Submitted:
30 July 2025
Posted:
31 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. From Pattern to Phenotype: How AI is Transforming Pigmentation Trait Analysis
3. Genomic Mapping Methods and Their Integration with AI-Derived Traits
4. AI–Genomics Approaches Reveal Diverse Pigmentation Mechanisms Across Taxa
5. Emerging Functions and Biological Roles of Non-Classical Pigmentation Genes
6. Future Perspectives and Challenges in AI-Enabled Pigmentation Genomics
| Box 1 | Key concepts in AI-enabled pigmentation genomics |
|
Pigmentation genes (classical): Genes traditionally associated with pigment synthesis or pigment cell development, such as MC1R, TYR, ASIP, and MITF, often focused on melanin pathways. Pigment cell types: Specialized chromatophores such as melanophores, xanthophores, iridophores, and erythrophores that produce or reflect color through pigments or nanostructures. Non-classical pigmentation genes: Genes not historically linked to pigmentation but now implicated in color traits, often involved in signaling, membrane trafficking, or regulation. AI-based phenotyping: The use of machine learning, especially deep learning, to quantify phenotypic traits such as color, pattern, and reflectance from image data. Convolutional neural networks (CNNs): A deep learning architecture particularly suited to image recognition and feature extraction, widely used in trait analysis. Self-supervised learning: A machine learning approach that learns structure from unlabeled data, enabling the identification of traits without predefined categories. Image-based GWAS (iGWAS): A genomic association study that uses AI-extracted phenotypic features from images as input traits instead of manually scored measurements. Triplet network: A machine learning model that compares trait similarity between images using three-image inputs, useful for pattern-based trait learning. Retinal pigment score (RPS): A continuous measure of human retinal pigmentation derived from fundus images using AI-based color analysis. Feather pigmentation quantification: The use of image segmentation or pixel classification to quantify melanin distribution across specific feather regions. Phenotypic embedding: A numerical representation of trait variation derived from high-dimensional image data, used as input for downstream analysis. Pattern recognition: An AI task that identifies and classifies visual patterns, used to analyze complex color and shape variation in natural traits. Transfer learning: A method where a model trained on one dataset or species is adapted to another with minimal retraining, improving generalizability. Trait dimensionality: The number and complexity of measurable aspects within a phenotype, which is greatly increased by AI-based feature extraction. Regulatory variant: A genetic variant that influences gene expression rather than protein structure, often found in pigmentation loci identified by AI-assisted methods. Systems-level trait: A phenotype governed by multiple layers of biological regulation, including gene networks, cell behavior, and environmental inputs. |
References
- Adhikari, K.; Mendoza-Revilla, J.; Sohail, A.; Fuentes-Guajardo, M.; Lampert, J.; Chacón-Duque, J.C.; Hurtado, M.; Villegas, V.; Granja, V.; Acuña-Alonzo, V.; et al. A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat. Commun. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Ahi, E.P. Fish Evo-Devo: Moving Toward Species-Specific and Knowledge-Based Interactome. J. Exp. Zoöl. Part B: Mol. Dev. Evol. 2025, 344, 158–168. [Google Scholar] [CrossRef]
- Ahi, E.P.; Lecaudey, L.A.; Ziegelbecker, A.; Steiner, O.; Glabonjat, R.; Goessler, W.; Hois, V.; Wagner, C.; Lass, A.; Sefc, K.M. Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish. BMC Genom. 2020, 21, 1–15. [Google Scholar] [CrossRef]
- Ahi, E.P.; Lecaudey, L.A.; Ziegelbecker, A.; Steiner, O.; Goessler, W.; Sefc, K.M. Expression levels of the tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish. Biol. Lett. 2020, 16, 20200629. [Google Scholar] [CrossRef]
- Andrade, P.; Carneiro, M. Pterin-based pigmentation in animals. Biol. Lett. 2021, 17, 20210221. [Google Scholar] [CrossRef]
- Athanasopoulou K, Michalopoulou VI, Scorilas A, Adamopoulos PG. Integrating Artificial Intelligence in Next-Generation Sequencing: Advances, Challenges, and Future Directions. Curr Issues Mol Biol 2025, Vol 47, Page 470 [Internet] 47:Available from: https://www.mdpi.com/1467-3045/47/6/470/htm.
- Bajpai, V.K.; Swigut, T.; Mohammed, J.; Naqvi, S.; Arreola, M.; Tycko, J.; Kim, T.C.; Pritchard, J.K.; Bassik, M.C.; Wysocka, J. A genome-wide genetic screen uncovers determinants of human pigmentation. Science 2023, 381, 646. [Google Scholar] [CrossRef]
- Baxter, L.L.; Watkins-Chow, D.E.; Pavan, W.J.; Loftus, S.K. A curated gene list for expanding the horizons of pigmentation biology. Pigment. Cell Melanoma Res. 2018, 32, 348–358. [Google Scholar] [CrossRef]
- van der Bijl W, Shu JJ, Goberdhan VS, Sherin LM, Jia C, Cortazar-Chinarro M, Corral-Lopez A, Mank JE. Deep learning reveals the complex genetic architecture of male guppy colouration. Nat Ecol Evol 2025 [Internet]:1–Available from: https://www.nature.com/articles/s41559-025-02781-w.
