Submitted:
24 July 2025
Posted:
25 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Design and Procedures
2.4. Design and Procedures
2.5. Statistical Analysis
3. Results
3.1. Eletromyography
4. Discussion
4.1. Practical Applications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldassarre, R., Bonifazi, M., Zamparo, P., & Piacentini, M. F. (2017). Characteristics and Challenges of Open-Water Swimming Performance: A Review. International Journal of Sports Physiology and Performance, 12(10), 1275–1284. [CrossRef]
- Zacca, R., Neves, V., Da Silva Oliveira, T., Soares, S., Rama, L. M. P. L., De Souza Castro, F. A., Vilas-Boas, J. P., Pyne, D. B., & Fernandes, R. J. (2020). 5 km front crawl in pool and open water swimming: Breath-by-breath energy expenditure and kinematic analysis. European Journal of Applied Physiology, 120(9), 2005–2018. [CrossRef]
- Bonança, M., Rama, L., & Proença, J. (2021). Águas Abertas: Uma Disciplina, Diferentes Variáveis. Boletim SPEF, 35–45.
- Fujimoto, T., Matsuura, Y., Baba, Y., & Hara, R. (2024). Thermal Sensation After the 10-km Open-Water Swimming in Cool Water Depends on the Skin’s Thermal Sensitivity Rather Than Core Temperature. International Journal of Sports Physiology and Performance, 19(1), 28–33. [CrossRef]
- López-Belmonte, Ó., Ruiz-Navarro, J. J., Gay, A., Cuenca-Fernández, F., Cejuela, R., & Arellano, R. (2023). Determinants of 1500-m Front-Crawl Swimming Performance in Triathletes: Influence of Physiological and Biomechanical Variables. International Journal of Sports Physiology and Performance, 18(11), 1328–1335. [CrossRef]
- Pelarigo, J. G., Greco, C. C., Denadai, B. S., Fernandes, R. J., Vilas-Boas, J. P., & Pendergast, D. R. (2016). Do 5% changes around maximal lactate steady state lead to swimming biophysical modifications? Human Movement Science, 49, 258–266. [CrossRef]
- Rodriguez, L., & Veiga, S. (2018). Effect of the Pacing Strategies on the Open-Water 10-km World Swimming Championships Performances. International Journal of Sports Physiology and Performance, 13(6), 694–700. [CrossRef]
- Baldassarre, R., Pennacchi, M., La Torre, A., Bonifazi, M., & Piacentini, M. F. (2019). Do the Fastest Open-Water Swimmers have A Higher Speed in Middle- and Long-Distance Pool Swimming Events? Journal of Functional Morphology and Kinesiology, 4(1), 15. [CrossRef]
- Puce, L., Chamari, K., Marinelli, L., Mori, L., Bove, M., Faelli, E., Fassone, M., Cotellessa, F., Bragazzi, N. L., & Trompetto, C. (2022). Muscle Fatigue and Swimming Efficiency in Behind and Lateral Drafting. Frontiers in Physiology, 13, 835766. [CrossRef]
- Puce, L., Biz, C., Ruaro, A., Mori, F., Bellofiore, A., Nicoletti, P., Bragazzi, N. L., & Ruggieri, P. (2023). Analysis of Kinematic and Muscular Fatigue in Long-Distance Swimmers. Life, 13(11), 2129. [CrossRef]
- Cohen, R. C. Z., Cleary, P. W., Mason, B. R., & Pease, D. L. (2020). Studying the effects of asymmetry on freestyle swimming using smoothed particle hydrodynamics. Computer Methods in Biomechanics and Biomedical Engineering, 23(7), 271–284. [CrossRef]
- Figueiredo, P., Pendergast, D. R., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Interplay of Biomechanical, Energetic, Coordinative, and Muscular Factors in a 200 m Front Crawl Swim. BioMed Research International, 2013, 1–12. [CrossRef]
- Costill, D., Kovaleski, J., Porter, D., Kirwan, J., Fielding, R., & King, D. (1985). Energy Expenditure During Front Crawl Swimming: Predicting Success in Middle-Distance Events. International Journal of Sports Medicine, 06(05), 266–270. [CrossRef]
- Zamparo, P., Cortesi, M., & Gatta, G. (2020). The energy cost of swimming and its determinants. European Journal of Applied Physiology, 120(1), 41–66. [CrossRef]
- Morais, J. E., Barbosa, T. M., Forte, P., Bragada, J. A., Castro, F. A. D. S., & Marinho, D. A. (2023). Stability analysis and prediction of pacing in elite 1500 m freestyle male swimmers. Sports Biomechanics, 22(11), 1496–1513. [CrossRef]
- Conceição, A., Silva, A. J., Barbosa, T., Karsai, I., & Louro, H. (2014). Neuromuscular Fatigue during 200 M Breaststroke. Journal of sports science & medicine, 13(1), 200.
