Submitted:
30 July 2025
Posted:
31 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Beginning of an Era
3. Poisson-Boltzmann Equation
4. Born Equation
5. The DelPhI Model
6. The APBS Model
7. The ABSINTH Model
8. Quasi-Chemical Theory
9. Transfer Free Energy Approach
10. The GBNSR6 Model
11. Implicit Quantum Models:
| Model | Key Feature | Mathematical Approach | Advantages | Applications |
| SM 5.4 | Designed for fast and efficient calculations. | Uses the GB model for electrostatic terms. Non-electrostatic terms (cavitation, dispersion, repulsion) are modeled using surface area and volume. |
Computationally efficient. Suitable for high-throughput screening. |
Studying neutral molecules in aqueous solutions. |
| SM 6 | An improved version of SM5.4. Includes more accurate parameterization |
Uses PCM or GB for electrostatic terms. Non-electrostatic terms are modeled with more detailed parameters. |
Higher accuracy than SM5.4. Still computationally efficient. |
Studying ionic solutions and solubility of organic molecules. |
| SM 7 | Focuses on improving non-electrostatic terms. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled with advanced empirical parameters. |
Better accuracy for non-electrostatic effects. | Solvation of polar and non-polar molecules in various solvents. |
| SM 8 | A universal model optimized for both ionic and neutral molecules. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled using surface area, volume and advanced empirical parameters. |
High accuracy for a wide range of solvents and solutes. | Drug design, ionic solutions, and solubility of organic molecules. |
| SMD | The most advanced SMx model. Designed as a universal solvation model. |
Uses PCM for electrostatic terms. Non-electrostatic terms are modeled using surface area, volume and empirical parameters (γγ, αα, ββ). |
High accuracy across a wide range of solvents and solutes. Compatible with DFT. |
Drug design, materials science, environmental chemistry (e.g., solubility of pollutants). |
| SM 12 | An extension of SMD with improved parameterization | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled with more refined empirical parameters. |
Enhanced accuracy for specific solvent-solute systems. | High-precision calculations for solvation free energies in complex systems. |
| SM x-NP | Designed for non-polar solvents and solutes. | Uses GB or PCM for electrostatic terms. Non-electrostatic terms are modeled with parameters optimized for non-polar interactions. |
Accurate for non-polar systems. | Studying organic semiconductors and polymers in non-polar solvents. |
| SM x-IL | Tailored for ionic liquids. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled with parameters optimized for ionic liquids. |
High accuracy for ionic liquid systems. | Studying solvation and reactivity in ionic liquids |
12. Some Applications in Biology
13. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABSINTH | self-Assembly of Biomolecules Studied by an Implicit, Novel, and Tunable Hamiltonian |
| APBS | Adaptive Poisson-Boltzmann Solver |
| ASA | Accessible surface area |
| CFA | Coloumb area approximation |
| CHA | The charge hydration asymmetry |
| COSMO | Conductor-like Screening Model |
| COSMO-RS | Conductor-like Screening Model-Real Solvent |
| DMFI | Direct mean-field interaction |
| FDBB | Finite Difference Poisson–Boltzmann |
| GB | Generalized Born model |
| GBNSR6 | Generalized Born R6 version |
| IDPs | Intrinsically disordered proteins |
| IWM-GB | Implicit water multipole Generalized Born |
| MD | Molecular dynamics |
| ML | Machine learning |
| PB | Poisson-Boltzmann equation |
| PCM | Polarizable Continuum Model |
| PDB | Finite-difference Poisson |
| PGNN | Physics-Guided Neural Network |
| SASA | Solvent-accessible surface area |
| SAV | Solvent-accessible volume |
| S-GB | Surface Generalized Born |
| SMD | Solvation Model based on Density |
| VISM | Level-Set Variational Implicit-Solvent Model |
References
- Ren, P.; Chun, J.; Thomas, D.G.; Schnieders, M.J.; Marucho, M.; Zhang, J.; Baker, N.A. Biomolecular Electrostatics and Solvation: A Computational Perspective. Q. Rev. Biophys. 2012, 45, 427–491. [Google Scholar] [CrossRef]
- Levy, Y.; Onuchic, J.N. WATER MEDIATION IN PROTEIN FOLDING AND MOLECULAR RECOGNITION. Annu. Rev. Biophys. 2006, 35, 389–415. [Google Scholar] [CrossRef]
- Persch, E.; Dumele, O.; Diederich, F. Molecular Recognition in Chemical and Biological Systems. Angew. Chem. Int. Ed. 2015, 54, 3290–3327. [Google Scholar] [CrossRef]
- Biomolecular Simulations in Structure-Based Drug Discovery | Methods and Principles in Medicinal Chemistry. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527806836 (accessed on 26 July 2025).
- Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents | Journal of Chemical Theory and Computation. Available online: https://pubs.acs.org/doi/10.1021/acs.jctc.7b00169 (accessed on 18 February 2025).
- Roux, B.; Simonson, T. Implicit Solvent Models. Biophys. Chem. 1999, 78, 1–20. [Google Scholar] [CrossRef]
- Sun, L.; Lei, Q.; Peng, B.; Kontogeorgis, G.M.; Liang, X. An Analysis of the Parameters in the Debye-Hückel Theory. Fluid Phase Equilibria 2022, 556, 113398. [Google Scholar] [CrossRef]
- Papazyan, A.; Warshel, A. Continuum and Dipole-Lattice Models of Solvation. J. Phys. Chem. B 1997, 101, 11254–11264. [Google Scholar] [CrossRef]
- Kleinjung, J.; Fraternali, F. Design and Application of Implicit Solvent Models in Biomolecular Simulations. Curr. Opin. Struct. Biol. 2014, 25, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Holst, M.J. The Poisson-Boltzmann Equation.
- Onufriev, A.V.; Case, D.A. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 2019, 48, 275–296. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Refinement and Parametrization of COSMO-RS | The Journal of Physical Chemistry A. Available online: https://pubs.acs.org/doi/10.1021/jp980017s (accessed on 29 June 2025).
- (PDF) SMx Continuum Models for Condensed Phases. In ResearchGate.
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. J. Phys. Chem. B 2009, 113, 4538–4543. [Google Scholar] [CrossRef]
- Gallicchio, E.; Paris, K.; Levy, R.M. The AGBNP2 Implicit Solvation Model. J. Chem. Theory Comput. 2009, 5, 2544–2564. [Google Scholar] [CrossRef]
- Gallicchio, E.; Levy, R.M. AGBNP: An analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 2004, 25, 479–499. [Google Scholar] [CrossRef]
- Tan, C.; Tan, Y.-H.; Luo, R. Implicit Nonpolar Solvent Models. J. Phys. Chem. B 2007, 111, 12263–12274. [Google Scholar] [CrossRef]
- Chandler, D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature 2005, 437, 640–647. [Google Scholar] [CrossRef]
- Vorobjev, Y.N. Chapter 8 - Advances in Implicit Models of Water Solvent to Compute Conformational Free Energy and Molecular Dynamics of Proteins at Constant pH. In Advances in Protein Chemistry and Structural Biology; Christov, C., Ed.; Computational chemistry methods in structural biology; Academic Press, 2011; Vol. 85, pp. 281–322. [Google Scholar]
- Jorgensen, W.L.; Tirado-Rives, J. The OPLS [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. [Google Scholar] [CrossRef]
- Pratt, L.R.; Chandler, D. Effects of Solute–Solvent Attractive Forces on Hydrophobic Correlations. J. Chem. Phys. 1980, 73, 3434–3441. [Google Scholar] [CrossRef]
- Huang, D.M.; Chandler, D. The Hydrophobic Effect and the Influence of Solute−Solvent Attractions. J. Phys. Chem. B 2002, 106, 2047–2053. [Google Scholar] [CrossRef]
- Gonçalves, P.F.B.; Stassen, H. Calculation of the Free Energy of Solvation from Molecular Dynamics Simulations. Pure Appl. Chem. 2004, 76, 231–240. [Google Scholar] [CrossRef]
- How Well Does Poisson−Boltzmann Implicit Solvent Agree with Explicit Solvent? A Quantitative Analysis | The Journal of Physical Chemistry B. Available online: https://pubs.acs.org/doi/10.1021/jp063479b (accessed on 26 July 2025).
- Parameterization of a Geometric Flow Implicit Solvation Model - Thomas - 2013 - Journal of Computational Chemistry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcc.23181 (accessed on 26 July 2025).
- Chen, Y.; Krämer, A.; Charron, N.E.; Husic, B.E.; Clementi, C.; Noé, F. Machine Learning Implicit Solvation for Molecular Dynamics. J. Chem. Phys. 2021, 155, 084101. [Google Scholar] [CrossRef] [PubMed]
- Vitalis, A.; Pappu, R.V. ABSINTH: A New Continuum Solvation Model for Simulations of Polypeptides in Aqueous Solutions. J. Comput. Chem. 2009, 30, 673–699. [Google Scholar] [CrossRef] [PubMed]
- Arsiccio, A.; Pisano, R.; Shea, J.-E. A New Transfer Free Energy Based Implicit Solvation Model for the Description of Disordered and Folded Proteins. J. Phys. Chem. B 2022, 126, 6180–6190. [Google Scholar] [CrossRef]
- Arsiccio, A.; Shea, J.-E. Protein Cold Denaturation in Implicit Solvent Simulations: A Transfer Free Energy Approach.
