Submitted:
21 July 2025
Posted:
24 July 2025
You are already at the latest version
Abstract
Keywords:
INTRODUCTION
MATERIAL&METHODS
Inclusion Criteria
Exclusion Criteria
Data Collection
Evaluation of Liver Fibrosis
Noninvasive Serum Scoring
Statistical Analysis
RESULTS
DISCUSSION
Funding
Conflicts of Interest
References
- World Health Organization. Global hepatitis report 2024: action for access in low- and middle-income countries. Geneva: World Health Organization; 2024. https://www.who.int/publications/i/item/9789240091672. Access date: 27.03.2025.
- Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019, 156, 1264–1281.e4. [Google Scholar] [CrossRef]
- Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003, 38, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Forns X, Ampurdanès S, Llovet JM, Aponte J, Quintó L, Martínez-Bauer E, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology 2002, 36 Pt 1, 986–992. [Google Scholar] [CrossRef]
- Yin Z, Zou J, Li Q, Chen L. Diagnostic value of FIB-4 for liver fibrosis in patients with hepatitis B: a meta-analysis of diagnostic test. Oncotarget 2017, 8, 22944–22953. [Google Scholar] [CrossRef]
- Kotak PS, Kumar J, Kumar S, Varma A, Acharya S. Navigating Cirrhosis: A Comprehensive Review of Liver Scoring Systems for Diagnosis and Prognosis. Cureus 2024, 16, e57162. [Google Scholar] [CrossRef]
- El-Kassas M, Elakel W, Elsharkawy A, Asem N, Abu-Elfatth A, Mostafa A, Abdelazeem A, El-Serafy M, Ibrahem M, Ghanem EA, Abdeen N, Doss W, Esmat G, Abdeltawab D. Comparison of different noninvasive scores for assessing hepatic fibrosis in a cohort of chronic hepatitis C patients. Sci Rep. 2024, 14, 29544. [Google Scholar] [CrossRef]
- Karacaer Z, Avcı Ö, Karadağ FY. King’s Score may be More Effective in the Determination of Severe Fibrosis in Chronic Hepatitis B Infections. Viral Hepat J. 2017, 23, 20–25, (In Turkısh). [Google Scholar] [CrossRef]
- Bonacini, M. , Hadi G., Govindarajan S., Lindsay K.L. Utility of a discriminant score for diagnosing advanced fibrosis or cirrhosis in patients with chronic hepatitis C virus infection. Am. J. Gastroenterol. 1997, 92, 1302–1304. [Google Scholar]
- Okdemir S, Cakmak E. A novel non-invasive score for the prediction of advanced fibrosis in patients with chronic hepatitis B. Ann Hepatol. 2022, 27, 100544. [Google Scholar] [CrossRef] [PubMed]
- Ekin N, Ucmak F, Ebik B, Tugba Tuncel E, Kacmaz H, Arpa M, Engin Atay A. GPR, King's Score and S-Index are superior to other non-invasive fibrosis markers in predicting the liver fibrosis in chronic Hepatitis B patients. Acta Gastroenterol Belg. 2022, 85, 62–68. [Google Scholar]
- Wang J, Sun X, Wei S, Chen X, Zhu H, Liantang Y, Bao R, Du Y. Noninvasive models for the prediction of liver fibrosis in patients with chronic hepatitis B. BMC Gastroenterol. 2024, 24, 183. [Google Scholar] [CrossRef]