- Billah, M.; Bermann, M.; Hollifield, M.; Tsuruta, S.; Chen, C.; Psota, E.; Holl, J.; Misztal, I.; Lourenco, D. Review: Genomic selection in the era of phenotyping based on digital images. Animal 2025, 101486. [Google Scholar] [CrossRef]
- Bush, W.S.; Oetjens, M.T.; Crawford, D.C. Unravelling the human genome–phenome relationship using phenome-wide association studies. Nat. Rev. Genet. 2016, 17, 129–145. [Google Scholar] [CrossRef]
- Butler, M.W.; Toomey, M.B.; McGraw, K.J. How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. Behav. Ecol. Sociobiol. 2010, 65, 401–413. [Google Scholar] [CrossRef]
- Cao, J.; Wenzel, J.; Zhang, S.; Lampe, J.; Wang, H.; Yao, J.; Zhang, Z.; Zhao, S.; Zhou, Y.; Chen, C.; et al. Rethinking deep learning in bioimaging through a data centric lens. npj Imaging 2025, 3, 1–7. [Google Scholar] [CrossRef]
- Caro T, Mallarino R. Coloration in Mammals. Trends Ecol Evol [Internet] 35:357–Available from: https://www.cell.com/action/showFullText?
- Choi, J.; Zhang, T.; Vu, A.; Ablain, J.; Makowski, M.M.; Colli, L.M.; Xu, M.; Hennessey, R.C.; Yin, J.; Rothschild, H.; et al. Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Chong, Y.; Xiong, H.; Gao, Z.; Lu, Y.; Hong, J.; Wu, J.; He, X.; Xi, D.; Tu, X.; Deng, W. Genomic and transcriptomic landscape to decipher the genetic basis of hyperpigmentation in Lanping black-boned sheep (Ovis aries). BMC Genom. 2024, 25, 1–13. [Google Scholar] [CrossRef]
- Chunhua, Z.; Le, F.; Shengli, L.; Sachula, W.; Bao, H.; Lan, M.; Antonini, M.; Haizhou, S. Multi-omics and AI-driven advances in miRNA-mediated hair follicle regulation in cashmere goats. Front. Veter- Sci. 2025, 12, 1635202. [Google Scholar] [CrossRef]
- Crawford, N.G.; Kelly, D.E.; Hansen, M.E.B.; Beltrame, M.H.; Fan, S.; Bowman, S.L.; Jewett, E.; Ranciaro, A.; Thompson, S.; Lo, Y.; et al. Loci associated with skin pigmentation identified in African populations. Science 2017, 358, 887. [Google Scholar] [CrossRef]
- Dingemans AJM, Hinne M, Truijen KMG, Goltstein L, van Reeuwijk J, de Leeuw N, Schuurs-Hoeijmakers J, Pfundt R, Diets IJ, den Hoed J, de Boer E, Coenen-van der Spek J, Jansen S, van Bon BW, Jonis N, Ockeloen CW, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, Campeau PM, Palmer EE, Van Esch H, Lyon GJ, Alkuraya FS, Rauch A, Marom R, Baralle D, van der Sluijs PJ, Santen GWE, Kooy RF, van Gerven MAJ, Vissers LELM, de Vries BBA. PhenoScore: AI-based phenomics to quantify rare disease and genetic variation. Nat Genet [Internet] 55:Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11414844/.
- Eizirik, E.; Trindade, F.J. Genetics and Evolution of Mammalian Coat Pigmentation. Annu. Rev. Anim. Biosci. 2021, 9, 125–148. [Google Scholar] [CrossRef]
- Elkin, J.; Martin, A.; Courtier-Orgogozo, V.; Santos, M.E. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol. Rev. 2023, 98, 1250–1277. [Google Scholar] [CrossRef]
- Fandino, R.A.; Brady, N.K.; Chatterjee, M.; McDonald, J.M.C.; Livraghi, L.; van der Burg, K.R.L.; Mazo-Vargas, A.; Markenscoff-Papadimitriou, E.; Reed, R.D. The ivory lncRNA regulates seasonal color patterns in buckeye butterflies. Proc. Natl. Acad. Sci. 2024, 121. [Google Scholar] [CrossRef]
- Feiner, N.; Brun-Usan, M.; Andrade, P.; Pranter, R.; Park, S.; Menke, D.B.; Geneva, A.J.; Uller, T. A single locus regulates a female-limited color pattern polymorphism in a reptile. Sci. Adv. 2022, 8, eabm2387. [Google Scholar] [CrossRef]
- Feng, D.; Li, Q.; Yu, H.; Kong, L.; Du, S. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Ferguson, J.N.; Fernandes, S.B.; Monier, B.; Miller, N.D.; Allen, D.; Dmitrieva, A.; Schmuker, P.; Lozano, R.; Valluru, R.; Buckler, E.S.; et al. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. Plant Physiol. 2021, 187, 1481–1500. [Google Scholar] [CrossRef]
- Fernandes, A.F.A.; Dórea, J.R.R.; Rosa, G.J.d.M. Image Analysis and Computer Vision Applications in Animal Sciences: An Overview. Front. Veter- Sci. 2020, 7, 551269. [Google Scholar] [CrossRef]