- Stultz, C.M. An Assessment of Potential of Mean Force Calculations with Implicit Solvent Models. J. Phys. Chem. B 2004, 108, 16525–16532. [Google Scholar] [CrossRef]
- Ballabio, F.; Paissoni, C.; Bollati, M.; de Rosa, M.; Capelli, R.; Camilloni, C. Accurate and Efficient SAXS/SANS Implementation Including Solvation Layer Effects Suitable for Molecular Simulations. J. Chem. Theory Comput. 2023, 19, 8401–8413. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493. [Google Scholar] [CrossRef]
- Brout, R. Molecular Field Theory, the Onsager Reaction Field and the Spherical Model. Phys. Phys. Fiz. 1967, 3, 317–329. [Google Scholar] [CrossRef]
- Implicit Solvent Methods for Free Energy Estimation - PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4310817/#abstract1 (accessed on 31 January 2025).
- Dzubiella, J.; Swanson, J.M.J.; McCammon, J.A. Coupling Nonpolar and Polar Solvation Free Energies in Implicit Solvent Models. J. Chem. Phys. 2006, 124. [Google Scholar] [CrossRef]
- Matos, G.D.R.; Kyu, D.Y.; Loeffler, H.H.; Chodera, J.D.; Shirts, M.R.; Mobley, D.L. Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. J. Chem. Eng. Data 2017, 62, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, R.A.; Thiel, A.C.; Lynn, J.R.; Casavant, T.L.; Ren, P.; Ponder, J.W.; Schnieders, M.J. A Generalized Kirkwood Implicit Solvent for the Polarizable AMOEBA Protein Model. J. Chem. Phys. 2023, 159, 054102. [Google Scholar] [CrossRef]
- Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; Mourik, T. van; Mitchell, J.B.O. A Review of Methods for the Calculation of Solution Free Energies and the Modelling of Systems in Solution. Phys. Chem. Chem. Phys. 2015, 17, 6174–6191. [Google Scholar] [CrossRef]
- Hermann, R.B. Theory of Hydrophobic Bonding. II. Correlation of Hydrocarbon Solubility in Water with Solvent Cavity Surface Area. J. Phys. Chem. 1972, 76, 2754–2759. [Google Scholar] [CrossRef]
- Knight, J.L.; Brooks, C.L. Surveying Implicit Solvent Models for Estimating Small Molecule Absolute Hydration Free Energies. J. Comput. Chem. 2011, 32, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Richards, F.M. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55, 379–IN4. [Google Scholar] [CrossRef]
- Sanner, M.F.; Olson, A.J.; Spehner, J.-C. Reduced Surface: An Efficient Way to Compute Molecular Surfaces. Biopolymers 1996, 38, 305–320. [Google Scholar] [CrossRef]
- Environment and Exposure to Solvent of Protein Atoms. Lysozyme and Insulin - ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/0022283673900119?via%3Dihub (accessed on 10 January 2025).
- Cavallo, L.; Kleinjung, J.; Fraternali, F. POPS: A Fast Algorithm for Solvent Accessible Surface Areas at Atomic and Residue Level. Nucleic Acids Res. 2003, 31, 3364–3366. [Google Scholar] [CrossRef]
- Ooi, T.; Oobatake, M.; Némethy, G.; Scheraga, H.A. Accessible Surface Areas as a Measure of the Thermodynamic Parameters of Hydration of Peptides. Proc. Natl. Acad. Sci. 1987, 84, 3086–3090. [Google Scholar] [CrossRef]
- Eisenberg, D.; McLachlan, A.D. Solvation Energy in Protein Folding and Binding. Nature 1986, 319, 199–203. [Google Scholar] [CrossRef]
- Still, W.C.; Tempczyk, A.; Hawley, R.C.; Hendrickson, T. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 1990, 112, 6127–6129. [Google Scholar] [CrossRef]
- Kleinjung, J.; Scott, W.R.P.; Allison, J.R.; van Gunsteren, W.F.; Fraternali, F. Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations. J. Chem. Theory Comput. 2012, 8, 2391–2403. [Google Scholar] [CrossRef] [PubMed]
- Variational Optimization of an All-Atom Implicit Solvent Force Field To Match Explicit Solvent Simulation Data | Journal of Chemical Theory and Computation. Available online: https://pubs.acs.org/doi/10.1021/ct400730n (accessed on 24 January 2025).
- A “Universal” Surface Area Correlation for Molecular Hydrophobic Phenomena | Journal of the American Chemical Society. Available online: https://pubs.acs.org/doi/10.1021/ja992119h?articleRef=control (accessed on 2 February 2025).
