Submitted:
18 July 2025
Posted:
21 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Population
- Very old adults (VO; ≥ 90 years; n = 10; mean ± SD: 95.7 ± 3.7 years; 5 males, 5 females)
- Middle-aged family members (MA; 51–84 years; n = 10; mean ± SD: 62.7 ± 9.8 years; 5 males, 5 females)
- Young-adult family members (YA; 18–29 years mean ± SD: 24.0 ± 5.1 years; 1 male, 2 females)
- Healthy (CVD -): no history of cardiovascular disease.
- CVD (CVD+): documented ischemic heart disease and/or stage I–II arterial hypertension.
- All participants provided written informed consent. The protocol was approved by the Ethics Committee of the Institute of Physiology named after Academician Abdulla Garaev.
2.2. Sample Collection
2.3. Immunofluorescent Staining
2.4. Image Quantification
2.5. Morphometric Analysis
2.6. RNA Extraction and Quantitative Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Age-Dependent Dynamics of Expression and Translational Efficiency of SIRT1, SIRT3, and SIRT6
- MA vs YA = (MA-YA)/YA*100
- VO vs MA = (VO – MA)/MA*100
- VO remaining vs YA = VO / YA * 100
3.2. Gender-Dependent Dynamics of Expression and Translational Efficiency of SIRT1, SIRT3, and SIRT6
3.3. Health Status Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing 2019: Highlights (ST/ESA/SER.A/430). United Nations: New York, 2019.
- Gilleard, C.; Higgs, P. The Third Age and the Baby Boomers: Two Approaches to the Social Structuring of Later Life. Int. J. Ageing Later Life 2007, 2, 5–25. [Google Scholar] [CrossRef]
- North, R.M.; Winters, M.; Clarke, P.J. Cohort effects on self-rated health in the Lausanne Cohort 65+ Study. Age Ageing 2018, 47, 564–571. [Google Scholar]
- World Health Organization. Decade of Healthy Ageing 2021–2030. World Health Organization: Geneva, Switzerland, 2020. Available online: https://www.who.int/initiatives/decade-of-healthy-ageing.
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; Rando, T.A.; Richardson, A.; Schadt, E.E.; Wyss-Coray, T.; Sierra, F. Geroscience: Linking Aging to Chronic Disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, C.; Smith, P. Climbing the longevity pyramid: overview of evidence-driven healthcare prevention strategies for human longevity. Front. Aging 2024, 5, 1495029. [Google Scholar] [CrossRef]
- Kuznetsova, S.M.; Kamilova, N.M.; Aliev, R.; Hashimova, U.F. Mechanisms of Longevity Phenomenon in Azerbaijan. J. Gerontol. Geriatr. Med. 2016, 2, 011. [Google Scholar] [CrossRef]
- State Statistical Committee of the Republic of Azerbaijan. Population by Age Group, 2020 and 2024; State Statistical Committee of the Republic of Azerbaijan: Baku, Azerbaijan, 2025. Available online: https://www.stat.gov.az/source/demoqraphy/ap/.
- Rashidova, A.M.; Hashimova, U.F.; Gadimova, Z.M. Study of Energy-Metabolism Enzymes and the State of the Cardiovascular System in Elderly and Senile-Aged Patients. Adv Gerontol 2020, 10, 86–93. [Google Scholar] [CrossRef]
- Liang, W.; You, Y.; et al. Aging and aging-related diseases: from molecular mechanisms to therapeutic strategies. Signal Transduct. Target. Ther. 2022, 7, 112. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Luo, J.; et al. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024, 22, 285. [Google Scholar] [CrossRef] [PubMed]