- Gudowska M, Gruszewska E, Panasiuk A, Cylwik B, Świderska M, Flisiak R, Szmitkowski M, Chrostek L. Selected Noninvasive Markers in Diagnosing Liver Diseases. Lab Med. 2016, 47, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Wang J, Zhang Z, Yan X, Li M, Xia J, Liu Y, Chen Y, Jia B, Zhu L, Zhu C, Huang R, Wu C. Albumin-Bilirubin (ALBI) as an accurate and simple prognostic score for chronic hepatitis B-related liver cirrhosis. Dig Liver Dis. 2019, 51, 1172–1178. [Google Scholar] [CrossRef]
- Ahmad W, Ijaz B, Javed FT, Gull S, Kausar H, Sarwar MT, Asad S, Shahid I, Sumrin A, Khaliq S, Jahan S, Pervaiz A, Hassan S. A comparison of four fibrosis indexes in chronic HCV: development of new fibrosis-cirrhosis index (FCI). BMC Gastroenterol. 2011, 11, 44. [Google Scholar] [CrossRef]
- Gudowska M, Wrona A, Gruszewska E, Panasiuk A, Cylwik B, Swiderska M, Filisiak R, Szmitkowski M, Chrostek L. Simple non-invasive markers for early diagnosis and determination of the severity of liver diseases. Clin Exp Hepatol. 2016, 2, 149–154. [Google Scholar]
- Qi X, An M, Wu T, Jiang D, Peng M, Wang W, Wang J, Zhang C, Chess Study Group OBOT. Transient Elastography for Significant Liver Fibrosis and Cirrhosis in Chronic Hepatitis B: A Meta-Analysis. Can J Gastroenterol Hepatol. 2018, 2018, 3406789. [Google Scholar]
- Xu XY, Kong H, Song RX, Zhai YH, Wu XF, Ai WS, Liu HB. The effectiveness of noninvasive biomarkers to predict hepatitis B-related significant fibrosis and cirrhosis: a systematic review and meta-analysis of diagnostic test accuracy. PLoS One 2014, 9, e100182. [Google Scholar]
- Bera, C. Hamdan-Perez N. Patel K. Non-Invasive Assessment of Liver Fibrosis in Hepatitisn B Patients. J Clin Med. 2024, 13, 1046. [Google Scholar] [CrossRef]
- Medhioub, M. Ben Salah W. Khsiba A. Ouni A. Hamzaoui L. Azouz MM. Performance of FIB4 and APRI scores for the prediction of fibrosis in patients with chronic hepatitis B virus infection. Tunis Med. 2020, 98, 998–1004. [Google Scholar] [PubMed]
- Teshale, E. Lu M. Rupp LB. Holmberg SD. Moorman AC. Spradling P. Vijayadeva V. Boscarino JA. Schmidt MA. Gordon SC; CHeCS Investigators. APRI and FIB-4 are good predictors of the stage of liver fibrosis in chronic hepatitis B: the Chronic Hepatitis Cohort Study (CHeCS). J Viral Hepat. 2014, 21, 917–920. [Google Scholar]
- Rungta S, Kumari S, Verma K, Akhtar G, Deep A Sr, Swaroop S. A Comparative Analysis of the APRI, FIB4, and FibroScan Score in Evaluating the Severity of Chronic Liver Disease in Chronic Hepatitis B Patients in India. Cureus 2021, 13, e19342. [Google Scholar] [CrossRef] [PubMed]