- Lum, K.; Chandler, D.; Weeks, J.D. Hydrophobicity at Small and Large Length Scales. J. Phys. Chem. B 1999, 103, 4570–4577. [Google Scholar] [CrossRef]
- Gallicchio, E.; Kubo, M.M.; Levy, R.M. Enthalpy−Entropy and Cavity Decomposition of Alkane Hydration Free Energies: Numerical Results and Implications for Theories of Hydrophobic Solvation. J. Phys. Chem. B 2000, 104, 6271–6285. [Google Scholar] [CrossRef]
- Hummer, G.; Garde, S.; García, A.E.; Paulaitis, M.E.; Pratt, L.R. Hydrophobic Effects on a Molecular Scale. J. Phys. Chem. B 1998, 102, 10469–10482. [Google Scholar] [CrossRef]
- Pierotti, R.A. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev. 1976, 76, 717–726. [Google Scholar] [CrossRef]
- Levy, R.M.; Zhang, L.Y.; Gallicchio, E.; Felts, A.K. On the Nonpolar Hydration Free Energy of Proteins: Surface Area and Continuum Solvent Models for the Solute−Solvent Interaction Energy. J. Am. Chem. Soc. 2003, 125, 9523–9530. [Google Scholar] [CrossRef] [PubMed]
- Pratt, L.R.; Chandler, D. Theory of the Hydrophobic Effect. J. Chem. Phys. 1977, 67, 3683–3704. [Google Scholar] [CrossRef]
- Petitjean, M. On the Analytical Calculation of van Der Waals Surfaces and Volumes: Some Numerical Aspects. J. Comput. Chem. 1994, 15, 507–523. [Google Scholar] [CrossRef]
- Calculating Total Electrostatic Energies with the Nonlinear Poisson-Boltzmann Equation | The Journal of Physical Chemistry. Available online: https://pubs.acs.org/doi/abs/10.1021/j100382a068 (accessed on 30 January 2025).
- Fisicaro, G.; Genovese, L.; Andreussi, O.; Marzari, N.; Goedecker, S. A Generalized Poisson and Poisson-Boltzmann Solver for Electrostatic Environments. J. Chem. Phys. 2016, 144, 014103. [Google Scholar] [CrossRef]
- Stein, C.J.; Herbert, J.M.; Head-Gordon, M. The Poisson–Boltzmann Model for Implicit Solvation of Electrolyte Solutions: Quantum Chemical Implementation and Assessment via Sechenov Coefficients. J. Chem. Phys. 2019, 151, 224111. [Google Scholar] [CrossRef] [PubMed]
- Improved Poisson–Boltzmann Methods for High-Performance Computing | Journal of Chemical Theory and Computation. Available online: https://pubs.acs.org/doi/10.1021/acs.jctc.9b00602 (accessed on 30 January 2025).
- Polat, M.; Polat, H. Analytical Solution of Poisson–Boltzmann Equation for Interacting Plates of Arbitrary Potentials and Same Sign. J. Colloid Interface Sci. 2010, 341, 178–185. [Google Scholar] [CrossRef]
- Morro, A.; Parodi, M. A Variational Approach to Non-Linear Dielectrics: Application to Polyelectrolytes. J. Electrost. 1987, 20, 219–232. [Google Scholar] [CrossRef]
- Parodi, M. Behaviour of Mobile Ions near a Charged Cylindrical Surface: Application to Linear Polyelectrolytes. J. Electrost. 1985, 17, 255–268. [Google Scholar] [CrossRef]
- Rocchia, W.; Sridharan, S.; Nicholls, A.; Alexov, E.; Chiabrera, A.; Honig, B. Rapid Grid-based Construction of the Molecular Surface and the Use of Induced Surface Charge to Calculate Reaction Field Energies: Applications to the Molecular Systems and Geometric Objects. J. Comput. Chem. 2002, 23, 128–137. [Google Scholar] [CrossRef]
- Decherchi, S.; Colmenares, J.; Catalano, C.E.; Spagnuolo, M.; Alexov, E.; Rocchia, W. Between Algorithm and Model: Different Molecular Surface Definitions for the Poisson-Boltzmann Based Electrostatic Characterization of Biomolecules in Solution. Commun. Comput. Phys. 2013, 13, 61–89. [Google Scholar] [CrossRef] [PubMed]
- Minimal Molecular Surfaces and Their Applications - Bates - 2008 - Journal of Computational Chemistry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcc.20796 (accessed on 31 January 2025).
- Zhang, Y.; Xu, G.; Bajaj, C. Quality Meshing of Implicit Solvation Models of Biomolecular Structures. Comput. Aided Geom. Des. 2006, 23, 510–530. [Google Scholar] [CrossRef]
- Improvements to the APBS Biomolecular Solvation Software Suite - PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5734301/#abstract1 (accessed on 30 January 2025).
- The Poisson–Boltzmann Equation - Lamm - 2003 - Reviews in Computational Chemistry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471466638.ch4 (accessed on 5 February 2025).
