Submitted:
25 July 2025
Posted:
28 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The General Characteristic of Gamma Cas-Type Stars
3. Optical Spectra of Gamma Cas-Type Stars
4. Line Profile Variability
5. X-Ray Variability
6. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porter, J.M.; Rivinius, T. Classical Be Stars. PASP 2003, 115, 1153–1170. [Google Scholar] [CrossRef]
- Rivinius, T.; Klement, R. Classical Be stars. arXiv e-prints 2024, arXiv:2411.06882. [Google Scholar] [CrossRef]
- Rivinius, T.; Carciofi, A.C.; Martayan, C. Classical Be stars. Rapidly rotating B stars with viscous Keplerian decretion disks. Astronomy and Astrophysics Review 2013, arXiv:astro-ph.SR/1310.396221, 69. [Google Scholar] [CrossRef]
- Silaj, J.; Jones, C.E.; Tycner, C.; Sigut, T.A.A.; Smith, A.D. A Systematic Study of Hα Profiles of Be Stars. APJS 2010, 187, 228–250. [Google Scholar] [CrossRef]
- Kholtygin, A.F.; Dodin, A.V.; Yakunin, I.A.; Ryspaeva, E.B. Optical and X-Ray Variability of Be Stars: omega Ori. Astrophysical Bulletin 2025, 81, 49–56. [Google Scholar] [CrossRef]
- Baade, D.; Labadie-Bartz, J.; Rivinius, T.; Carciofi, A.C. The historical active episodes of the disks around γ Cassiopeiae (B0.5 IVe) and 59 Cygni (B1 IVe) revisited. AAP 2023, 678, A47. [Google Scholar] [CrossRef]
- Makarenko, E.I.; Igoshev, A.P.; Kholtygin, A.F. Testing the fossil field hypothesis: could strongly magnetized OB stars produce all known magnetars? MNRAS 2021, arXiv:astro-ph.HE/2104.10579]504, 5813–5828. [Google Scholar] [CrossRef]
- Hubrig, S.; Ilyin, I.; Kholtygin, A.F.; Schöller, M.; Skarka, M. Searching for the presence of a weak magnetic field in the Be star λ Eri using FORS 2 spectropolarimetric time series. Astronomische Nachrichten 2017, 338, 926–937. [Google Scholar] [CrossRef]
- Valyavin, G.; Ikhsanov, N.R.; Beskrovnaya, N.G.; Gadelshin, D.; Galazutdinov, G.A.; Semenko, E.; Romanyuk, I.I.; Kholtygin, A.F.; Sabin, L.; Hiriart, D.; et al. Possible Detection of a Magnetic Field in X Persei. In Proceedings of the Stars: From Collapse to Collapse; Balega, Y.Y.; Kudryavtsev, D.O.; Romanyuk, I.I.; Yakunin, I.A., Eds., Vol. 510, Astronomical Society of the Pacific Conference Series; 2017; p. 229. [Google Scholar]
- Grunhut, J.H.; Wade, G.A.; MiMeS Collaboration. The incidence of magnetic fields in massive stars: An overview of the MiMeS survey component. In Proceedings of the Stellar Polarimetry: from Birth to Death; American Institute of Physics Conference Series. Hoffman, J.L., Bjorkman, J., Whitney, B., Eds.; 2012; pp. 67–74. [Google Scholar] [CrossRef]
- Wade, G.A.; Petit, V.; Grunhut, J.H.; Neiner, C.; MiMeS Collaboration. Magnetic Fields of Be Stars: Preliminary Results from a Hybrid Analysis of the MiMeS Sample. In Proceedings of the Bright Emissaries: Be Stars as Messengers of Star-Disk Physics; Astronomical Society of the Pacific Conference Series. Sigut, T.A.A., Jones, C.E., Eds.; 2016; 506, p. 207. [Google Scholar]
- ud-Doula, A.; Owocki, S.P.; Kee, N.D. Disruption of circumstellar discs by large-scale stellar magnetic fields. MNRAS 2018, arXiv:astro-ph.SR/1805.03001]478, 3049–3055. [Google Scholar] [CrossRef]