- Figon, F.; Deravi, L.F.; Casas, J. Barriers and Promises of the Developing Pigment Organelle Field. Integr. Comp. Biol. 2021, 61, 1481–1489. [Google Scholar] [CrossRef]
- Figon, F.; Hurbain, I.; Heiligenstein, X.; Trépout, S.; Lanoue, A.; Medjoubi, K.; Somogyi, A.; Delevoye, C.; Raposo, G.; Casas, J. Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. Proc. Natl. Acad. Sci. 2021, 118. [Google Scholar] [CrossRef]
- Freedman, A.H.; Sackton, T.B. Rethinking eco-evo studies of gene expression for non-model organisms in the genomic era. Mol. Ecol. 2024, 34, e17378. [Google Scholar] [CrossRef]
- Freitas, L.A.; Ferreira, R.E.; Alves, A.A.; Dórea, J.R.; Paz, C.C.; Rosa, G.J. Detection of anemic sheep using ocular conjunctiva images and deep learning algorithms. Livest. Sci. 2025, 294. [Google Scholar] [CrossRef]
- Galván, I.; Solano, F. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution. Int. J. Mol. Sci. 2016, 17, 520. [Google Scholar] [CrossRef]
- Ganguly, K.; Sengupta, D.; Sarkar, N.; Mukherjee, N.; Dutta, T.; Saha, A.; Saha, T.; Ghosh, B.; Chatterjee, S.; Brahmachari, P.; et al. Comprehensive in Silico Analyses of Single Nucleotide Variants of the Human Orthologues of 171 Murine Loci to Seek Novel Insights into the Genetics of Human Pigmentation. Proc. Zoöl. Soc. 2022, 75, 361–380. [Google Scholar] [CrossRef]
- Gerstenblith, M.R.; Shi, J.; Landi, M.T. Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis. Pigment. Cell Melanoma Res. 2010, 23, 587–606. [Google Scholar] [CrossRef]
- Gudmunds, E.; Wheat, C.W.; Khila, A.; Husby, A. Functional genomic tools for emerging model species. Trends Ecol. Evol. 2022, 37, 1104–1115. [Google Scholar] [CrossRef]
- Hantak, M.M.; Guralnick, R.P.; Zare, A.; Stucky, B.J. Computer vision for assessing species color pattern variation from web-based community science images. iScience 2022, 25, 104784. [Google Scholar] [CrossRef]
- Hartati, H.; Putra, W.P.B.; Handiwirawan, E.; Ramon, E.; Firison, J.; Zubir, Z.; Suretno, N.D.; Mariyono, M.; Yusriani, Y.; Robba, D.K.; et al. Genome-wide association study of genetic markers of coat color patterns in Sumatran native cattle. Veter- World 2024, 17, 2537–2543. [Google Scholar] [CrossRef]
- Hemingson, C.R.; Cowman, P.F.; Bellwood, D.R. Analysing biological colour patterns from digital images: An introduction to the current toolbox. Ecol. Evol. 2024, 14, e11045. [Google Scholar] [CrossRef]
- Hendra, C.; Pratanwanich, P.N.; Wan, Y.K.; Goh, W.S.S.; Thiery, A.; Göke, J. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods 2022, 19, 1590–1598. [Google Scholar] [CrossRef]
- Heo, S.; Cho, S.; Dinh, P.T.N.; Park, J.; Jin, D.; Cha, J.; Kim, Y.; Koh, Y.J.; Lee, S.H.; Lee, J.H. A genome-wide association study for eumelanin pigmentation in chicken plumage using a computer vision approach. Anim. Genet. 2023, 54, 355–362. [Google Scholar] [CrossRef]
- E Hoekstra, H. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 2006, 97, 222–234. [Google Scholar] [CrossRef]
- Cuthill, J.F.H.; Guttenberg, N.; Ledger, S.; Crowther, R.; Huertas, B. Deep learning on butterfly phenotypes tests evolution’s oldest mathematical model. Sci. Adv. 2019, 5, eaaw4967. [Google Scholar] [CrossRef]
- Hu, T.; Shen, P.; Zhang, Y.; Zhang, J.; Li, X.; Xia, C.; Liu, P.; Lu, H.; Wu, T.; Han, Z. OpenPheno: an open-access, user-friendly, and smartphone-based software platform for instant plant phenotyping. Plant Methods 2025, 21, 1–12. [Google Scholar] [CrossRef]
- Ioannidis NM, Wang W, Furlotte NA, Hinds DA, Agee M, Alipanahi B, Auton A, Bell RK, Bryc K, Elson SL, Fontanillas P, Huber KE, Kleinman A, Litterman NK, McCreight JC, McIntyre MH, Mountain JL, Noblin ES, Northover CAM, Pitts SJ, Sathirapongsasuti JF, Sazonova O V., Shelton JF, Shringarpure S, Tian C, Tung JY, Vacic V, Wilson CH, Bustamante CD, Jorgenson E, Asgari MM, Whittemore AS. Gene expression imputation identifies candidate genes and susceptibility loci associated with cutaneous squamous cell carcinoma. Nat Commun 2018 91 [Internet] 9:1–Available from: https://www.nature.com/articles/s41467-018-06149-6.