- Afsharipour, B., Soedirdjo, S., & Merletti, R. (2019). Two-dimensional surface EMG: The effects of electrode size, interelectrode distance and image truncation. Biomedical Signal Processing and Control, 49, 298–307. [CrossRef]
- Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. [CrossRef]
- Konrad, P. (2005). The ABC of EMG: A Practical Introduction to Kinesiological Electromyography. Noraxon INC. USA.
- Craig, A., & Pendeegast, D. (1979). Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Medicine and Science in Sports, 11(3), 278–283.
- Maglischo, E. (2003). Swimming fastest. The essential reference on technique, training, and program design. Champaign, IL: Human Kinetics.
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum Associates, Publishers.
- Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. [CrossRef]
- Zingg, M. A., Rüst, C. A., Rosemann, T., Lepers, R., & Knechtle, B. (2014). Analysis of swimming performance in FINA World Cup long-distance open water races. Extreme Physiology & Medicine, 3(1), 2. [CrossRef]
- Oliveira, T., Fernandes, R., & Vilas-Boas, J. (2018). Caraterização Biofísica dos 5000 m Crol em Águas Abertas. University of Porto.
- Craig, A. B., Skehan, P. L., Pawelczyk, J. A., & Boomer, W. L. (1985). Velocity, stroke rate, and distance per stroke during elite swimming competition: Medicine & Science in Sports & Exercise, 17(6), 625–634. [CrossRef]
- Stirn, I., Jarm, T., Kapus, V. P., & Strojnik, V. (2013). Evaluation of mean power spectral frequency of EMG signal during 100 metre crawl. European Journal of Sport Science, 13(2), 164–173. [CrossRef]
- Pink, M., Perry, J., Browne, A., Scovazzo, M. L., & Kerrigan, J. (1991). The normal shoulder during freestyle swimming: An electromyographic and cinematographic analysis of twelve muscles. The American Journal of Sports Medicine, 19(6), 569–576. [CrossRef]
- Martens, J., Figueiredo, P., & Daly, D. (2015). Electromyography in the four competitive swimming strokes: A systematic review. Journal of Electromyography and Kinesiology, 25(2), 273–291. [CrossRef]
- Rouard, A. H., & Clarys, J. P. (1995). Cocontraction in the elbow and shoulder muscles during rapid cyclic movements in an aquatic environment. Journal of Electromyography and Kinesiology, 5(3), 177–183. [CrossRef]
- Lauer, J., Figueiredo, P., Vilas-Boas, J. P., Fernandes, R. J., & Rouard, A. H. (2013). Phase-dependence of elbow muscle coactivation in front crawl swimming. Journal of Electromyography and Kinesiology, 23(4), 820–825. [CrossRef]
- Laudner, K. G., & Williams, J. G. (2013). The relationship between latissimus dorsi stiffness and altered scapular kinematics among asymptomatic collegiate swimmers. Physical Therapy in Sport, 14(1), 50–53. [CrossRef]
- Lim, B., Swafford, A., Conroy, K., & Mercer, J. (2023). Shoulder Muscle Activity While Swimming in Different Wetsuits and Across Different Paces. International Journal of Exercise Science, 16(1), 172–181.
- Ikuta, Y., Matsuda, Y., Yamada, Y., Kida, N., Oda, S., & Moritani, T. (2012). Relationship between decreased swimming velocity and muscle activity during 200-m front crawl. European Journal of Applied Physiology, 112(9), 3417–3429. [CrossRef]
- Fernández-Galván, L. M., Alcain Sein, J., López-Nuevo, C., Sánchez-Sierra, A., Ladrián-Maestro, A., & Sánchez-Infante, J. (2025). Injury Patterns and Frequency in Swimming: A Systematic Review. Applied Sciences, 15(3), 1643. [CrossRef]
- De Martino, I., & Rodeo, S. A. (2018). The Swimmer's Shoulder: Multi-directional Instability. Current reviews in musculoskeletal medicine, 11(2), 167–171. [CrossRef]
- FINA. (2022). Open Water Swimming Manual (5th ed.). Fédération Internationale de Natation. Available online: https://resources.fina.org/fina/document/2022/04/27/1b20b7df-dd6c-488b-a147-51eae83a1590/FINA-OW-MANUAL-2022.pdf.