- Wang HW, Peng CY, Lai HC, Su WP, Lin CH, Chuang PH, Chen SH, Chen CH, Hsu WF, Huang GT. New noninvasive index for predicting liver fibrosis in Asian patients with chronic viral hepatitis. Sci Rep. 2017, 7, 3259. [Google Scholar] [CrossRef] [PubMed]
- Zhou K, Gao CF, Zhao YP, Liu HL, Zheng RD, Xian JC, Xu HT, Mao YM, Zeng MD, Lu LG. Simpler score of routine laboratory tests predicts liver fibrosis in patients with chronic hepatitis B. J. Gastroenterol. Hepatol. 2010, 25, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa H, Hasegawa K, Ishii A, Takata R, Enomoto H, Yoh K, Kishino K, Shimono Y, Iwata Y, Nakano C, Nishimura T, Aizawa N, Sakai Y, Ikeda N, Takashima T, Iijima H, Nishiguchi S. A proposed predictive model for advanced fibrosis in patients with chronic hepatitis B and its validation. Medicine (Baltimore) 2016, 95, e4679. [Google Scholar] [CrossRef]
- Coskun BD, Altinkaya E, Sevinc E, et al. The diagnostic value of a globulin/platelet model for evaluating liver fibrosis in chronic hepatitis B patients. Rev Esp Enferm Dig 2015, 107, 740–744. [Google Scholar]
- Vu H, Huy D, Minh Nhut BN, Quan PA, Quyen NQ, Thu Thuy TT, Khanh Tuong TT, Minh Duc N. The value of APGA score, fibrosis index for diagnosing liver fibrosis in patients with chronic hepatitis B. Clin Ter. 2024, 175, 137–145. [Google Scholar]
- Zhu WW, Guo JJ, Guo L, Jia HL, Zhu M, Zhang JB, et al. Evaluation of midkine as a diagnostic serum biomarker in hepatocellular carcinoma. Clin Cancer Res 2013, 19, 3944e54. [Google Scholar]
- Zhang TT, Ye SS, Liang J, Bai L. Prognostic value of non-invasive fibrosis indices post-curative resection in hepatitis-B-associated hepatocellular carcinoma patients. Exp Biol Med (Maywood) 2020, 245, 703–710. [Google Scholar] [CrossRef]
- Imai, H. , Kamei, H., Onishi, Y., Ishizu, Y., Ishigami, M., Goto, H., et al. Diagnostic usefulness of APRI and FIB-4 for the prediction of liver fibrosis after liver transplantation in patients infected with hepatitis C virus. Transpl. Proc. 2018, 50, 1431–1436. [Google Scholar] [CrossRef]
- Han K, Wang J, Song X, Kang L, Lin J, Hu Q, Sun W, Gao Y. Development and validation of a nomogram for predicting advanced liver fibrosis in patients with chronic hepatitis B. Front Mol Biosci. 2024, 11, 1452841. [Google Scholar]
- Kaya A, Barutcu S, Gulsen MT. Evaluation of fibrosis with noninvasive biochemical tests in chronic viral hepatitis B. Hepatol Forum. 2023, 4, 25–29. [Google Scholar]
- Şahin T, Süleymanlar İ Evaluation of Liver Fibrosis by Ten Noninvasive Methods in Evaluation of Liver Fibrosis by Ten Noninvasive Methods in Patients with Chronic Hepatitis B: A Comparative Study Patients with Chronic Hepatitis B: A Comparative Study. Akd Med. J. 2018, 4, 18–24. (In Turkish)