- Irion, U.; Nüsslein-Volhard, C. The identification of genes involved in the evolution of color patterns in fish. Curr. Opin. Genet. Dev. 2019, 57, 31–38. [Google Scholar] [CrossRef]
- Jackson, V.E.; Wu, Y.; Bonelli, R.; Owen, J.P.; Scott, L.W.; Farashi, S.; Kihara, Y.; Gantner, M.L.; Egan, C.; Williams, K.M.; et al. Multi-omic spatial effects on high-resolution AI-derived retinal thickness. Nat. Commun. 2025, 16, 1–19. [Google Scholar] [CrossRef]
- Karagic, N.; Kratochwil, C.F. The next generation of colour pattern genomics. Nat. Ecol. Evol. 2025, 1–2. [Google Scholar] [CrossRef]
- Kim, B.; Kim, D.S.; Shin, J.-G.; Leem, S.; Cho, M.; Kim, H.; Gu, K.-N.; Seo, J.Y.; You, S.W.; Martin, A.R.; et al. Mapping and annotating genomic loci to prioritize genes and implicate distinct polygenic adaptations for skin color. Nat. Commun. 2024, 15, 1–16. [Google Scholar] [CrossRef]
- Kirchler, M.; Konigorski, S.; Norden, M.; Meltendorf, C.; Kloft, M.; Schurmann, C.; Lippert, C.; Schwartz, R. transferGWAS: GWAS of images using deep transfer learning. Bioinformatics 2022, 38, 3621–3628. [Google Scholar] [CrossRef]
- Koblitz, J.; Reimer, L.C.; Pukall, R.; Overmann, J. Predicting bacterial phenotypic traits through improved machine learning using high-quality, curated datasets. Commun. Biol. 2025, 8, 1–13. [Google Scholar] [CrossRef]
- Kondo, S.; Watanabe, M.; Miyazawa, S. Studies of Turing pattern formation in zebrafish skin. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2021, 379, 20200274. [Google Scholar] [CrossRef]
- Kratochwil, C.F.; Mallarino, R. Mechanisms Underlying the Formation and Evolution of Vertebrate Color Patterns. Annu. Rev. Genet. 2023, 57, 135–156. [Google Scholar] [CrossRef]
- Kronforst, M.R.; Sheikh, S.I. New molecular insights into butterfly pigmentation. Cell Rep. 2023, 42, 112981–112981. [Google Scholar] [CrossRef]
- Kutugata, M.; Baumgardt, J.; Goolsby, J.A.; Racelis, A.E. Automatic Camera-Trap Classification Using Wildlife-Specific Deep Learning in Nilgai Management. J. Fish Wildl. Manag. 2021, 12, 412–421. [Google Scholar] [CrossRef]
- Landi MT, Bishop DT, MacGregor S, Machiela MJ, Stratigos AJ, Ghiorzo P, Brossard M, Calista D, Choi J, Fargnoli MC, Zhang T, Rodolfo M, Trower AJ, Menin C, Martinez J, Hadjisavvas A, Song L, Stefanaki I, Scolyer R, Yang R, Goldstein AM, Potrony M, Kypreou KP, Pastorino L, Queirolo P, Pellegrini C, Cattaneo L, Zawistowski M, Gimenez-Xavier P, Rodriguez A, Elefanti L, Manoukian S, Rivoltini L, Smith BH, Loizidou MA, Del Regno L, Massi D, Mandala M, Khosrotehrani K, Akslen LA, Amos CI, Andresen PA, Avril MF, Azizi E, Soyer HP, Bataille V, Dalmasso B, Bowdler LM, Burdon KP, Chen W V., Codd V, Craig JE, Dębniak T, Falchi M, Fang S, Friedman E, Simi S, Galan P, Garcia-Casado Z, Gillanders EM, Gordon S, Green A, Gruis NA, Hansson J, Harland M, Harris J, Helsing P, Henders A, Hočevar M, Höiom V, Hunter D, Ingvar C, Kumar R, Lang J, Lathrop GM, Lee JE, Li X, Lubiński J, Mackie RM, Malt M, Malvehy J, McAloney K, Mohamdi H, Molven A, Moses EK, Neale RE, Novaković S, Nyholt DR, Olsson H, Orr N, Fritsche LG, Puig-Butille JA, Qureshi AA, Radford-Smith GL, Randerson-Moor J, Requena C, Rowe C, Samani NJ, et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat Genet 2020 525 [Internet] 52:494–Available from: https://www.nature.com/articles/s41588-020-0611-8.
