Submitted:
18 July 2025
Posted:
18 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Areas and Soil Sampling
2.2. Isolation, Morphological Characterization, and Shannon Diversity Index of Bacterial Isolates
2.3. Plant Growth-Promoting Traits of Bacterial Isolates
2.3.1. Phosphate Solubilization
2.3.2. Acid and Alkaline Phosphatase Activity
2.3.3. Calcium Solubilization
2.3.4. Biological Nitrogen Fixation
2.4. Experiment to Evaluate the Effect of Bacterial Isolates on Tomato Plant Growth
2.4.1. Establishment and Inoculation
2.5. Experiment to Assess Antagonistic Activity of Isolates Against Fusarium sp.
2.6. Statistical Analysis of Experimental Data
3. Results
3.1. Physicochemical Characteristics of Soils and Bacterial Diversity
3.2. Morphological Characteristics of Bacterial Isolates
3.3. Plant Growth Promoting Characteristics of Bacterial Isolates
3.3.1. Phosphate Solubilization
3.3.2. Acid and Alkaline Phosphatase Activity
3.3.3. Calcium Solubilization
3.3.4. Biological Nitrogen Fixation
3.4. Biological Effectiveness of Bacterial Isolates as Plant Growth Promoters in Tomato Plants (Solanum lycopersicum)
3.5. Biological Effectiveness of the Antagonistic Activity of Bacterial Isolates Against Fusarium sp
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| CM | Conventional agronomic Management |
| OM | Organic agronomic Management |
| PGPB | Plant Growth Promoting Bacterial |
| IBC | Isolates Bacterial from Conventional plots |
| IBO | Isolates Bacterial from Organic plots |
| PS | Phosphate Solubilization |
| CS | Calcium Solubilization |
| NF | Nitrogen Fixation |
| PH | Plant height |
| RL | Root Length |
| TFB | Total Fresh Biomass |
| TDB | Total Dry Biomass |
References
- Apaza, W.; Quiroz, P.; Julca-Otiniano, A. Characterisation of avocado and asparagus farms in the Chavimochic irrigation project in La Libertad, Peru. Peruv. J. Agron. 2019, 3(3): 91103. https://doi.org/10.21704/pja.v3i3.1342. [CrossRef]
- Gupta, A.; Singh, U. B.; Sahu, P. K.; Paul, S.; Kumar, A.; Malviya, D.; Saxena, A. K. Linking soil microbial diversity to modern agriculture practices: a review. Int. J. of Environ. Res. Public. Health. 2022, 19(5), 3141. https://doi.org/10.3390/ijerph19053141. [CrossRef]
- Ondrasek, G.; Horvatinec, J.; Kovačić, M. B.; Reljić, M.; Vinceković, M.; Rathod, S.; Njavro, M. Land Resources in organic Agriculture: Trends and challenges in the twenty-first century from global to Croatian contexts. Agronomy. 2023, 13(6), 1544. https://doi.org/10.3390/agronomy13061544. [CrossRef]
- Khan, M. T.; Aleinikovienė, J.; Butkevičienė, L. M. Innovative Organic Fertilizers and Cover Crops: Perspectives for Sustainable Agriculture in the Era of Climate Change and Organic Agriculture. Agronomy. 2024, 14(12), 2871. https://doi.org/10.3390/agronomy14122871. [CrossRef]
- Gupta, R.; Noureldeen, A.; Darwish, H. Rhizosphere mediated growth enhancement using phosphate solubilizing rhizobacteria and their tri-calcium phosphate solubilization activity under pot culture assays in rice (Oryza sativa). Saudi. J. Biol. Sci. 2021, 28(7), 3692-3700. https://doi.org/10.1016/j.sjbs.2021.05.052. [CrossRef]
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H. M.; Mayer, J.; Van Der Heijden, M. G.; Mäder, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9(1). 1-10. https://doi.org/10.1038/s41598-018-38207. [CrossRef]
- Sylvia, S.; Rahim, H.; Surapati, U.; Rosmana, A.; Dewi, V. S. Diversity of microbes in organic and non-organic vegetable ecosystem. IOP Conf. Ser.: Earth and Environ. Sci. 2020, 486 (1). 012086. https://doi.org/10.1088/1755-1315/486/1/012086. [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. The Multi. ISME J. 2015, 9(5), 1177-1194. https://doi.org/10.1038/ismej.2014.210. [CrossRef]
- Fawzy, Z. F.; Shedeed, S. I.; Hassan, N. M. A review of organic agricultural of some vegetables crops. American J. Food Sci. Health. 2016, 2(3), 25-31. ISSN: 2381-7224 (Online).
