurrent chemoradiotherapy in the treatment of patients with locally advanced pancreatic cancer. Pancreatology, 2021.
- Calvo, F.A.; et al. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in borderline-resected pancreatic cancer. Clin Transl Radiat Oncol 2020, 23, 91–99. [Google Scholar] [CrossRef]
- Calvo, F.A.; et al. ESTRO IORT Task Force/ACROP recommendations for intraoperative radiation therapy in unresected pancreatic cancer. Radiother Oncol 2020, 148, 57–64. [Google Scholar] [CrossRef]
- Lee, Y.S.; et al. Intraoperative radiation therapy induces immune response activity after pancreatic surgery. BMC Cancer 2021, 21, 1097. [Google Scholar] [CrossRef]
- Yanagi, T.; et al. Clinical Outcomes of Intraoperative Radiotherapy, Postoperative Radiotherapy, and Definitive Radiotherapy for Non-metastatic Pancreatic Cancer. Kurume Med J 2023, 67, 163–170. [Google Scholar] [CrossRef]
- Conroy, T.; et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023, 34, 987–1002. [Google Scholar] [CrossRef]
- Fietkau, R.; et al. R0 resection following chemo (radio)therapy improves survival of primary inoperable pancreatic cancer patients. Interim results of the German randomized CONKO-007± trial. Strahlenther Onkol 2021, 197, 8-18.
- Wootton, L.S.; et al. Commissioning, clinical implementation, and performance of the Mobetron 2000 for intraoperative radiation therapy. J Appl Clin Med Phys 2017, 18, 230–242. [Google Scholar] [CrossRef]
- Ryczkowski, A.; et al. Implementation and validation of the method for the energy spectra reconstruction of electron beams generated by the AQURE mobile accelerator. Rep Pract Oncol Radiother 2025, 30, 62–70. [Google Scholar] [CrossRef] [PubMed]
- LENARTOWICZ-GASIK, A. and A. MISIARZ, Experimental verification of the applicability of the AQURE IOERT.
- accelerator for FLASH radiotherapy. Polish Journal of Medical Physics and Engineering. The Journal of Polish Society of Medical Physics, 2025.
- Malicki, J.; et al. Patient safety in external beam radiotherapy, results of the ACCIRAD project: Recommendations for radiotherapy institutions and national authorities on assessing risks and analysing adverse error-events and near misses. Radiother Oncol 2018, 127, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Krengli, M.; et al. Intraoperative radiotherapy during radical prostatectomy for locally advanced prostate cancer: technical and dosimetric aspects. Int J Radiat Oncol Biol Phys 2010, 76, 1073–7. [Google Scholar] [CrossRef]
- Amsbaugh, M.J.; et al. A Phase 1/2 Trial of Reirradiation for Diffuse Intrinsic Pontine Glioma. Int J Radiat Oncol Biol Phys 2019, 104, 144–148. [Google Scholar] [CrossRef] [PubMed]
- García-Vázquez, V.; et al. Intraoperative computed tomography imaging for dose calculation in intraoperative electron radiation therapy: Initial clinical observations. PLoS One 2020, 15, e0227155. [Google Scholar] [CrossRef]
- Cavedon, C. and R. Mazzarotto, Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go? Cancers (Basel), 2022. 14.
- Pouyanrad, Z. M. Shamsaei Zafarghandi, and S. Setayeshi, A Novel Treatment Planning Design for Intraoperative Electron Radiation Therapy (IOERT) using an Electronic Board. J Biomed Phys Eng 2024, 14, 119-128.
- Franciosini, G.; et al. IOeRT conventional and FLASH treatment planning system implementation exploiting fast GPU Monte Carlo: The case of breast cancer. Phys Med 2024, 121, 103346. [Google Scholar] [CrossRef]
- Roeder, F.; et al. First clinical application of image-guided intraoperative electron radiation therapy with real time intraoperative dose calculation in recurrent rectal cancer: technical procedure. Radiat Oncol 2023, 18, 186. [Google Scholar] [CrossRef]
- García-Vázquez, V.; et al. Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation. Z Med Phys 2017, 27, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Misiarz, A.; et al. Design and performance validation of a novel 3d printed thin-walled and transparent electron beam applicators for intraoperative radiation therapy with beam energy up to 12 MeV. Rep Pract Oncol Radiother 2024, 29, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, M.; et al. Revolutionizing radiation therapy: the role of AI in clinical practice. J Radiat Res 2024, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Joskowicz, L.; et al. Inter-observer variability of manual contour delineation of structures in CT. Eur Radiol 2019, 29, 1391–1399. [Google Scholar] [CrossRef]
- Guenzi, M.; et al. Focus on the actual clinical target volume irradiated with intraoperative radiotherapy for breast cancer. Anticancer Res 2012, 32, 4945–50. [Google Scholar]
- Kubo, K.; et al. Dosimetric comparison of RapidPlan and manually optimized plans in volumetric modulated arc therapy for prostate cancer. Phys Med 2017, 44, 199–204. [Google Scholar] [CrossRef]
- Kajikawa, T.; et al. A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J Radiat Res 2019, 60, 685–693. [Google Scholar] [CrossRef]
- Lastrucci, A.; et al. The Integration of Deep Learning in Radiotherapy: Exploring Challenges, Opportunities, and Future Directions through an Umbrella Review. Diagnostics (Basel), 2024. 14.