- Biomolecular Applications of Poisson–Boltzmann Methods - Baker - 2005 - Reviews in Computational Chemistry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/0471720895.ch5 (accessed on 5 February 2025).
- Bashford, D.; Case, D.A. Generalized Born Models of Macromolecular Solvation Effects. Annu. Rev. Phys. Chem. 2000, 51, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Fogolari, F.; Brigo, A.; Molinari, H. The Poisson–Boltzmann Equation for Biomolecular Electrostatics: A Tool for Structural Biology. J. Mol. Recognit. 2002, 15, 377–392. [Google Scholar] [CrossRef]
- Sigalov, G.; Scheffel, P.; Onufriev, A. Incorporating Variable Dielectric Environments into the Generalized Born Model. J. Chem. Phys. 2005, 122, 094511. [Google Scholar] [CrossRef]
- Generalized Born Model with a Simple Smoothing Function - Im - 2003 - Journal of Computational Chemistry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.10321?casa_token=_7UojeFH8asAAAAA%3A4Ese3GFJHCA-tlxPff1GMvTnAmwKSWvjjH1cSpF7QCWkHttrmlhmVpM4xU4qCxE54GuanF4wZ5Nbs-tX (accessed on 13 April 2025).
- Xu, Z.; Cai, W. Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations. SIAM Rev. Soc. Ind. Appl. Math. 2011, 53, 683–720. [Google Scholar] [CrossRef]
- Lazaridis, T.; Karplus, M. Effective Energy Function for Proteins in Solution. Proteins Struct. Funct. Genet. 1999, 35, 133–152. [Google Scholar] [CrossRef]
- Nicholls, A.; Honig, B. A Rapid Finite Difference Algorithm, Utilizing Successive Over-relaxation to Solve the Poisson–Boltzmann Equation. J. Comput. Chem. 1991, 12, 435–445. [Google Scholar] [CrossRef]
- Rocchia, W.; Alexov, E.; Honig, B. Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions. J. Phys. Chem. B 2001, 105, 6754–6754. [Google Scholar] [CrossRef]
- Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions | The Journal of Physical Chemistry B. Available online: https://pubs.acs.org/doi/10.1021/jp010454y (accessed on 26 July 2025).
- Li, C.; Jia, Z.; Chakravorty, A.; Pahari, S.; Peng, Y.; Basu, S.; Koirala, M.; Panday, S.K.; Petukh, M.; Li, L.; et al. DelPhi Suite: New Developments and Review of Functionalities. J. Comput. Chem. 2019, 40, 2502–2508. [Google Scholar] [CrossRef]
- Sharp, K.A.; Honig, B. Electrostatic Interactions in Macromolecules: Theory and Applications. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 301–332. [Google Scholar] [CrossRef]
- Rashin, A.A.; Malinsky, J. New Method for the Computation of Ionic Distribution around Rod-like Polyelectrolytes with the Helical Distribution of Charges. I. General Approach and a Nonlinearized Poisson–Boltzmann Equation. J. Comput. Chem. 1991, 12, 981–993. [Google Scholar] [CrossRef]
- Cortis, C.M.; Friesner, R.A. Numerical Solution of the Poisson–Boltzmann Equation Using Tetrahedral Finite-Element Meshes. J. Comput. Chem. 1997, 18, 1591–1608. [Google Scholar] [CrossRef]
- Solutions of the Full Poisson-Boltzmann Equation with Application to Diffusion-Controlled Reactions | The Journal of Physical Chemistry. Available online: https://pubs.acs.org/doi/pdf/10.1021/j100352a033 (accessed on 25 July 2025).
- Davis, M.E.; McCammon, J.A. Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradient methods. J. Comput. Chem. 1989, 10, 386–391. [Google Scholar] [CrossRef]
- Yoon, B.J.; Lenhoff, A.M. A Boundary Element Method for Molecular Electrostatics with Electrolyte Effects. J. Comput. Chem. 1990, 11, 1080–1086. [Google Scholar] [CrossRef]
- Cortis, C.M.; Friesner, R.A. An Automatic Three-Dimensional Finite Element Mesh Generation System for the Poisson–Boltzmann Equation. J. Comput. Chem. 1997, 18, 1570–1590. [Google Scholar] [CrossRef]
- Baker, N.; Holst, M.; Wang, F. Adaptive Multilevel Finite Element Solution of the Poisson–Boltzmann Equation II. Refinement at Solvent-Accessible Surfaces in Biomolecular Systems. J. Comput. Chem. 2000, 21, 1343–1352. [Google Scholar] [CrossRef]
- Holst, M.; Baker, N.; Wang, F. Adaptive Multilevel Finite Element Solution of the Poisson–Boltzmann Equation I. Algorithms and Examples. J. Comput. Chem. 2000, 21, 1319–1342. [Google Scholar] [CrossRef]
- Implicit Solvent Models and Stabilizing Effects of Mutations and Ligands on the Unfolding of the Amyloid β-Peptide Central Helix | Journal of Chemical Theory and Computation. Available online: https://pubs.acs.org/doi/10.1021/ct300941v?articleRef=control (accessed on 28 January 2025).