- Shahriar, S. A.; Islam, M. N.; Chun, C. N. W.; Kaur, P.; Rahim, M. A.; Islam, M. M.; Siddiquee, S. Microbial metabolomics interaction and ecological challenges of Trichoderma species as biocontrol inoculant in crop rhizosphere. Agronomy. 2022, 12(4), 900. https://doi.org/10.3390/agronomy12040900. [CrossRef]
- Tan, X.; Hu, X.; Liu, X.; Zhang, P.; Yang, S.; Xia, F. Bioorganic Fertilizer Can Improve Potato Yield by Replacing Fertilizer with Isonitrogenous Content to Improve Microbial Community Composition. Agronomy. 2024, 14(12), 2881. https://doi.org/10.3390/agronomy14122881. [CrossRef]
- Acharya, M.; Ashworth, A. J.; Yang, Y.; Burke, J. M.; Lee, J. A.; Acharya, R. S. Soil microbial diversity in organic and non-organic pasture systems. Peer J. 2024, 9, e11184. https://doi.org/10.7717/peerj.11184. [CrossRef]
- Bebber, D. P.; Richards, V. R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 2022, 175; 104450. https://doi.org/10.1016/j.apsoil.2022.104450. [CrossRef]
- Melo, J.; Carolino, M.; Carvalho, L.; Correia, P.; Tenreiro, R.; Chaves, S.; Ramos, A. C. Crop management as a driving force of plant growth promoting rhizobacteria physiology. Springerplus. 2016, 5, 1-16. https://doi.org/10.1186/s40064-016-3232-z. [CrossRef]
- Teherán-Sierra, L. G.; Funnicelli, M. I. G.; de Carvalho, L. A. L.; Ferro, M. I. T.; Soares, M. A.; Pinheiro, D. G. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol. Res. 2021, 247, 126729. https://doi.org/10.1016/j.micres.2021.126729. [CrossRef]
- Corrales-Lozada, M.; Lumbres, V.; Iglesias-Osores, S.; Carreño-Farfán, C. Potencialidades de bacterias promotoras del crecimiento vegetal, aisladas de Portulaca oleracea L. en suelos con salinidad. Pastos forrajes. 2020, 43(2), 93-101.
- Sherpa, M. T.; Bag, N.; Das, S.; Haokip, P.; Sharma, L. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea (Pisum sativum L.) variety Dentami of Sikkim, India. Microbiol. Curr. Res. 2021, 2, 100068. https://doi.org/10.1016/j.crmicr.2021.100068. [CrossRef]
- Anaya, L. C.; Cordero, A. P.; Vergara, D. E. M. Identification Of Plant Growth-Promoting Rhizobacteria Associated With Persea Americana Plantations. J. Posit. Sch. 2023, 313-323.
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J.; Konvalina, P.; Kopecký, M. Impacts of environmental factors and nutrients management on tomato grown under controlled and open field conditions. Agronomy. 2023, 13(3), 916. https://doi.org/10.3390/agronomy13030916. [CrossRef]
- Muñoz, S. S.; Navarro, K. J. J.; Martin Frias Herrera, J.; Romero, H. E.; Ríos, J. A. S.; Alba, E. M.; Arciniega, J. N. L. Aislamiento de bacterias de suelo como fuente de péptidos antimicrobianos contra cepas patógenas. RedICA. 2018, 9(21), 821-830.