- Frankowska, N.; Bryl, E.; Fulop, T.; Witkowski, J.M. Longevity, Centenarians and Modified Cellular Proteodynamics. Int. J. Mol. Sci. 2023, 24, 2888. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Garva, R.; Krstic-Demonacos, M.; Demonacos, C. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol. 2011, 368276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hall, J.A.; Dominy, J.E.; Lee, Y.; Puigserver, P. The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest. 2013, 123, 973–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonkowski, M.S.; Sinclair, D.A. Slowing ageing by design: the rise of NAD⁺ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 2016, 17, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Zhang, T.N.; Chen, H.H.; et al. The sirtuin family in health and disease. Sig Transduct Target Ther 2022, 7, 402. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cao, J.; Hu, K.; He, X.; Yun, D.; Tong, T.; Han, L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis. 2020, 11, 927–945. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Argentieri, M.A.; Amin, N.; Nevado-Holgado, A.J.; et al. Integrating the environmental and genetic architectures of aging and mortality. Nat Med 2025, 31, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Willcox, D.C.; Willcox, B.J.; Hsueh, W.C.; Suzuki, M. Genetic determinants of exceptional human longevity: insights from the Okinawa Centenarian Study. Age (Dordr). Epub 2006 Dec 8.. 2006, 28, 313–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- You, Y.; Liang, W. SIRT1 and SIRT6: The role in aging-related diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166815. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Xie, S.; Qiu, X.; Mohrin, M.; Shin, J.; Liu, Y.; Zhang, D.; Scadden, D.T.; Chen, D. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013, 3, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Rogina, B.; Tissenbaum, H.A. SIRT1, resveratrol and aging. Front. Genet. 2024, 15, 1393181. [Google Scholar] [CrossRef] [PubMed]
- Indo, H.P.; Chatatikun, M.; Nakanishi, I.; Matsumoto, K.-i.; Imai, M.; Kawakami, F.; Kubo, M.; Abe, H.; Ichikawa, H.; Yonei, Y.; et al. The Roles of Mitochondria in Human Being’s Life and Aging. Biomolecules 2024, 14, 1317. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Su, L.; Singhal, S.; Liu, X. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem. 2012, 364, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ullah, R.; Rehman, S.U.; Shah, S.A.; Saeed, K.; Muhammad, T.; Park, H.Y.; Jo, M.H.; Choe, K.; Rutten, B.P.F.; Kim, M.O. 17β-Estradiol Modulates SIRT1 and Halts Oxidative Stress-Mediated Cognitive Impairment in a Male Aging Mouse Model. Cells. 2019, 8, 928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klinge, C.M. Estrogenic control of mitochondrial function and biogenesis. J. Cell. Biochem. 2008, 105, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Germain, D. Sirtuins and the Estrogen Receptor as Regulators of the Mammalian Mitochondrial UPR in Cancer and Aging. In Advances in Cancer Research; Tew, K.D., Fisher, P.B., Eds.; Academic Press: London, UK, 2016; Volume 130, pp. 211–256. [Google Scholar] [CrossRef]