- Eminler AT, Ayyildiz T, Irak K, Kiyici M, Gurel S, Dolar E, Gulten M, Nak SG. AST/ALT ratio is not useful in predicting the degree of fibrosis in chronic viral hepatitis patients. Eur J Gastroenterol Hepatol. 2015, 27, 1361–1366. [Google Scholar] [CrossRef]
- Kalkan Ç, Yılmaz Y, Erdoğan BD, Savaş B, Yurdcu E, Çalışkan A, Keskin O, Gencdal G, Zeybel M, Törüner M, Bozdayi AM, Idilman R, Yurdaydin C. Non-invasive fibrosis markers for assessment of liver fibrosis in chronic hepatitis delta. J Viral Hepat. 2023, 30, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Özçelik A, Çelik M, Şahin A, Ceylan MR, Güler Dincer N. Comparison of Invasive and Non-Invasive Liver Fibrosis Indicators in Chronic Hepatitis B Patients. Journal of Harran University Medical Faculty 2024, 21, 533–539. (In Turkish) [Google Scholar]
- Pramono LK, Tjandrawati A, Turbawaty DK, Rostini T, Bestari MB, Haryono, Budiman D, Nugraha P. Macrophage-2-Binding Protein Glycosylation Isomer (M2BPGi) and AGAP Score as Markers of Noninvasive Test for Liver Fibrosis versus FibroScan in Chronic Hepatitis B Patients: A Retrospective Observational Study. Int J Hepatol. 2024, 2024, 6635625. [Google Scholar]
- Hamidi, AA. Oncul A. Ozguven BY. Sevgi DY. Gunduz A. Uzun N. Dokmetas I. Diagnostic accuracy of different noninvasive scores for detecting advanced fibrosis in chronic hepatitis B. Eur J Gastroenterol Hepatol. 2019, 31, 1439–1443. [Google Scholar] [CrossRef]
- Ding R, Lu W, Zhou X, Huang D, Wang Y, Li X, Yan L, Lin W, Song S, Zhang Z, Chen L. A Novel Non-invasive Model Based on GPR for the Prediction of Liver Fibrosis in Patients With Chronic Hepatitis B. Front Med (Lausanne) 2021, 8, 727706. [Google Scholar]
- Scheuer, PJ. Classification of chronic viral hepatitis: a need for reassessment. J Hepatol. 1991, 13, 372–374. [Google Scholar] [CrossRef]
- Dilcan KH, Gozdas HT. Noninvasive evaluation of significant liver fibrosis in chronic hepatitis B patients. Acta Gastroenterol Belg. 2024, 87, 388–392. [Google Scholar]
- Erdogan S, Dogan HO, Sezer S, Uysal S, Ozhamam E, Kayacetin S, Koca Y. The diagnostic value of non-invasive tests for the evaluation of liver fibrosis in chronic hepatitis B patients. Scand J Clin Lab Invest. 2013, 73, 300–308. [Google Scholar] [CrossRef]
- Dong XQ, Wu Z, Zhao H, Wang GQ; China HepB-Related Fibrosis Assessment Research Group. Evaluation and comparison of thirty noninvasive models for diagnosing liver fibrosis in chinese hepatitis B patients. J Viral Hepat. 2019, 26, 297–307. [Google Scholar] [CrossRef]
- Ozyalvacli G, Kucukbayrak A, Kurt M, Gurel K, Gunes O, Ustun C, Akdeniz H. Non-invasive fibrosis tests are correlated with necroinflammatory activity of liver in patients with chronic hepatitis B. Clin Ter. 2014, 165, e199–e204. [Google Scholar]