- Nazé, Y.; Robrade, J. SRG/eROSITA survey of Be stars. MNRAS 2023, arXiv:astro-ph.SR/2307.13308]525, 4186–4201. [Google Scholar] [CrossRef]
- Nazé, Y.; Motch, C. Hot stars observed by XMM-Newton. II. A survey of Oe and Be stars. AAP 2018, arXiv:astro-ph.SR/1809.03341]619, A148. [Google Scholar] [CrossRef]
- Kholtygin, A.K.; Burlak, M.A.; Tsiopa, O.A. Unusual Fast Spectral Variability of γ Cas. Astronomicheskij Tsirkulyar 2021, 1649, 1. [Google Scholar] [CrossRef]
- Kholtygin, A.F.; Yakunin, I.A.; Bukharinov, V.S.; Mokshin, D.N.; Ryspaeva, E.B.; Tsiopa, O.A. Optical and X-Ray Variability of gamma Cas Stars II: SAO 49725. Astrophysical Bulletin 2024, 79, 437–444. [Google Scholar] [CrossRef]
- Kholtygin, A.F.; Yakunin, I.A.; Burlak, M.A.; Ryspaeva, E.B. Optical and X-ray Variability of gamma Cas Stars: HD 45995. Astrophysical Bulletin 2023, 78, 557–566. [Google Scholar] [CrossRef]
- Kholtygin, A.F.; Dodin, A.V.; Yakunin, I.A.; Ryspaeva, E.B. Optical and X-Ray Variability of gamma Cas Stars: V558 Lyr. Astrophysical Bulletin 2025, 81, in. [Google Scholar]
- Smith, M.A.; Lopes de Oliveira, R.; Motch, C. A Census of the Class of X-ray Active γ Cas Stars. In Proceedings of the Bright Emissaries: Be Stars as Messengers of Star-Disk Physics; Sigut, T.A.A.; Jones, C.E., Eds., Vol. 506, Astronomical Society of the Pacific Conference Series; 2016; p. 299. [Google Scholar]
- Nazé, Y.; Motch, C.; Rauw, G.; Kumar, S.; Robrade, J.; Lopes de Oliveira, R.; Smith, M.A.; Torrejón, J.M. Three discoveries of γ Cas analogues from dedicated XMM-Newton observations of Be stars. MNRAS 2020, arXiv:astro-ph.SR/2002.05415]493, 2511–2517. [Google Scholar] [CrossRef]
- Nazé, Y.; Rauw, G.; Smith, M.A.; Motch, C. The X-ray emission of Be+stripped star binaries. MNRAS 2022, arXiv:astro-ph.SR/2208.03990]516, 3366–3380. [Google Scholar] [CrossRef]
- Kholtygin, A.F.; Ryspaeva, E.B.; Yakunin, I.A.; Tsiopa, O.A. Variability of optical and X-ray spectra of Gamma Cassiopeia stars. INASAN Science Reports 2023, 8, 86–92. [Google Scholar] [CrossRef]
- Krtička, J.; Kurfürst, P.; Krtičková, I. Magnetorotational instability in decretion disks of critically rotating stars and the outer structure of Be and Be/X-ray disks. AAP 2015, arXiv:astro-ph.SR/1410.7831]573, A20. [Google Scholar] [CrossRef]
- Rauw, G.; Nazé, Y.; Motch, C.; Smith, M.A.; Guarro Fló, J.; Lopes de Oliveira, R. The X-ray Emission of γ Cassiopeiae During the 2020-2021 Disc Eruption. AAP 2022, arXiv:astro-ph.SR/2206.08730]664, A184. [Google Scholar] [CrossRef]
- Draper, Z.H.; Wisniewski, J.P.; Bjorkman, K.S.; Meade, M.R.; Haubois, X.; Mota, B.C.; Carciofi, A.C.; Bjorkman, J.E. Disk-loss and Disk-renewal Phases in Classical Be Stars. II. Contrasting with Stable and Variable Disks. APJ 2014, arXiv:astro-ph.SR/1402.5240]786, 120. [Google Scholar] [CrossRef]
- Wisniewski, J.P.; Draper, Z.H.; Bjorkman, K.S.; Meade, M.R.; Bjorkman, J.E.; Kowalski, A.F. Disk-Loss and Disk-Renewal Phases in Classical Be Stars. I. Analysis of Long-Term Spectropolarimetric Data. APJ 2010, arXiv:astro-ph.SR/0912.1504]709, 1306–1320. [Google Scholar] [CrossRef]