- Holehouse, A.S.; Das, R.K.; Ahad, J.N.; Richardson, M.O.G.; Pappu, R.V. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. Biophys. J. 2017, 112, 16–21. [Google Scholar] [CrossRef]
- Pavlović-Lažetić, G.M.; Mitić, N.S.; Kovačević, J.J.; Obradović, Z.; Malkov, S.N.; Beljanski, M.V. Bioinformatics Analysis of Disordered Proteins in Prokaryotes. BMC Bioinformatics 2011, 12, 66. [Google Scholar] [CrossRef]
- Structural Disorder in Eukaryotes | PLOS One. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034687 (accessed on 25 March 2025).
- Asthagiri, D.; Pratt, L.R.; Ashbaugh, H.S. Absolute Hydration Free Energies of Ions, Ion-Water Clusters, and Quasi-Chemical Theory. J. Chem. Phys. 2003, 119, 2702–2708. [Google Scholar] [CrossRef]
- Pratt, L.R.; Rempe, S.B. Quasi-Chemical Theory and Implicit Solvent Models for Simulations. In Proceedings of the Simulation and theory of electrostatic interactions in solution; 1999; pp. 172–201. [Google Scholar]
- The Potential Distribution Theorem and Models of Molecular Solutions. Available online: https://www.cambridge.org/core/books/the-potential-distribution-theorem-and-models-of-molecular-solutions/7CF20DDC1DD9D7BB9C976FB506DC4EE9 (accessed on 23 May 2025).
- Paulaitis, M.E.; Rpratt, L. Hydration Theory for Molecular Biophysics. In Advances in Protein Chemistry; Unfolded Proteins; Academic Press, 2002; Vol. 62, pp. 283–310. [Google Scholar]
- Widom, B. Potential-Distribution Theory and the Statistical Mechanics of Fluids. J. Phys. Chem. 1982, 86, 869–872. [Google Scholar] [CrossRef]
- Weber, O.C.; Uversky, V.N. How Accurate Are Your Simulations? Effects of Confined Aqueous Volume and AMBER FF99SB and CHARMM22/CMAP Force Field Parameters on Structural Ensembles of Intrinsically Disordered Proteins: Amyloid-β42 in Water. Intrinsically Disord. Proteins 2017, 5, e1377813. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef] [PubMed]
- Izadi, S.; Aguilar, B.; Onufriev, A.V. Protein–Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation. J. Chem. Theory Comput. 2015, 11, 4450–4459. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Li, Y.; Lei, T.; Wang, E.; Li, D.; Kang, Y.; Zhu, F.; Hou, T. farPPI: A Webserver for Accurate Prediction of Protein-Ligand Binding Structures for Small-Molecule PPI Inhibitors by MM/PB(GB)SA Methods. Bioinformatics 2019, 35, 1777–1779. [Google Scholar] [CrossRef]
- Forouzesh, N. Binding Free Energy of the Novel Coronavirus Spike Protein and the Human ACE2 Receptor: An MMGB/SA Computational Study. In Proceedings of the Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Virtual Event USA, 21 September 2020; ACM, 2020; pp. 1–7. [Google Scholar]
- Cain, S.; Risheh, A.; Forouzesh, N. A Physics-Guided Neural Network for Predicting Protein–Ligand Binding Free Energy: From Host–Guest Systems to the PDBbind Database. Biomolecules 2022, 12, 919. [Google Scholar] [CrossRef]
- Tolokh, I.S.; Folescu, D.E.; Onufriev, A.V. Inclusion of Water Multipoles into the Implicit Solvation Framework Leads to Accuracy Gains. J. Phys. Chem. B 2024, 128, 5855–5873. [Google Scholar] [CrossRef] [PubMed]
- Communication: Constructing an Implicit Quantum Mechanical/Molecular Mechanics Solvent Model by Coarse-Graining Explicit Solvent | The Journal of Chemical Physics | AIP Publishing. Available online: https://pubs.aip.org/aip/jcp/article/139/8/081103/74222/Communication-Constructing-an-implicit-quantum (accessed on 6 February 2025).