- Kang NL, Zhang JM, Lin MX, Chen XD, Huang ZX, Zhu YY, Liu YR, Zeng DW. Serum ceruloplasmin can predict liver fibrosis in hepatitis B virus-infected patients. World J Gastroenterol. 2020, 26, 3952–3962. [Google Scholar] [CrossRef]
- Tag-Adeen M, Omar MZ, Abd-Elsalam FM, Hasaneen A, Mohamed MA, Elfeky HM, Said EM, Abdul-Aziz B, Osman AH, Ahmed ES, Osman GS, Abdul-Samie T. Assessment of liver fibrosis in Egyptian chronic hepatitis B patients: A comparative study including 5 noninvasive indexes. Medicine (Baltimore) 2018, 97, e9781. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol 2017, 67, 370–398. [Google Scholar] [CrossRef] [PubMed]


| Patients | Mean or n (%) |
|---|---|
Age
|
43±13 (21-77) 45.8±13.5 42.1±12.4 |
Sex
|
111 (44.5) 138 (55.5) |
Fibrosis
|
249 200 (80.3) 44 (17.7) 5 (2) |
Histological activity İndex (HAI)
|
249 39 (15.6) 141 (56.7) 60 (24) 9 (3.6) |
Platelet count (10^9/L)
|
239.61±59.34 262.22±64.35 218.33±45.07 |
AST (U/L)
|
26.64±13.39 23.23±6.16 29.79±16.89 |
ALT (U/L)
|
30.17±38.75 20.02±9.02 39.55±51.39 |
Total bilurubin (mg/dL)
|
0.63±0.33 0.53±0.21 0.73±0.40 |
Albumin (g/L)
|
41.76±2.7 41.42±2.60 42.07±2.91 |
INR
|
1.04 ±0.08 1.04±0.09 1.05±0.08 |
ALP (U/L)
|
77.28±24.90 72.97±22.32 81.56±26.73 |
GGT (U/L)
|
23.60±22.69 18.27±13.54 28.76±28.04 |
Cholesterol (mg/dL) (in 53 Patients)
|
176.34±34.70 186.04±35.67 167.68±31.99 |
AFPμ/L
|
3.85±7.96 4.21±11.1 3.52±2.72 |
HBV DNA IU/ml
|
64.142.741±301.427.605 40.721.124±174.142.665 83.288.983±374.377.896 |
HBeAg negative
|
230 (92.4) 110 (48) 120 (52) 19 (7.6) 10 (54) 9 (46) |
| Scoring method (number of calculated case) | Mean ± SD | Median (min-max) / % |
|---|---|---|
| APRI (204) | 0.265 ± 0.15 | 0.225 (0.092 – 1.111) |
| LOK (198) | 0.351 ± 0.192 | 0.33 (0.05 – 1.1) |
| FORNS (54) | 4.028 ± 1.726 | 4.09 (1 – 8.98) |
| FIB-4 (204) | 1.053 ± 0.564 | 0.912 (0.287 – 3.5) |
| FI (140) | -36.074 ± 2.768 | -36.32 (-42.97 - -25.72) |
| FIBROALPHA (249) | 1.287 ± 0.143 | 1.302 (0.872 – 2.125) |
| KING (202) | 5.408 ± 3.865 | 4.525 (0 – 26.067) |
| BONACINI (198) | 4.232 ± 1.216 | 4 (1 - 7) |
| AGAP (192) | 0.805 ± 1.762 | 0.343 (0.043 – 15.942) |
| GPR (192) | 0.2 ± 0.2 | 0.2 (0.1 – 1.8) |
| AAR (205) | 1.127 ± 0.424 | 1.09 (0.21 – 3.3) |
| GUCI (200) | 0.274 ± 0.164 | 0.242 (0 - 1.278) |
| ALBI (139) | -2.881 ± 0.325 | -2.913 (-3.729 - -0.95) |
| FCI (128) | 0.094 ± 0.099 | 0.069 (0 - 0.855) |
| FIBRO-Q (200) | 2.393 ± 1.525 | 2.024 (0 - 8.254) |
| SINDEX (139) | 0.066 ± 0.084 | 0.045 (0 - 0.603) |
| FIBROSIS | ||
| ISHAK 0-2 | 200 | 80.3 |
| ISHAK 3-4 | 44 | 17.7 |
| ISHAK 5-6 | 5 | 2 |
| FIBROSIS | ||
| ISHAK<3 | 200 | 80.3 |
| ISHAK ≥3 | 49 | 19.7 |
|
ISHAK<3 |
ISHAK ≥ 3 |
Total |
Test Statistics |
P value |
||
| APRI | 0.22 (0.092 - 0.662) | 0.299 (0.101 - 1.111) | 0.225 (0.092 - 1.111) | 1810.000 | <0.001x | |
| LOK | 0.29 (0.05 - 1.1) | 0.45 (0.1 - 0.89) | 0.33 (0.05 - 1.1) | 2228.000 | 0.002x | |