- Alcarraz Curi, M.; Heredia Jiménez, V.; Julian Ibarra, J. P. Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizósfera de Coffea spp. en Pichanaqui, Perú. Biotecnol. Veg. 2019, 19(4), 285-295.
- Pla, L. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia. 2006, 31(8), 583-590.
- Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiol. Lett. 1999, 170(1), 265-270.
- Corrales Ramirez, L. C.; Arevalo Galvez, Z. Y.; Moreno Burbano, V. E. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova. 2014, 12(21), 68-79.
- Gómez-Guiñan, Y. Actividad de las fosfatasas ácidas y alcalinas (extracelulares e intracelulares) en hongos de la rizosfera de Arachis hypogaea (Papiloneaceae). Rev. Biol. Tropical. 2004, 52(1), 287-295.
- Torres, M. V.; Lizarazo, L. M. Evaluación de grupos funcionales (ciclo del C, N, P) y actividad de la fosfatasa ácida en dos suelos agrícolas del departamento de Boyacá (Colombia). Agron. Colomb. 2006, 24(2), 317-325.
- Argüello-Navarro, A. Z.; Moreno-Rozo, L. Y. Evaluación del potencial biofertilizante de bacterias diazótrofas aisladas de suelos con cultivo de cacao (Theobroma cacao L.). Acta Agron. 2014, 63(3), 238-245.
- Gutiérrez-Calvo, A. E.; Estrada, A. G.; Miceli-Méndez, C. L.; López-Miceli, M. A. Efectos de Bacillus subtilis cepas GBO3 y IN937b en el crecimiento de maíz (Zea mays L.). Polibotánica. 2022, (53), 211-218. https://doi.org/10.18387/polibotanica.53.14. [CrossRef]
- Bolívar, K.; Sanabria, M. E.; Rodríguez, D.; de Camacaro, M. P.; Ulacio, D., Cumana, L. J.; Crescente, O. Potencial efecto fungicida de extractos vegetales en el desarrollo in vitro del hongo Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. y de la antracnosis en frutos de mango. Revista Científica UDO Agrícola. 2009, 9(1), 175-181.
- Trinidad-Cruz, J. R.; Rincón-Enríquez, G.; Evangelista-Martínez, Z.; Guízar-González, C.; Enríquez-Vara, J. N.; López-Pérez, L.; Quiñones-Aguilar, E. E. Actinobacteria from avocado rhizosphere: antagonistic activity against Colletotrichum gloeosporioides and Xanthomonas sp. Terra Latinoam. 2021, 39. https://doi.org/10.28940/terra.v39i0.802. [CrossRef]
- Moreno-Limón, S.; González-Solís, L. N.; Salcedo-Martínez, S. M.; Cárdenas-Avila, M. L.; Perales-Ramírez, A. Efecto antifúngico de extractos de gobernadora (Larrea tridentata L.) sobre la inhibición in vitro de Aspergillus flavus y Penicillium sp. Polibotanica. 2011, (32), 193-205.
- Vásquez-Polo, J. R.; Baena-Garcia, D.; Menjivar-Flores, J. C. Variabilidad espacial de propiedades físicas y químicas en suelos de la granja experimental de la Universidad del Magdalena (Santa Marta, Colombia). Acta Agron. 2010, 59(4), 449-456. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28122010000400009&lng=en&tlng=es.
- Al-Shammary, A. A. G.; Al-Shihmani, L. S. S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J. of Environ. Manage. 2024, 364, 121487. https://doi.org/10.1016/j.jenvman.2024.121487. [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K. E.; Nabel, M.; Roß-Nickoll, M.; Van Dongen, J. T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. https://doi.org/10.1016/j.scitotenv.2020.141607. [CrossRef]
- Chen, W.; Zhang, X.; Hu, Y.; Zhao, Y. Effects of different proportions of organic fertilizer in place of chemical fertilizer on microbial diversity and community structure of pineapple rhizosphere soil. Agronomy. 2023, 14(1), 59. https://doi.org/10.3390/agronomy14010059. [CrossRef]
- Beriot, N.; Zornoza, R.; Lwanga, E. H.; Zomer, P.; van Schothorst, B.; Ozbolat, O.; Geissen, V. Intensive vegetable production under plastic mulch: A field study on soil plastic and pesticide residues and their effects on the soil microbiome. Sci. Total Environ. 2023, 900, 165179. https://doi.org/10.1016/j.scitotenv.2023.165179. [CrossRef]
- Jost, L.; González-Oreja, J. Midiendo la diversidad biológica: más allá del índice de Shannon. Acta Zool. Lilloana. 2012, 3-14.