- Lay, L.; Khan, W.; Jo, H.; Kim, S.-H.; Kim, Y. Genome-Wide Association Study on Cowpea seed coat color using RGB images. Mol. Breed. 2024, 44, 1–23. [Google Scholar] [CrossRef]
- Liu, G.; Liu, W.; Zhao, R.; He, J.; Dong, Z.; Chen, L.; Wan, W.; Chang, Z.; Wang, W.; Li, X. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genom. 2021, 22, 1–18. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Zhang, R.; Li, H.; Zhu, H. Cell Junction and Vesicle Trafficking-Mediated Melanosome/Melanin Transfer Are Involved in the Dynamic Transformation of Goldfish Carassius auratus Skin Color. Int. J. Mol. Sci. 2022, 23, 12214. [Google Scholar] [CrossRef]
- Livraghi, L.; Hanly, J.J.; Evans, E.; Wright, C.J.; Loh, L.S.; Mazo-Vargas, A.; Kamrava, K.; Carter, A.; van der Heijden, E.S.M.; Reed, R.D.; et al. A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies. Proc. Natl. Acad. Sci. 2024, 121. [Google Scholar] [CrossRef]
- Lloyd, V.J.; Burg, S.L.; Harizanova, J.; Garcia, E.; Hill, O.; Enciso-Romero, J.; Cooper, R.L.; Flenner, S.; Longo, E.; Greving, I.; et al. The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales. Nat. Commun. 2024, 15, 1–15. [Google Scholar] [CrossRef]
- Lona-Durazo, F.; Hernandez-Pacheco, N.; Fan, S.; Zhang, T.; Choi, J.; Kovacs, M.A.; Loftus, S.K.; Le, P.; Edwards, M.; Fortes-Lima, C.A.; et al. Meta-analysis of GWA studies provides new insights on the genetic architecture of skin pigmentation in recently admixed populations. BMC Genet. 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Lona-Durazo, F.; Mendes, M.; Thakur, R.; Funderburk, K.; Zhang, T.; Kovacs, M.A.; Choi, J.; Brown, K.M.; Parra, E.J. A large Canadian cohort provides insights into the genetic architecture of human hair colour. Commun. Biol. 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Luo, M.; Wang, L.; Yin, H.; Zhu, W.; Fu, J.; Dong, Z. Integrated analysis of long non-coding RNA and mRNA expression in different colored skin of koi carp. BMC Genom. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Lürig, M.D.; Donoughe, S.; Svensson, E.I.; Porto, A.; Tsuboi, M. Computer Vision, Machine Learning, and the Promise of Phenomics in Ecology and Evolutionary Biology. Front. Ecol. Evol. 2021, 9. [Google Scholar] [CrossRef]
- Mao, J.; Zeng, Q.; Yang, Z.; Pan, H.; Yao, L.; Bao, Z.; Wang, C.; Wang, S. High-resolution linkage and quantitative trait locus mapping using an interspecific cross between Argopecten irradians irradians (♀) and A. purpuratus (♂). Mar. Life Sci. Technol. 2020, 2, 123–134. [Google Scholar] [CrossRef]
- Marin-Recinos, M.F.; Pucker, B. Genetic factors explaining anthocyanin pigmentation differences. BMC Plant Biol. 2024, 24, 1–20. [Google Scholar] [CrossRef]
- Martin, A.R.; Lin, M.; Granka, J.M.; Myrick, J.W.; Liu, X.; Sockell, A.; Atkinson, E.G.; Werely, C.J.; Möller, M.; Sandhu, M.S.; et al. An Unexpectedly Complex Architecture for Skin Pigmentation in Africans. Cell 2017, 171, 1340–1353.e14. [Google Scholar] [CrossRef]
- Martin, T.; Fraser, H.B. Comparative expression profiling reveals widespread coordinated evolution of gene expression across eukaryotes. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- McNamara, M.; Rossi, V.; Slater, T.; Rogers, C.; Ducrest, A.-L.; Dubey, S.; Roulin, A. Decoding the Evolution of Melanin in Vertebrates. Trends Ecol. Evol. 2021, 36, 430–443. [Google Scholar] [CrossRef]
- Mills, M.G.; Patterson, L.B. Not just black and white: Pigment pattern development and evolution in vertebrates. Semin. Cell Dev. Biol. 2009, 20, 72–81. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Hurtado, S.; Barba-González, C.; Antequera-Gómez, M.L.; Díaz-Ruiz, F.; Real, R.; Navas-Delgado, I.; Aldana-Montes, J.F. Addressing significant challenges for animal detection in camera trap images: a novel deep learning-based approach. Sci. Rep. 2025, 15, 1–18. [Google Scholar] [CrossRef]