- Guerra, P.; et al. Feasibility assessment of the interactive use of a Monte Carlo algorithm in treatment planning for intraoperative electron radiation therapy. Phys Med Biol 2014, 59, 7159–79. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, E.; et al. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med 2025, 8, 75. [Google Scholar] [CrossRef]
- Rydzewski, N.R.; et al. Machine Learning & Molecular Radiation Tumor Biomarkers. Semin Radiat Oncol 2023, 33, 243–251. [Google Scholar] [PubMed]
- Masaki, T.; et al. Quality assurance of pelvic autonomic nerve-preserving surgery for advanced lower rectal cancer--preliminary results of a randomized controlled trial. Langenbecks Arch Surg 2010, 395, 607–13. [Google Scholar] [CrossRef] [PubMed]
| Tumor site | Author/year | Series | Study design | Modality | IORT dose (Gy) | Sample size | Key Outcomes |
|---|---|---|---|---|---|---|---|
| Breast | Fastner et al, 2013 [19] | ISIORT, Multi-Institutional | Observational (pooled analysis) | IOERT boost | 10 | 1109 | LC 99.2% after median F/U of 72.4 months |
| Breast | Orecchia et al, 2021 [16] | ELIOT, Mono-Institutional | Phase III | IOERT vs WBRT | 21 | 1305 | 15-yr LR: WBRT 2.4% vs 10.2% IORT %. p=<0.001; in lower-risk pts no significant difference for LR |
| Breast | Vaidya et al, 2023 [20] | TARGIT-A, Multi-Institutional | Phase III | Intrabeam IORT vs WBRT | 20 | 2298 | No statistically significant difference for LC |
| Rectum | Calvo et al, 2002 [21] | Mono-Institutional, LARC | Observational | CRT + surgery + IORT | 12 | 100 | 1 in-field IORT failure; 14 distant failures |
| Rectum | Kusters et al. 2010 [25] | Multi-Institutional, LARC | Observational (pooled analysis) | CRT+IORT+CT |
12.5 | 605 | LR rate 12.5% |
| Rectum | Masaki et al. 2010 [80] | Mono-Institutional | Phase III | Preserved bilateral pelvic plexus + IORT vs partial bilateral pelvic plexus preservation without IORT | 18-20 | 76 | Higher number of distant metastases in IORT patients (P=0.04) |
| Rectum | Dubois et al, 2011 [26] | Multi-Institutional, LARC | Phase III | Pre-RT + surgery ± IORT | 18 | 142 | No benefit for IORT in local control or survival |
| Sarcoma | Sindelar et al, 1993 [38] | NIH, Mono-Institutional, RPS | Phase III | IORT + Low dose EBRT versus High dose EBRT | 20 | 35 | IORT patients experienced lower toxicity; LC 6/15 IORT; 16/20 EBRT |
| Sarcoma | Calvo et al, 2014 [43] | Multi-Institutional, Extremities, limb sparing | Observational (pooled analysis) | IORT+EBRT | 10-20 | 159 | 5-year IOERT in-field control 86%, DFS 61%, OS 72% |
| Sarcoma | Roeder et al, 2018 [30] |
Multi-Institutional, RPS | Observational | IORT+/- EBRT | 15 | 156 | 5-year OS 63% in the primary situation and 68% after R0 resection |
| Sarcoma | Seidensaal et al, 2023 [41] | Mono-Institutional, RPS | Phase I/II | IMRT + IORT boost | 12-20 | 37 | Primary endpoint of a 5-year LC of 70% was not met |
| Pancreas | Tepper et al, 1991 [44] | RTOG, Multi-Institutional series | Observational | IORT+EBRT +chemo | 20 | 51 | Median OS 9 months; LC not assessed |
| Pancreas | Valentini et al. 2009 [46] | ISIORT, Multi-Institutional | Observational (pooled analysis) | Surgery + IORT +/- EBRT | 15 | 270 | 5-yr LC 23.3% |
| Pancreas | Ren et al. 2021 [51] | Multi-Institutional. LAPC | Retrospective, CCRT vs IORT. | 15-20 Gy | 15-20 | 103 | G3-G4 toxicity higher in CCRT pts (34% vs 0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