- Miroshnichenko, A.S.; Bjorkman, K.S.; Krugov, V.D. Binary Nature and Long-Term Variations of γ Cassiopeiae. PASP 2002, 114, 1226–1233. [Google Scholar] [CrossRef]
- Bjorkman, K.S.; Miroshnichenko, A.S.; McDavid, D.; Pogrosheva, T.M. A Study of π Aquarii during a Quasi-normal Star Phase: Refined Fundamental Parameters and Evidence for Binarity. ApJ 2002, 573, 812–824. [Google Scholar] [CrossRef]
- Ruždjak, D.; Božić, H.; Harmanec, P.; Fiřt, R.; Chadima, P.; Bjorkman, K.; Gies, D.R.; Kaye, A.B.; Koubský, P.; McDavid, D.; et al. Properties and nature of Be stars. 26. Long-term and orbital changes of ζ Tauri. A&A 2009, 506, 1319–1333. [Google Scholar] [CrossRef]
- Nazé, Y.; Rauw, G.; Czesla, S.; Smith, M.A.; Robrade, J. Velocity monitoring of γ Cas stars reveals their binarity status. MNRAS 2022, arXiv:astro-ph.SR/2111.09579510, 2286–2304. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Hayashi, T.; Morihana, K.; Moritani, Y. X-ray and optical spectroscopic study of a γ Cassiopeiae analog source π Aquarii. PASJ 2023, arXiv:astro-ph.HE/2211.1080375, 177–186. [Google Scholar] [CrossRef]
- Klement, R.; Rivinius, T.; Gies, D.R.; Baade, D.; Mérand, A.; Monnier, J.D.; Schaefer, G.H.; Lanthermann, C.; Anugu, N.; Kraus, S.; et al. The CHARA Array Interferometric Program on the Multiplicity of Classical Be Stars: New Detections and Orbits of Stripped Subdwarf Companions. APJ 2024, arXiv:astro-ph.SR/2312.08252962, 70. [Google Scholar] [CrossRef]
- Gies, D.R.; Wang, L.; Klement, R. Gamma Cas Stars as Be+White Dwarf Binary Systems. ApJ Letters 2023, arXiv:astro-ph.SR/2212.06916942, L6. [Google Scholar] [CrossRef]
- Wang, L.; Gies, D.R.; Peters, G.J.; Han, Z. The Orbital and Physical Properties of Five Southern Be+sdO Binary Systems. AJ 2023, arXiv:astro-ph.SR/2303.12616165, 203. [Google Scholar] [CrossRef]
- Secchi, A. Schreiben des Herrn Prof. Secchi, Directors der Sternwarte des Collegio Romano, an den Herausgeber. Astronomische Nachrichten 1866, 68, 63. [Google Scholar] [CrossRef]
- Campbell, W.W. Stars whose spectra contain both bright and dark hydrogen lines. APJ 1895, 2, 177–183. [Google Scholar] [CrossRef]
- Merrill, P.W.; Humason, M.L.; Burwell, C.G. Discovery and Observations of Stars of Class Be. APJ 1925, 61, 389–417. [Google Scholar] [CrossRef]
- Merrill, P.W.; Burwell, C.G. Catalogue and Bibliography of Stars of Classes B and A whose Spectra have Bright Hydrogen Lines. APJ 1933, 78, 87. [Google Scholar] [CrossRef]
- Struve, O. On the Origin of Bright Lines in Spectra of Stars of Class B. APJ 1931, 73, 94. [Google Scholar] [CrossRef]
- Neiner, C.; de Batz, B.; Cochard, F.; Floquet, M.; Mekkas, A.; Desnoux, V. The Be Star Spectra (BeSS) Database. AJ 2011, 142, 149. [Google Scholar] [CrossRef]
- Neiner, C. The BeSS database: a fruitful professional-amateur collaboration. In Proceedings of the SF2A-2018: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics. [CrossRef]
- Kholtygin, A.; Yakunin, I.; Ryspaeva, E.; Mokshin, D. A nature of the X-ray and optical emission from gamma Cassiopeia stars. In Proceedings of the Modern Astronomy: From the Early Universe to Exoplanets and Black Holes (VAK 2024, 2024, pp. [Google Scholar] [CrossRef]