- Nabwire, S.; Suh, H.-K.; Kim, M.S.; Baek, I.; Cho, B.-K. Review: Application of Artificial Intelligence in Phenomics. Sensors 2021, 21, 4363. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Phenotyping in Livestock Farming. Animals 2021, 11, 2009. [Google Scholar] [CrossRef]
- Newell, C.; Walker, H.; Caro, T.; Ge, D. Pig pigmentation: testing Gloger’s rule. J. Mammal. 2021, 102, 1525–1535. [Google Scholar] [CrossRef]
- Niu, J.; Li, T.; Qi, K.; Liu, Y.; Deng, H.; Hu, Y.; Xu, D.; Wu, L.; Amevor, F.K.; Wang, Y.; et al. Research Note: Application of Convolutional Neural Networks for Feather Classification in Chickens. Poult. Sci. 2025. [Google Scholar] [CrossRef]
- Norman, D.L.; Bischoff, P.H.; Wearn, O.R.; Ewers, R.M.; Rowcliffe, J.M.; Evans, B.; Sethi, S.; Chapman, P.M.; Freeman, R. Can CNN-based species classification generalise across variation in habitat within a camera trap survey? Methods Ecol. Evol. 2022, 14, 242–251. [Google Scholar] [CrossRef]
- Okuley, O.S.; Aiello, C.M.; Glad, W.; Perkins, K.; Ianniello, R.; Darby, N.; Epps, C.W. Improving AI performance in wildlife monitoring through species and environment-specific training: A case study on desert Bighorn sheep. Ecol. Informatics 2025, 89. [Google Scholar] [CrossRef]
- Orouji, S.; Liu, M.C.; Korem, T.; Peters, M.A.K. Domain adaptation in small-scale and heterogeneous biological datasets. Sci. Adv. 2024, 10, eadp6040. [Google Scholar] [CrossRef]
- Ovens, K.; Eames, B.F.; McQuillan, I. Comparative Analyses of Gene Co-expression Networks: Implementations and Applications in the Study of Evolution. Front. Genet. 2021, 12. [Google Scholar] [CrossRef]
- Parichy, D.M. Evolution of pigment cells and patterns: recent insights from teleost fishes. Curr. Opin. Genet. Dev. 2021, 69, 88–96. [Google Scholar] [CrossRef]
- Patterson, L.B.; Parichy, D.M. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu. Rev. Genet. 2019, 53, 505–530. [Google Scholar] [CrossRef]
- Podobnik, M.; Frohnhöfer, H.G.; Dooley, C.M.; Eskova, A.; Nüsslein-Volhard, C.; Irion, U. Evolution of the potassium channel gene Kcnj13 underlies colour pattern diversification in Danio fish. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Qi, Z.; Liu, J.; Shi, J.; Yin, M.; Liu, J.; Fan, J.; Bao, Z.; Ye, Z.; Hu, J. Integrated Transcriptomic and Epigenomic Analysis Reveals Mechanisms Underlying Melanotic Spot Formation in Red Tilapia (Oreochromis spp.). Int. J. Mol. Sci. 2025, 26, 4370. [Google Scholar] [CrossRef]
- Quillen, E.E.; Norton, H.L.; Parra, E.J.; Lona-Durazo, F.; Ang, K.C.; Illiescu, F.M.; Pearson, L.N.; Shriver, M.D.; Lasisi, T.; Gokcumen, O.; et al. Shades of complexity: New perspectives on the evolution and genetic architecture of human skin. Am. J. Phys. Anthr. 2018, 168, 4–26. [Google Scholar] [CrossRef]
- Rajesh AE, Olvera-Barrios A, Warwick AN, Wu Y, Stuart K V., Biradar MI, Ung CY, Khawaja AP, Luben R, Foster PJ, Cleland CR, Makupa WU, Denniston AK, Burton MJ, Bastawrous A, Keane PA, Chia MA, Turner AW, Lee CS, Tufail A, Lee AY, Egan C, Zheng Y, Yates M, Woodside J, Williams C, Williams K, Weedon M, Vitart V, Viswanathan A, Trucco E, Thomas D, Tapp R, Sun Z, Sudlow C, Strouthidis N, Stratton I, Steel D, Sivaprasad S, Sergouniotis P, Self J, Sattar N, Rudnicka A, Rahi J, Pontikos N, Petzold A, Peto T, Paterson E, Patel P, Owen C, Oram R, O’Sullivan E, Morgan J, Moore T, McKibbin M, McKay G, McGuinness B, Madhusudhan S, Mackie S, MacGillivray T, Luthert P, Lotery A, Littlejohns T, Lascaratos G, Hysi P, Hogg R, Harding S, Hardcastle A, Hammond C, Guggenheim J, Gibson J, Garway-Heath DT, Gallacher J, Ennis S, Doney A, Dick A, Dhillon B, Desai P, Day A, Chua S, Chan M, Chakravarthy U, Carare R, Braithwaite T, Black G, Bishop P, Barrett J, Barman S, Balaskas K, Atan D, Aslam T, Allen N. Machine learning derived retinal pigment score from ophthalmic imaging shows ethnicity is not biology. Nat Commun 2024 161 [Internet] 16:1–Available from: https://www.nature.com/articles/s41467-024-55198-7.