- Moore, R.L.; Dai, Y.; Faller, D.V. Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. J Endocrinol. 2012, 213, 37–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, Y.; Ngo, D.; Forman, L.W.; Qin, D.C.; Jacob, J.; Faller, D.V. Sirtuin 1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor. Mol Endocrinol. Epub 2007 May 15. 2007, 21, 1807–1821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miao, J.; Huang, J.; Liang, Y.; et al. Sirtuin 6 is a key contributor to gender differences in acute kidney injury. Cell Death Discov. 2023, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Sampathkumar, N.K.; Bravo, J.I.; Chen, Y.; Danthi, P.S.; Donahue, E.K.; Lai, R.W.; Lu, R.; Randall, L.T.; Vinson, N.; Benayoun, B.A. Widespread sex dimorphism in aging and age-related diseases. Hum Genet. Epub 2019 Nov 1. 2020, 139, 333–356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keremidarska-Markova, M.; Sazdova, I.; Mladenov, M.; Pilicheva, B.; Zagorchev, P.; Gagov, H. Sirtuin 1 and Hormonal Regulations in Aging. Appl. Sci. 2024, 14, 12051. [Google Scholar] [CrossRef]
- Barcena de Arellano, M.L.; Pozdniakova, S.; Kühl, A.A.; Baczko, I.; Ladilov, Y.; Regitz-Zagrosek, V. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging (Albany NY). 2019, 11, 1918–1933. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breitenstein, A.; Wyss, C.A.; Spescha, R.D.; Franzeck, F.C.; Hof, D.; Riwanto, M.; et al. Peripheral Blood Monocyte Sirt1 Expression Is Reduced in Patients with Coronary Artery Disease. PLoS ONE 2013, 8, e53106. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Zheng, X.; Hu, Y.; Zhao, Y.; Hai, J.; Ti, Y.; Bu, P. Sirtuin3 attenuates pressure overload-induced pathological myocardial remodeling by inhibiting cardiomyocyte cuproptosis. Pharmacol Res. 2025, 216, 107739. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Wen, R.; Liu, C.F.; Zhang, T.N.; Yang, N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed. Pharmacother. 2023, 164, 114931. [Google Scholar] [CrossRef] [PubMed]
- Kusnadi, E.P.; Timpone, C.; Topisirovic, I.; Larsson, O.; Furic, L. Regulation of gene expression via translational buffering. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119140. [Google Scholar] [CrossRef] [PubMed]
- Kanfi, Y.; Naiman, S.; Amir, G.; Peshti, V.; Zinman, G.; Nahum, L.; Bar-Joseph, Z.; Cohen, H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012, 483, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Rose, G.; Dato, S.; Altomare, K.; Bellizzi, D.; Garasto, S.; Greco, V.; Passarino, G.; Feraco, E.; Mari, V.; Barbi, C.; BonaFe, M.; Franceschi, C.; Tan, Q.; Boiko, S.; Yashin, A.I.; De Benedictis, G. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003, 38, 1065–70. [Google Scholar] [CrossRef] [PubMed]
| Marker | YA | MA | VO |
| Protein levels (S-) | |||
| S-SIRT1 | 2.23 [2.21; 2.31] | 1.41 [0.80; 2.02] | 0.98 [0.41; 1.58] |
| S-SIRT3 | 2.90 [2.88; 2.97] | 1.79 [1.34; 2.11] | 1.24 [0.54; 2.00] |
| S-SIRT6 | 3.70 [3.65; 3.75] | 2.52 [2.00; 2.69] | 1.34 [0.61; 2.11] |
| mRNA levels | |||
| RNA–SIRT1 | 1.21 [1.13; 1.26] | 0.93 [0.88; 1.07] | 0.70 [0.51; 0.83] |
| RNA–SIRT3 | 1.59 [1.57; 1.60] | 0.90 [0.78; 1.35] | 0.72 [0.59; 0.81] |
| RNA–SIRT6 | 2.07 [2.04; 2.09] | 0.99 [0.92; 1.07] | 0.63 [0.30; 0.96] |
| Protein-to-mRNA ratio (PTR) | |||
| SIRT1 / RNA | 1.98 [1.84; 2.09] | 1.36 [0.91; 1.73] | 1.33 [0.81; 1.90] |
| SIRT3 / RNA | 1.85 [1.83; 1.88] | 1.79 [1.06; 2.18] | 1.70 [0.90; 2.47] |
| SIRT6 / RNA | 1.76 [1.76; 1.80] | 2.57 [2.36; 2.64] | 2.08 [1.94; 2.22] |
| Marker | MA vs YA (%) | VO vs MA (%) | VO remaining vs YA (%) |
| Protein levels (S-) | |||
| S-SIRT1 | -36.8 | -30.5 | 43.9 % |
| S-SIRT3 | -38.3 | -30.8 | 42.8 % |
| S-SIRT6 | -31.9 | -46.8 | 36.2 % |
| mRNA levels | |||
| RNA–SIRT1 | -23.2 | -24.7 | 57.9% |