- Ikonnikova, N.P.; Shaposhnikov, I.A.; Esipov, V.F.; Burlak, M.A.; Arkhipova, V.P.; Dodin, A.V.; Potanin, S.A.; Shatsky, N.I. Spectroscopic Variability of the Compact Planetary Nebula Hb 12. Astronomy Letters 2021, arXiv:astro-ph.SR/2111.0049147, 560–580. [Google Scholar] [CrossRef]
- Pollmann, E.; Vollmann, W.; Henry, G.W. Long-term monitoring of Halpha emission strength and photometric V magnitude of gamma Cas. Information Bulletin on Variable Stars 2014, 6109, 1. [Google Scholar]
- Kholtygin, A.F.; Moiseeva, A.V.; Kurdoyakova, M.S.; Yakunin, I.A.; Kostenkov, A.E.; Karataeva, G.M. Super-Fast Line-Profile Variability in the Spectra of OBA Stars. IV: ζ Ori A. Astrophysical Bulletin 2021, 76, 185–195. [Google Scholar] [CrossRef]
- Kogure, T.; Hirata, R. The Be star phenomena. I. General properties. Bulletin of the Astronomical Society of India 1982, 10, 281–309. [Google Scholar]
- Borre, C.C.; Baade, D.; Pigulski, A.; Panoglou, D.; Weiss, A.; Rivinius, T.; Handler, G.; Moffat, A.F.J.; Popowicz, A.; Wade, G.A.; et al. Short-term variability and mass loss in Be stars. V. Space photometry and ground-based spectroscopy of γ Cas. AAP 2020, arXiv:astro-ph.SR/2002.04646635, A140. [Google Scholar] [CrossRef]
- Okazaki, A.T. Long-Term V/R Variations of Be Stars Due to Global One-Armed Oscillations of Equatorial Disks. PASJ 1991, 43, 75–94. [Google Scholar] [CrossRef]
- Panchuk, V.E.; Chuntonov, G.A.; Naidenov, I.D. Main stellar spectrograph of the 6-meter telescope. Analysis, reconstruction, and operation. Astrophysical Bulletin 2014, 69, 339–355. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Moiseev, A.V. The SCORPIO Universal Focal Reducer of the 6-m Telescope. Astronomy Letters 2005, 31, 194–204. [Google Scholar] [CrossRef]
- Nazé, Y.; Pigulski, A.; Rauw, G.; Smith, M.A. Let there be more variability in two γ Cas stars. MNRAS 2020, arXiv:astro-ph.SR/2002.12656494, 958–974. [Google Scholar] [CrossRef]
- Smith, M.A.; Henry, G.W.; Vishniac, E. Rotational and Cyclical Variability in γ Cassiopeia. APJ 2006, 647, 1375–1386. [Google Scholar] [CrossRef]
- Henry, G.W.; Smith, M.A. Rotational and Cyclical Variability in γ Cassiopeiae. II. Fifteen Seasons. APJ 2012, arXiv:astro-ph.SR/1209.4394760, 10. [Google Scholar] [CrossRef]
- Nazé, Y.; Rauw, G.; Pigulski, A. TESS light curves of γ Cas stars. MNRAS 2020, arXiv:astro-ph.SR/2008.08334498, 3171–3183. [Google Scholar] [CrossRef]
- Labadie-Bartz, J.; Baade, D.; Carciofi, A.C.; Rubio, A.; Rivinius, T.; Borre, C.C.; Martayan, C.; Siverd, R.J. Short-term variability and mass loss in Be stars - VI. Frequency groups in γ Cas detected by TESS. MNRAS 2021, arXiv:astro-ph.SR/2012.06454502, 242–259. [Google Scholar] [CrossRef]
- Ramsay, G.; Hakala, P.; Charles, P.A. A TESS search for donor-star pulsations in high-mass X-ray binaries. MNRAS 2022, arXiv:astro-ph.SR/2208.02064516, 1219–1236. [Google Scholar] [CrossRef]
- Gunderson, S.J.; Huenemoerder, D.P.; Torrejón, J.M.; Swarm, D.K.; Nichols, J.S.; Pradhan, P.; Ignace, R.; Guenther, H.M.; Pollock, A.M.T.; Schulz, N.S. A Time-dependent Spectral Analysis of γ Cassiopeiae. APJ 2025, arXiv:astro-ph.HE/2411.11825978, 105. [Google Scholar] [CrossRef]