- Rosenberg, A.M.; Rausser, S.; Ren, J.; Mosharov, E.V.; Sturm, G.; Ogden, R.T.; Patel, P.; Soni, R.K.; Lacefield, C.; Tobin, D.J.; et al. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021, 10. [Google Scholar] [CrossRef]
- Saunders, L.M.; Mishra, A.K.; Aman, A.J.; Lewis, V.M.; Toomey, M.B.; Packer, J.S.; Qiu, X.; McFaline-Figueroa, J.L.; Corbo, J.C.; Trapnell, C.; et al. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 2019, 8. [Google Scholar] [CrossRef]
- Schell, T.; Greve, C.; Podsiadlowski, L. Establishing genome sequencing and assembly for non-model and emerging model organisms: a brief guide. Front. Zoöl. 2025, 22, 1–26. [Google Scholar] [CrossRef]
- Shawkey, M.D.; D'ALba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B: Biol. Sci. 2017, 372, 20160536. [Google Scholar] [CrossRef]
- Shen, Q.; Zhou, J.; Li, J.; Zhao, X.; Zheng, L.; Bao, H.; Wu, C. Genome-Wide Association Study Identifies Candidate Genes for Stripe Pattern Feather Color of Rhode Island Red Chicks. Genes 2022, 13, 1511. [Google Scholar] [CrossRef]
- Siegenthaler, A.; Mondal, D.; Benvenuto, C. Quantifying pigment cover to assess variation in animal colouration. Biol. Methods Protoc. 2017, 2, bpx003. [Google Scholar] [CrossRef]
- Simcoe, M.; Valdes, A.; Liu, F.; Furlotte, N.A.; Evans, D.M.; Hemani, G.; Ring, S.M.; Smith, G.D.; Duffy, D.L.; Zhu, G.; et al. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef]
- Song, S.; Wang, L.; Hou, L.; Liu, J.S. Partitioning and aggregating cross-tissue and tissue-specific genetic effects to identify gene-trait associations. Nat. Commun. 2024, 15, 1–12. [Google Scholar] [CrossRef]
- Strowbridge, N.; Vieites, D.R.; Ritchie, M.G.; Elmer, K.R. Contributions of epigenomic and epitranscriptomic methylation to animal colouration. Trends Genet. 2025. [Google Scholar] [CrossRef]
- Stuckert, A.M.M.; Moore, E.; Coyle, K.P.; Davison, I.; MacManes, M.D.; Roberts, R.; Summers, K. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol. Biol. 2019, 19, 85. [Google Scholar] [CrossRef]
- Tabak, M.A.; Norouzzadeh, M.S.; Wolfson, D.W.; Sweeney, S.J.; Vercauteren, K.C.; Snow, N.P.; Halseth, J.M.; Di Salvo, P.A.; Lewis, J.S.; White, M.D.; et al. Machine learning to classify animal species in camera trap images: Applications in ecology. Methods Ecol. Evol. 2018, 10, 585–590. [Google Scholar] [CrossRef]
- Toews, D.P.; Hofmeister, N.R.; Taylor, S.A. The Evolution and Genetics of Carotenoid Processing in Animals. Trends Genet. 2017, 33, 171–182. [Google Scholar] [CrossRef]
- Tripathi, D.; Bhattacharyya, C.; Basu, A. Deep learning insights into distinct patterns of polygenic adaptation across human populations. Nucleic Acids Res. 2024, 52, e102–e102. [Google Scholar] [CrossRef]
- Twumasi, G.; Wang, H.; Xi, Y.; Qi, J.; Li, L.; Bai, L.; Liu, H. Genome-Wide Association Studies Reveal Candidate Genes Associated with Pigmentation Patterns of Single Feathers of Tianfu Nonghua Ducks. Animals 2023, 14, 85. [Google Scholar] [CrossRef]
- Ullate-Agote, A.; Burgelin, I.; Debry, A.; Langrez, C.; Montange, F.; Peraldi, R.; Daraspe, J.; Kaessmann, H.; Milinkovitch, M.C.; Tzika, A.C. Genome mapping of a LYST mutation in corn snakes indicates that vertebrate chromatophore vesicles are lysosome-related organelles. Proc. Natl. Acad. Sci. 2020, 117, 26307–26317. [Google Scholar] [CrossRef]
- Upadhyay, V.R.; Ramesh, V.; Kumar, H.; Somagond, Y.M.; Priyadarsini, S.; Kuniyal, A.; Prakash, V.; Sahoo, A. Phenomics in Livestock Research: Bottlenecks and Promises of Digital Phenotyping and Other Quantification Techniques on a Global Scale. OMICS: A J. Integr. Biol. 2024, 28, 380–393. [Google Scholar] [CrossRef]
- Vöcking, O.; Macias-Muñoz, A.; Jaeger, S.J.; Oakley, T.H. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022, 11, 3966. [Google Scholar] [CrossRef]
- Wakamatsu K, Ito S. 2021. Melanins in Vertebrates. Pigment Pigment Cells Pigment Patterns [Internet]:45–89. Available from: https://link.springer.com/chapter/10.1007/978-981-16-1490-3_2.