| RNA–SIRT3 | -43.4 | -20.0 | 45.3 % |
| RNA–SIRT6 | -51.2 | -36.4 | 30.4 % |
| Protein-to-mRNA ratio (PTR) | |||
| SIRT1 / RNA | -31.3 | -2.2 | 67.2 % |
| SIRT3 / RNA | -3.2 | -5.0 | 91.9% |
| SIRT6 / RNA | +46.0 | -19.1 | 118.2% |
| Marker | YA (♂ + ♀) | MA ♂ | MA ♀ | VO ♂ | VO ♀ | |
| Protein levels (S-) | ||||||
| S-SIRT1 | 2.23 [2.21; 2.31] | 0.81 [0.77; 2.02] | 1.99 [0.83; 2.10] | 0.41 [0.41; 0.45] | 1.60 [1.52; 1.67] | |
| S-SIRT3 | 2.90 [2.88; 2.97] | 1.34 [1.34; 2.04] | 2.00 [1.57; 2.13] | 0.58 [0.50; 0.60] | 2.01 [1.67; 2.10] | |
| S-SIRT6 | 3.70 [3.65; 3.75] | 2.55 [2.34; 2.69] | 2.50 [1.89; 2.67] | 0.65 [0.59; 0.67] | 2.11 [2.10; 2.14] | |
| mRNA levels | ||||||
| RNA–SIRT1 | 1.21 [1.13; 1.26] | 0.97 [0.90; 1.10] | 0.91 [0.87; 0.94] | 0.51 [0.49; 0.59] | 0.83 [0.80; 0.83] | |
| RNA–SIRT3 | 1.59 [1.57; 1.60] | 1.22 [0.88; 1.40] | 0.83 [0.75; 0.92] | 0.60 [0.56; 0.65] | 0.82 [0.79; 0.83] | |
| RNA–SIRT6 | 2.07 [2.04; 2.09] | 0.99 [0.99; 1.00] | 1.01 [0.80; 1.07] | 0.33 [0.29; 0.34] | 0.96 [0.92; 0.96] | |
| Protein-to-mRNA ratio (PTR) | ||||||
| SIRT1 / RNA | 1.88 [1.81; 1.98] | 0.99 [0.90; 1.81] | 1.73 [0.95; 2.23] | 0.82 [0.80; 0.92] | 1.90 [1.88; 2.01] | |
| SIRT3 / RNA | 1.87 [1.85; 1.88] | 1.10 [0.96; 1.81] | 2.09 [1.76; 2.17] | 0.92 [0.85; 1.04] | 2.45 [2.37; 2.47] | |
| SIRT6 / RNA | 1.78 [1.77; 1.80] | 2.58 [2.56; 2.69] | 2.43 [2.36; 2.64] | 2.03 [1.91; 2.03] | 2.20 [2.16; 2.23] | |
| Marker | Δ MA vs YA % in ♂ | Δ VO vs MA % in ♂ | Δ MA vs YA % in ♀ | ΔVO vs MA % in ♀ |
| Protein levels (S-) | ||||
| sSIRT1 | -63.7 | -49.4 | -10.7 | -19.6 |
| sSIRT3 | -53.8 | -56.7 | -31.0 | +0.5 |
| sSIRT6 | -31.1 | -74.5 | -32.4 | -15.6 |
| mRNA levels | ||||
| RNA-SIRT1 | -19.8 | -48.5 | -24.8 | -8.8 |
| RNA-SIRT3 | -23.3 | -50.8 | -47.8 | -1.2 |
| RNA-SIRT6 | -52.2 | -66.7 | -51.2 | -5.0 |
| Protein-to-mRNA ratio (PTR) | ||||
| SIRT1/RNA | -47.3 | -8.9 | -7.9 | +9.8 |
| SIRT3/RNA | -41.2 | -16.4 | +11.8 | +13.4 |
| SIRT6/RNA | +44.9 | -21.3 | +36.0 | -9.5 |
| Marker | CVD (–) median [Q1; Q3] |
CVD (+) median [Q1; Q3] |
Δ CVD (+) vs CVD (-) (%) | p (M-W) | Effect size r |
| Protein levels (S-) | |||||
| S-SIRT1 | 2.01[1.67; 2.12] | 0.44 [0.41; 0.78] | 78% | 6.3 × 10⁻⁵ | 0.84 |
| S-SIRT3 | 2.12 [2.01; 2.86] | 0.62 [0.54; 1.18] | 71% | 6.3 × 10⁻⁵ | 0.84 |
| S-SIRT6 | 2.55[2.14; 3.49] | 0.70 [0.60; 1.65] | 73% | 1.7 × 10⁻³ | 0.69 |
| mRNA levels | |||||
| RNA–SIRT1 | 0.94 [0.85; 1.12] | 0.55[0.49; 0.84] | 42% | 2.9 × 10⁻³ | 0.63 |
| RNA–SIRT3 | 0.88 [0.83; 1.59] | 0.64 [0.59; 0.76] | 27% | 2.6 × 10⁻³ | 0.63 |
| RNA–SIRT6 | 1.01 [0.96; 1.12] | 0.34 [0.29; 0.85] | 66% | 1.0 × 10⁻³ | 0.69 |
| Protein-to-mRNA ratio (PTR) | |||||
| SIRT1 / RNA | 1.90 [1.81; 2.09] | 0.86 [0.81; 0.91] | 55% | 6.3 × 10⁻⁵ | 0.84 |
| SIRT3 / RNA | 2.32[1.85; 2.47] | 0.95[0.90; 1.05] | 59% | 2.2 × 10⁻⁴ | 0.77 |
| SIRT6 / RNA | 2.23[2.12; 2.56] | 2.03 [1.87; 2.42] | 9% | 5.6 × 10⁻¹ | 0.11 |
| Marker | VO vs YA, CVD-free (%) | VO vs YA, All 23 (%) | p (CVD-free) |
| Protein levels (S-) | |||
| S-SIRT1 | 71.7 | 43.9 | 0.036 |
| S-SIRT3 | 69.3 | 42.8 | 0.036 |
| S-SIRT6 | 57.0 | 36.2 | 0.036 |
| mRNA levels | |||
| RNA–SIRT1 | 68.6 | 57.9 | 0.036 |
| RNA–SIRT3 | 51.6 | 45.3 | 0.036 |
| RNA–SIRT6 | 46.4 | 30.4 | 0.036 |
| Protein-to-mRNA ratio (PTR) | |||
| SIRT1 / RNA | 95.8 | 67.2 | 0.053 |
| SIRT3 / RNA | 133.6 | 91.9 | 0.036 |
| SIRT6 / RNA | 124.5 | 118.2 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