- Ryspaeva, E.B.; Kholtygin, A.F. A possible nonthermal X-ray emission from γ Cas analogues stars. Open Astronomy 2021, 30, 132–143. [Google Scholar] [CrossRef]
- Bruch, A. Flickering in cataclysmic variables : its properties and origins. AAP 1992, 266, 237–265. [Google Scholar]
- Smith, M.A.; Lopes de Oliveira, R.; Motch, C. Characterization of the X-Ray Light Curve of the γ Cas-like B1e Star HD 110432. APJ 2012, arXiv:astro-ph.HE/1206.1377755, 64. [Google Scholar] [CrossRef]
- Smith, M.A.; Lopes de Oliveira, R. Soft and hard X-ray dips in the light curves of γ Cassiopeiae. MNRAS 2019, arXiv:astro-ph.SR/1907.11782488, 5048–5056. [Google Scholar] [CrossRef]
- Parmar, A.N.; Israel, G.L.; Stella, L.; White, N.E. The X-ray time variability and spectrum of gamma Cassiopeiae (X 0053+604). AAP 1993, 275, 227–235. [Google Scholar]
- Horaguchi, T.; Kogure, T.; Hirata, R.; Kawai, N.; Matsuoka, M.; Murakami, T.; Doazan, V.; Slettebak, A.; Huang, C.C.; Cao, H.; et al. The Be Star Gamma Cassiopeiae: X-Ray, Far-UV, and Optical Observations in Early 1989. PASJ 1994, 46, 9–26. [Google Scholar] [CrossRef]
- Frontera, F.; dal Fiume, D.; Robba, N.R.; Manzo, G.; Re, S.; Costa, E. Time Variability of Gamma Cassiopeiae in X-Rays. APJl 1987, 320, L127. [Google Scholar] [CrossRef]
- Haberl, F. γ Cassiopeiae: evidence for a Be star/white dwarf X-ray binary? AAP 1995, 296, 685. [Google Scholar]
- Owens, A.; Oosterbroek, T.; Parmar, A.N.; Schulz, R.; Stüwe, J.A.; Haberl, F. BeppoSAX broad-band observations of Gamma Cassiopeiae. AAP 1999, 348, 170–174. [Google Scholar] [CrossRef]
- Smith, M.A.; Robinson, R.D.; Corbet, R.H.D. A Multiwavelength Campaign on γ Cassiopeiae. I. The Case for Surface X-Ray Flaring. APJ 1998, 503, 877–893. [Google Scholar] [CrossRef]
- Robinson, R.D.; Smith, M.A. A Search for Rotational Modulation of X-Ray Centers on the Classical BE Star γ Cassiopeiae. APJ 2000, 540, 474–488. [Google Scholar] [CrossRef]
- Murakami, T.; Koyama, K.; Inoue, H.; Agrawal, P.C. X-Ray Spectrum from Gamma Cassiopeiae. APJl 1986, 310, L31. [Google Scholar] [CrossRef]
- Kubo, S.; Murakami, T.; Ishida, M.; Corbet, R.H.D. ASCA X-Ray Observations of Gamma Cassiopeiae. PASJ 1998, 50, 417–426. [Google Scholar] [CrossRef]
- Smith, M.A.; Robinson, R.D.; Hatzes, A.P. A Multiwavelength Campaign on γ Cassiopeiae. II. The Case for Corotating, Circumstellar Clouds. APJ 1998, 507, 945–954. [Google Scholar] [CrossRef]
- Smith, M.A.; Robinson, R.D. A Multiwavelength Campaign on γ Cassiopeiae. III. The Case for Magnetically Controlled Circumstellar Kinematics. APJ 1999, 517, 866–882. [Google Scholar] [CrossRef]
- Smith, M.A. Ultraviolet Activity as Indicators of Small-scale Magnetic Fields in γ Cassiopeiae. PASP 2019, arXiv:astro-ph.SR/1812.08746]131, 044201. [Google Scholar] [CrossRef]
- Rauw, G. X-Ray Emission of Massive Stars and Their Winds. In Handbook of X-ray and Gamma-ray Astrophysics; Bambi, C.; Sangangelo, A., Eds.; 2022; p. 108. [CrossRef]
- Rauw, G.; Nazé, Y.; Smith, M.A.; Miroshnichenko, A.S.; Guarro Fló, J.; Campos, F.; Prendergast, P.; Danford, S.; González-Pérez, J.N.; Hempelmann, A.; et al. Intriguing X-ray and optical variations of the γ Cassiopeiae analog HD 45314. AAP 2018, arXiv:astro-ph.SR/1802.05512615, A44. [Google Scholar] [CrossRef]