- Murphy, M., Polston, K., Carroll, M., & Alm, J. (2021). Heat injury in open-water swimming: A narrative review. Current Sports Medicine Reports, 20(4), 193–198. [CrossRef]

| 1000 m | 2000 m | 3000 m | 4000 m | 5000 m | |||
|---|---|---|---|---|---|---|---|
| Kinematic Variables | Mean±SD | Mean±SD | Mean±SD | Mean±SD | Mean±SD | F-ratio (p) | η2 |
| v [m/s] | 1.39±0.18 | 1.38±0.15 | 1.38±0.14 | 1.37±0.16 | 1.39±0.18 | 1.94 (0.18) | 0.19 |
| SR [cycles-min-1] | 31.4±3,04 | 31.1±3.88 | 31.2±3.29 | 32.1±2,76 | 33.0±3,36 | 1.54 (0.24) | 0.16 |
| SL [m-cycle-1] | 2.72±0.35 | 2.67±0.34 | 2.65±0.33 | 2.60±0.33 | 2.58±0.40 | 3.34 (0.06) * | 0.29 |
| SI [m2s-1cycle-1] | 3.90±0.82 | 3.71±0.78 | 3.68±0.75 | 3.61±0.83 | 3.64±0.94 | 3.29 (0.08) * | 0.29 |
| Distance | 1000 m | 2000 m | 3000 m | 4000 m | 5000 m | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Muscles | Phase | Mean ± SD | p-value | d | Mean ± SD | p-value | d | Mean ± SD | p-value | d | Mean ± SD | p-value | d | Mean ± SD | p-value | d |
| UT | UW | 14.96±15.09 | 0.06 | -0.78 | 14.74±6.78 | 0.02* | -1.15 | 15.44±9.89 | 0.02* | -1.23 | 13.92±9.08 | 0.01* | -1.22 | 13.25±7.32 | 0.00 * | -1.41 |
| REC | 37.46±38.09 | 32.18±20.29 | 34.28±19.28 | 30.73±17.19 | 31.25±16.57 | |||||||||||
| PD | UW | 16.98±4.63 | 0.51 | -0.41 | 12.58±8.59 | 0.89 | 0.31 | 8.93±4.99 | 0.69 | 0.03 | 11.86±6.77 | 0.97 | -0.11 | 11.60±7.80 | 0.97 | -0.16 |
| REC | 19.56±7.52 | 10.41±4.63 | 8.77±6.77 | 12.77±9.29 | 13.13±10.75 | |||||||||||
| AD | UW | 6.55±5.85 | 0.01 * | -1.16 | 4.72±3.79 | 0.04 * | -1.08 | 4.88±3.99 | 0.04 * | 1.07 | 3.49±2.20 | 0.02 * | -0.98 | 3.75±2.58 | 0.03 * | -0.93 |
| REC | 16.46±10.55 | 11.84±8.54 | 12.22±8.89 | 9.47±8.36 | 9.37±8.14 | |||||||||||
| BB | UW | 11.55±3.40 | 0.31 | -0.55 | 11.01±4.15 | 0.31 | -0.49 | 10.43±3.24 | 0.17 | -0.79 | 10.04±2.78 | 0.20 | -0.69 | 10.03±2.61 | 0.27 | -0.67 |
| REC | 15.31±9.09 | 13.84±7.13 | 15.52±9.64 | 14.25±8.11 | 13.19±6.19 | |||||||||||
| TB | UW | 22.80±7.10 | 0.00 * | 2.02 | 21.19±7.53 | 0.00 * | 1.84 | 19.71±6.87 | 0.00 * | 1.74 | 18.80±8.09 | 0.01 * | 1.56 | 19.16±9.09 | 0.03 * | 1.24 |
| REC | 10.22±5.24 | 8.97±5.60 | 9.04±5.26 | 8.52±4.60 | 9.87±5.44 | |||||||||||
| PM | UW | 15.20±8.33 | 0.12 | 0.74 | 13.13±6.14 | 0.06 | 0.93 | 13.30±6.12 | 0.09 | 0.86 | 12.12±5.18 | 0.15 | 0.77 | 12.02±5.26 | 0.45 | 0.30 |
| REC | 9.21±7.97 | 8.28±4.13 | 8.63±4.71 | 8.33±4.63 | 10.12±7.12 | |||||||||||
| LD | UW | 10.51±4.36 | 0.00 * | 2.34 | 9.87±4.67 | 0.00 * | 2.01 | 9.75±4.48 | 0.00 * | 2.10 | 9.00±4.04 | 0.01 * | 1.74 | 8.91±3.91 | 0.01 * | 1.57 |
| REC | 2.96±1.35 | 2.94±1.37 | 2.77±1.50 | 3.30±2.26 | 3.83±2.38 | |||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