- Wang, H.; Twumasi, G.; Xu, Q.; Xi, Y.; Qi, J.; Yang, Z.; Shen, Z.; Bai, L.; Li, L.; Liu, H. Identification of candidate genes associated with primary feathers of tianfu nonghua ducks based on Genome-wide association studies. Poult. Sci. 2024, 103, 103985. [Google Scholar] [CrossRef]
- Wattad, H.; Molcho, J.; Manor, R.; Weil, S.; Aflalo, E.D.; Chalifa-Caspi, V.; Sagi, A. Roadmap and Considerations for Genome Editing in a Non-Model Organism: Genetic Variations and Off-Target Profiling. Int. J. Mol. Sci. 2024, 25, 12530. [Google Scholar] [CrossRef]
- Woronik, A.; Tunström, K.; Perry, M.W.; Neethiraj, R.; Stefanescu, C.; Celorio-Mancera, M.d.l.P.; Brattström, O.; Hill, J.; Lehmann, P.; Käkelä, R.; et al. A transposable element insertion is associated with an alternative life history strategy. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Wu, S.; Chang, C.-M.; Mai, G.-S.; Rubenstein, D.R.; Yang, C.-M.; Huang, Y.-T.; Lin, H.-H.; Shih, L.-C.; Chen, S.-W.; Shen, S.-F. Artificial intelligence reveals environmental constraints on colour diversity in insects. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, L. AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships. Comput. Struct. Biotechnol. J. 2025, 27, 265–277. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, T.; Kim, S.; Lu, J.; Zhang, W.; Lin, C.-H.; Wu, M.-R.; Davis, A.; Channa, R.; Giancardo, L.; et al. iGWAS: Image-based genome-wide association of self-supervised deep phenotyping of retina fundus images. PLOS Genet. 2024, 20, e1011273. [Google Scholar] [CrossRef]
- Xu, X.-D.; Zhou, Y.; Wang, C.-Q.; Huang, X.; Zhang, K.; Xu, X.-W.; He, L.-W.; Zhang, X.-Y.; Fu, X.-Z.; Ma, M.; et al. Identification and effective regulation of scarb1 gene involved in pigmentation change in autotetraploid Carassius auratus. Zool. Res. 2024, 45, 381–397. [Google Scholar] [CrossRef]
- Yang, S.J.; Berndl, M.; Ando, D.M.; Barch, M.; Narayanaswamy, A.; Christiansen, E.; Hoyer, S.; Roat, C.; Hung, J.; Rueden, C.T.; et al. Assessing microscope image focus quality with deep learning. BMC Bioinform. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Ying, W. Phenomic Studies on Diseases: Potential and Challenges. Phenomics 2023, 3, 285–299. [Google Scholar] [CrossRef]
- Zhang, J.; Naik, H.S.; Assefa, T.; Sarkar, S.; Reddy, R.V.C.; Singh, A.; Ganapathysubramanian, B.; Singh, A.K. Computer vision and machine learning for robust phenotyping in genome-wide studies. Sci. Rep. 2017, 7, 44048. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, X.; Miao, H.; Chu, Y.; Cui, F.; Yang, W.; Xu, S.; Guo, J.; Fu, C.; Song, X.; et al. Imaged-based phenotyping accelerated QTL mapping and qtl × environment interaction analysis of testa colour in peanut (Arachis hypogaea). Plant Breed. 2021, 140, 884–895. [Google Scholar] [CrossRef]
- Zhang T, Choi J, Kovacs MA, Shi J, Xu M, Consortium MMA, Goldstein AM, Trower AJ, Bishop DT, Iles MM, Duffy DL, MacGregor S, Amundadottir LT, Law MH, Loftus SK, Pavan WJ, Brown KM, Barnabas BB, Bouffard GG, Brooks SY, Coleman H, Dekhtyar L, Guan X, Han J, Ho SL, Legaspi R, Maduro QL, Masiello CA, McDowell JC, Montemayor C, Mullikin JC, Park M, Riebow NL, Schandler K, Schmidt B, Sison C, Smith R, Stantripop S, Thomas JW, Thomas PJ, Vemulapalli M, Young AC. Cell-type-specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes. Genome Res 28:1621–1635.
- Zhu, X.; Zhang, J.; Hou, X.; Liu, P.; Lv, J.; Xing, Q.; Huang, X.; Hu, J.; Bao, Z. A Genome-Wide Association Study Identifies Candidate Genes Associated With Shell Color in Bay Scallop Argopecten irradians irradians. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Zogopoulos, V.L.; Saxami, G.; Malatras, A.; Papadopoulos, K.; Tsotra, I.; Iconomidou, V.A.; Michalopoulos, I. Approaches in Gene Coexpression Analysis in Eukaryotes. Biology 2022, 11, 1019. [Google Scholar] [CrossRef]

| Taxon/Species | Pigmentation Trait | AI/ML Method | Genomic Mapping Tool | Key Gene(s) Identified | Functional Role | Reference |
|---|---|---|---|---|---|---|
| Guppy fish | Male body coloration pattern | CNN pattern extraction | GWAS + CNV | Y-linked regions, novel autosomal loci | Chromatophore patterning, cell polarity | (van der Bijl et al., 2025) |
| Tianfu duck | Feather melanin distribution | DL segmentation | GWAS | DENND4A , PRKG1 | Vesicle trafficking, signal transduction | (Twumasi et al., 2024; Wang et al., 2024) |
| RIR chick | Back stripe phenotype | Pattern classifier | GWAS | TMTC3 | Transmembrane protein, development | (Shen et al., 2022) |
| Human (UK Biobank) | Retinal pigmentation | PCA + CNN embeddings | iGWAS | IFT122 , PDE3A , SIK1 | Ciliary transport, signaling | (Rajesh et al., 2025) |
| Bay scallop | Shell color variation | Color quantification | GWAS | PKS1 , GRL101 , PLC1 | Polyketide synthesis, calcium signaling | (Zhu et al., 2021) |
| Cattle (Sumatran) | Coat color morphs | AI + SNP modeling | GWAS | CYFIP2 , SGSM1 | Membrane dynamics, signaling | (Hartati et al., 2024) |
| Heliconius butterfly | Wing pattern geometry | Triplet network | QTL | Non-coding RNAs, regulatory elements | Pattern regulation | (Kronforst and Sheikh, 2023) |
| Papilio butterfly | Eye spot and scale color | Clustering analysis | Genomic scans | white , scarlet , lightoid | Pigment transporters | (Liu et al., 2021) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