- Nazé, Y.; Rauw, G.; Smith, M. Surprises in the simultaneous X-ray and optical monitoring of π Aquarii. AAP 2019, arXiv:astro-ph.SR/1910.11050632, A23. [Google Scholar] [CrossRef]
- Nazé, Y. Going Forward to Unveil the Nature of γ Cas Analogs. Galaxies 2025, 13, 8. [Google Scholar] [CrossRef]
- Smith, M.A.; Lopes de Oliveira, R.; Motch, C. The X-ray emission of the γ Cassiopeiae stars. Advances in Space Research 2016, arXiv:astro-ph.SR/1512.0644658, 782–808. [Google Scholar] [CrossRef]
- Willems, B.; Kolb, U. Detached white dwarf main-sequence star binaries. AAP 2004, 419, 1057–1076. [Google Scholar] [CrossRef]
- Pols, O.R.; Cote, J.; Waters, L.B.F.M.; Heise, J. The formation of Be stars through close binary evolution. Astronomy and Astrophysics 1991, 241, 419. [Google Scholar]
- Shao, Y.; Li, X.D. On the Formation of Be Stars through Binary Interaction. APJ 2014, arXiv:astro-ph.HE/1410.0100796, 37. [Google Scholar] [CrossRef]
- Habets, G.M.H.J. The evolution of a single and a binary helium star of 2.5 solar mass up to neon ignition. AAP 1986, 165, 95–109. [Google Scholar]
- Raguzova, N.V. Population synthesis of Be/white dwarf binaries in the Galaxy. AAP 2001, 367, 848–858. [Google Scholar] [CrossRef]
- Postnov, K.; Oskinova, L.; Torrejón, J.M. A propelling neutron star in the enigmatic Be-star γ Cassiopeia. MNRAS 2017, arXiv:astro-ph.HE/1610.07799465, L119–L123. [Google Scholar] [CrossRef]
- Smith, M.A.; Lopes de Oliveira, R.; Motch, C. Is there a propeller neutron star in γ Cas? MNRAS 2017, arXiv:astro-ph.HE/1704.05060469, 1502–1509. [Google Scholar] [CrossRef]
- Rauw, G. Fluorescent Fe K line emission of γ Cas stars. I. Do γ Cas stars host propelling neutron stars? AAP 2024, arXiv:astro-ph.SR/2312.12373682, A179. [Google Scholar] [CrossRef]
- Langer, N.; Baade, D.; Bodensteiner, J.; Greiner, J.; Rivinius, T.; Martayan, C.; Borre, C.C. γ Cas stars: Normal Be stars with discs impacted by the wind of a helium-star companion? AAP 2020, arXiv:astro-ph.SR/1911.06508633, A40. [Google Scholar] [CrossRef]
- Shrader, C.R.; Hamaguchi, K.; Sturner, S.J.; Oskinova, L.M.; Almeyda, T.; Petre, R. High-energy Properties of the Enigmatic Be Star γ Cassiopeiae. APJ 2015, arXiv:astro-ph.HE/1410.4050799, 84. [Google Scholar] [CrossRef]
- Rivinius, T.; Baade, D.; Štefl, S. Non-radially pulsating Be stars. AAP 2003, 411, 229–247. [Google Scholar] [CrossRef]
- Lopes de Oliveira, R.; Smith, M.A.; Motch, C. γ Cassiopeiae: an X-ray Be star with personality. AAP 2010, arXiv:astro-ph.HE/0903.2600512, A22. [Google Scholar] [CrossRef]
- Kholtygin, A.F.; Moiseeva, A.V.; Yakunin, I.A.; Burlak, M.A.; Ryspaeva, E.B.; Tsiopa, O.A.; Kurdoyakova, M.S. Superfast Stellar Pulsations from O to A Stars. Geomagnetism and Aeronomy 2022, 62, 1136–1140. [Google Scholar] [CrossRef]
- Kholtygin, A.F.; Ryspaeva, E.B. gamma Cas Stars: The Origin of the X-ray Emission. Geomagnetism and Aeronomy 2024, 64, 1267–1272. [Google Scholar] [CrossRef]
- Webb, N.A. Accreting white dwarfs. arXiv e-prints, arXiv:2303.10055. [CrossRef]
| 1 |






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