- Guerard, J.J.; Arey, J.S. Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds. J. Chem. Theory Comput. 2013, 9, 5046–5058. [Google Scholar] [CrossRef]
- Chen, D. Modeling and Computation of Heterogeneous Implicit Solvent and Its Applications for Biomolecules. Comput. Math. Biophys. 2014, 2, 107–127. [Google Scholar] [CrossRef]
- On the Induced-fit Mechanism of Substrate-enzyme Binding Structures of Nylon-oligomer Hydrolase - Baba - 2014 - Journal of Computational Chemistry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcc.23614 (accessed on 22 May 2025).
- Development and Testing of a General Amber Force Field - Wang - 2004 - Journal of Computational Chemistry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcc.20035 (accessed on 22 May 2025).
- Pacifici, L.; Verdicchio, M.; Lago, N.F.; Lombardi, A.; Costantini, A. A High-Level Ab Initio Study of the N2 + N2 Reaction Channel. J. Comput. Chem. 2013, 34, 2668–2676. [Google Scholar] [CrossRef]
- Xu, W.; Bai, W. The Selenium Oxygen Clusters SeOn (n = 1–5) and Their Anions: Structures and Electron Affinities. J. Mol. Struct. THEOCHEM 2008, 863, 1–8. [Google Scholar] [CrossRef]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
- Simple Surfactant Concentration-Dependent Shape Control of Polyhedral Fe3O4 Nanoparticles and Their Magnetic Properties - Ge - 2015 - ChemPhysChem - Wiley Online Library. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.201500605 (accessed on 22 May 2025).
- Solvation Free Energies for Aqueous and Nonaqueous Solutions Computed Using PM7 Atomic Charges | Journal of Chemical Information and Modeling. Available online: https://pubs.acs.org/doi/10.1021/acs.jcim.1c00885?ref=PDF (accessed on 29 June 2025).
- Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena | The Journal of Physical Chemistry. Available online: https://pubs.acs.org/doi/abs/10.1021/j100007a062 (accessed on 29 June 2025).
- Klamt, A.; Moya, C.; Palomar, J. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. J. Chem. Theory Comput. 2015, 11, 4220–4225. [Google Scholar] [CrossRef]
- Evaluating the COSMO-RS Method for Modeling Hydrogen Bonding in Solution - Tshepelevitsh - 2013 - ChemPhysChem - Wiley Online Library. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.201300186 (accessed on 29 June 2025).
- Eslami, H.; Khanjari, N.; Müller-Plathe, F. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation. J. Chem. Theory Comput. 2017, 13, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qi, R.; Wang, Q.; Piquemal, J.-P.; Ren, P. Capturing Many-Body Interactions with Classical Dipole Induction Models. J. Chem. Theory Comput. 2017, 13, 2751–2761. [Google Scholar] [CrossRef] [PubMed]
- COSMO-RS: An Alternative to Simulation for Calculating Thermodynamic Properties of Liquid Mixtures | Annual Reviews. Available online: https://www.annualreviews.org/content/journals/10.1146/annurev-chembioeng-073009-100903 (accessed on 29 June 2025).
- COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient - Journal of the Chemical Society, Perkin Transactions 2 (RSC Publishing). Available online: https://pubs.rsc.org/en/content/articlelanding/1993/p2/p29930000799 (accessed on 29 June 2025).
- On the Influence of Basis Sets and Quantum Chemical Methods on the Prediction Accuracy of COSMO-RS - Physical Chemistry Chemical Physics (RSC Publishing). Available online: https://pubs.rsc.org/en/content/articlelanding/2011/cp/c1cp22317h (accessed on 29 June 2025).
- Jiang, W. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS). J. Chem. Theory Comput. 2019, 15, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, M.; Cargnoni, F.; Penconi, M.; Bossi, A.; Ceresoli, D. Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes. J. Chem. Theory Comput. 2020, 16, 1188–1199. [Google Scholar] [CrossRef]
- Calculation of Solvent Shifts on Electronic G-Tensors with the Conductor-Like Screening Model (COSMO) and Its Self-Consistent Generalization to Real Solvents (Direct COSMO-RS) | The Journal of Physical Chemistry A. Available online: https://pubs.acs.org/doi/10.1021/jp056016z (accessed on 29 June 2025).