| FORNS | 3.68 ± 1.497 | 4.787 ± 1.983 | 4.028 ± 1.726 | -2.274 | 0.027y | |
| FIB4 | 0.833 (0.287 - 2.577) | 1.357 (0.337 - 3.5) | 0.912 (0.287 - 3.5) | 1773.000 | <0.001x | |
| FI | -36.306 ± 2.651 | -35.321 ± 3.041 | -36.074 ± 2.768 | -1.801 | 0.074y | |
| FIBROALPHA | 1.29 (0.872 - 1.846) | 1.35 (1.02 - 2.125) | 1.302 (0.872 - 2.125) | 3498.000 | 0.002x | |
| KING | 4.137 (0 - 15.639) | 7.159 (2.112 - 26.067) | 4.525 (0 - 26.067) | 1488.000 | <0.001x | |
| BONACINI | 4 (1 - 6) | 5 (1 - 7) | 4 (1 - 7) | 2186.000 | 0.001x | |
| AGAP | 0.307 (0.043 - 8.377) | 0.594 (0.072 - 15.942) | 0.343 (0.043 - 15.942) | 1384.000 | <0.001x | |
| GPR | 0.2 (0.1 – 1.5) | 0.2 (0.1 – 1.8) | 0.2 (0.1 – 1.8) | 1761.000 | <0.001x | |
| AAR | 1.07 (0.21 - 3.3) | 1.135 (0.39 - 1.83) | 1.09 (0.21 - 3.3) | 3380.500 | 0.903x | |
| GUCI | 0.217 (0 - 0.695) | 0.306 (0.117 - 1.278) | 0.242 (0 - 1.278) | 1642.000 | <0.001x | |
| ALBI | -2.922 (-3.729 - -0.95) | -2.824 (-3.385 - -2.213) | -2.913 (-3.729 - -0.95) | 1377.000 | 0.066x | |
| FCI | 0.062 (0 - 0.366) | 0.092 (0 - 0.855) | 0.069 (0 - 0.855) | 1062.500 | 0.009x | |
| FIBROQ | 1.883 (0 - 7.512) | 3.056 (0.415 - 8.254) | 2.024 (0 - 8.254) | 2225.000 | 0.002x | |
| SINDEX | 0.04 (0 - 0.302) | 0.056 (0 - 0.603) | 0.045 (0 - 0.603) | 1046.000 | <0.001x | |
| AUC (%95 CI) | P | Cut-off | Sensitivity% | Specificity% | PPV% | NPV% | |
|---|---|---|---|---|---|---|---|
| APRI | 0.729 (0.634 - 0.824) | <0.001 | ≥0.29 | 56.10 | 81.60 | 43.40 | 88.08 |
| LOK | 0.654 (0.560 - 0.747) | 0.002 | ≥0.39 | 63.41 | 68.79 | 34.67 | 87.80 |
| FORNS | 0.673 (0.506 - 0.841) | 0.042 | ≥4.91 | 52.94 | 83.78 | 60.00 | 79.49 |
| FIB4 | 0.735 (0.639 - 0.831) | <0.001 | ≥1.23 | 60.98 | 79.14 | 42.37 | 88.97 |
| FI | 0.619 (0.503 - 0.734) | 0.040 | ≥-33.58 | 39.39 | 86.92 | 48.15 | 82.30 |
| FIBROALPHA | 0.643 (0.553 - 0.734) | 0.002 | ≥1.26 | 81.63 | 44.00 | 26.32 | 90.72 |
| KING | 0.775 (0.684 - 0.865) | <0.001 | ≥5.21 | 78.05 | 70.81 | 40.51 | 92.68 |
| BONACINI | 0.660 (0.561 - 0.760) | 0.002 | ≥5.0 | 60.98 | 64.97 | 31.25 | 86.44 |
| AGAP | 0.768 (0.681 - 0.885) | <0.001 | ≥3.37 | 79.49 | 64.05 | 36.05 | 92.45 |
| GPR | 0.705 (0.619 - 0.791) | <0.001 | ≥0.14 | 89.74 | 43.79 | 28.93 | 94.37 |
| AAR | 0.506 (0.409 - 0.603) | 0.901 | - | - | - | - | - |
| GUCI | 0.748 (0.656 - 0.840) | <0.001 | ≥0.29 | 58.54 | 83.02 | 47.06 | 88.59 |
| ABLI | 0.606 (0.494 - 0.719) | 0.066 | - | - | - | - | - |
| FCI | 0.654 (0.543 - 0.765) | 0.009 | ≥0.07 | 71.88 | 60.42 | 37.70 | 86.57 |
| FIBROQ | 0.659 (0.556 - 0.761) | 0.002 | ≥3.32 | 48.78 | 82.39 | 41.67 | 86.18 |
| SINDEX | 0.701 (0.598 - 0.804) | 0.001 | ≥0.04 | 81.82 | 57.55 | 37.50 | 91.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