- Kang, W.; Jiang, F.; Wu, Y.-D.; Wales, D.J. Multifunnel Energy Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its Mutants. J. Chem. Theory Comput. 2020, 16, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Sachet, E.; Aspnes, D.E.; Maria, J.-P.; Franzen, S. Critical Test of the Interaction of Surface Plasmon Resonances with Molecular Vibrational Transitions. J. Phys. Chem. A 2020, 124, 1744–1753. [Google Scholar] [CrossRef]
- Barca, G.M.J.; McKenzie, S.C.; Mannix, E.J.; Gilbert, A.T.B.; Gill, P.M.W. Q-MP2-OS: Møller–Plesset Correlation Energy by Quadrature. J. Chem. Theory Comput. 2020, 16, 1568–1577. [Google Scholar] [CrossRef]
- Lengyel, J.; Pysanenko, A.; Swiderek, P.; Heiz, U.; Fárník, M.; Fedor, J. Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. J. Phys. Chem. A 2021, 125, 1919–1926. [Google Scholar] [CrossRef]
- Michaelis, M.; Delle Piane, M.; Rothenstein, D.; Perry, C.C.; Colombi Ciacchi, L. Lessons from a Challenging System: Accurate Adsorption Free Energies at the Amino Acid/ZnO Interface. J. Chem. Theory Comput. 2021, 17, 4420–4434. [Google Scholar] [CrossRef]
- Lambert, C.; Hoche, J.; Schreck, M.H.; Holzapfel, M.; Schmiedel, A.; Selby, J.; Turkin, A.; Mitric, R. Ultrafast Energy Transfer Dynamics in a Squaraine Heterotriad. J. Phys. Chem. A 2021, 125, 2504–2511. [Google Scholar] [CrossRef] [PubMed]
- Giesen, D.J.; Hawkins, G.D.; Liotard, D.A.; Cramer, C.J.; Truhlar, D.G. A Universal Model for the Quantum Mechanical Calculation of Free Energies of Solvation in Non-Aqueous Solvents. Theor. Chem. Acc. 1997, 98, 85–109. [Google Scholar] [CrossRef]
- Chamberlin, A.C.; Cramer, C.J.; Truhlar, D.G. Performance of SM8 on a Test To Predict Small-Molecule Solvation Free Energies. J. Phys. Chem. B 2008, 112, 8651–8655. [Google Scholar] [CrossRef]
- 7.50. Implicit Solvation Models - ORCA 6.0 Manual. Available online: https://www.faccts.de/docs/orca/6.0/manual/contents/detailed/solvationmodels.html (accessed on 30 June 2025).
- Methods To Improve the Calculations of Solvation Model Density Solvation Free Energies and Associated Aqueous pKa Values: Comparison between Choosing an Optimal Theoretical Level, Solute Cavity Scaling, and Using Explicit Solvent Molecules | The Journal of Physical Chemistry A. Available online: https://pubs.acs.org/doi/10.1021/acs.jpca.9b04920 (accessed on 29 June 2025).
- Improving Solvation Energy Predictions Using the SMD Solvation Method and Semiempirical Electronic Structure Methods | The Journal of Chemical Physics | AIP Publishing. Available online: https://pubs.aip.org/aip/jcp/article-abstract/149/10/104102/196171/Improving-solvation-energy-predictions-using-the?redirectedFrom=fulltext (accessed on 29 June 2025).
- Bauer, M.N.; Probert, M.I.J.; Panosetti, C. Systematic Comparison of Genetic Algorithm and Basin Hopping Approaches to the Global Optimization of Si(111) Surface Reconstructions. J. Phys. Chem. A 2022, 126, 3043–3056. [Google Scholar] [CrossRef]
- Bernales, V.S.; Marenich, A.V.; Contreras, R.; Cramer, C.J.; Truhlar, D.G. Quantum Mechanical Continuum Solvation Models for Ionic Liquids. J. Phys. Chem. B 2012, 116, 9122–9129. [Google Scholar] [CrossRef]
- Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids | Topics in Current Chemistry. Available online: https://link.springer.com/article/10.1007/s41061-017-0142-7 (accessed on 29 June 2025).
- Coskuner-Weber, O.; Mirzanli, O.; Uversky, V.N. Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions in Neurodegenerative Diseases. Biophys. Rev. 2022, 14, 679–707. [Google Scholar] [CrossRef]
- Best, R.B. Computational and Theoretical Advances in Studies of Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2017. [Google Scholar] [CrossRef]
- Katkova, E.V.; Onufriev, A.V.; Aguilar, B.; Sulimov, V.B. Accuracy Comparison of Several Common Implicit Solvent Models and Their Implementations in the Context of Protein-Ligand Binding. J. Mol. Graph. Model. 2017, 72, 70–80. [Google Scholar] [CrossRef]
- Guo, Z.; Li, B.; Cheng, L.-T.; Zhou, S.; McCammon, J.A.; Che, J. Identification of Protein–Ligand Binding Sites by the Level-Set Variational Implicit-Solvent Approach. J. Chem. Theory Comput. 2015, 11, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Chocholoušová, J.; Feig, M. Implicit Solvent Simulations of DNA and DNA−Protein Complexes: Agreement with Explicit Solvent vs Experiment. J. Phys. Chem. B 2006, 110, 17240–17251. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, N.V.; Panda, M.; Yang, Q.; Sharp, K.A. Explicit Ion, Implicit Water Solvation for Molecular Dynamics of Nucleic Acids and Highly Charged Molecules. J. Comput. Chem. 2008, 29, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