- Lozada, A. E.; Lagarda, G. G.; Jiménez, A. M.; Zapata, F. B. Diversidad bacteriana del suelo: métodos de estudio no dependientes del cultivo microbiano e implicaciones biotecnológicas. Agrociencia. 2004, 38(6), 583-592.
- Hernández-Flores, L.; Munive-Hernández, J. A.; Sandoval-Castro, E.; Martínez-Carrera, D.; Villegas-Hernández, M. C. Efecto de las prácticas agrícolas sobre las poblaciones bacterianas del suelo en sistemas de cultivo en Chihuahua, México. Rev. Mexicana Cienc. Agric. 2013, 4(3), 353-365.
- Joshi, R.; Singh, J.; Vig, A. P. Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio. 2015, 14, 137-159. https://doi.org/10.1007/s11157-014-9347-1. [CrossRef]
- Fiore-Donno, A. M.; Human, Z. R.; Štursová, M.; Mundra, S.; Morgado, L.; Kauserud, H.; Bonkowski, M. Soil compartments (bulk soil, litter, root and rhizosphere) as main drivers of soil protistan communities distribution in forests with different nitrogen deposition. Soil Biol. Biochem. 2022, 168, 108628. https://doi.org/10.1016/j.soilbio.2022.108628. [CrossRef]
- Yan, Y.; Zhang, X.; Liu, Y.; Hou, L.; Geng, Z.; Hu, F.; Xu, C. Impact of Organic Fertilizer Substitution and Chemical Nitrogen Fertilizer Reduction on Soil Enzyme Activity and Microbial Communities in an Apple Orchard. Agronomy. 2024, 14(12), 2917. https://doi.org/10.3390/agronomy14122917. [CrossRef]
- Orr, C. H.; Stewart, C. J.; Leifert, C.; Cooper, J. M.; Cummings, S. P. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. J. Appl. Microbiol. 2015, 119(1), 208-214. https://doi.org/10.1111/jam.12822. [CrossRef]
- Agegnehu, G.; Amede, T.; Desta, G.; Erkossa, T.; Legesse, G.; Gashaw, T.; Schulz, S. Improving fertilizer response of crop yield through liming and targeting to landscape positions in tropical agricultural soils. Heliyon. 2023, 9(6), https://doi.org/10.1016/j.heliyon.2023.e17421. [CrossRef]
- Hemkemeyer, M.; Schwalb, S. A.; Heinze, S.; Joergensen, R. G.; Wichern, F. Functions of elements in soil microorganisms. Microbiol. Res. 2021, 252, 126832. https://doi.org/10.1016/j.micres.2021.126832. [CrossRef]
- Kuramae, E. E.; Yergeau, E.; Wong, L. C.; Pijl, A. S.; Van Veen, J. A.; Kowalchuk, G. A. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol. Ecol. 2012, 79(1), 12-24. https://doi.org/10.1111/j.1574-6941.2011.01192.x. [CrossRef]
- Pírez, M.; Mota, M. Morfología y estructura bacteriana. Temas de Bacteriología. y Virología. Médica. 2006, 23-42.
- Feijoo, M. A. L. Microorganismos eficientes y sus beneficios para los agricultores. Revista Científica Agroecosistemas. 2016, 4(2), 31-40.
- Cazorla, F.M.; Duckett, S.B.; Berstrom, E.T.; Noreen, S.; Odijk, R.; Lugtenberg, B.J.J.; Thomas-Oates, J.E.; Bloemberg, G.V. Biocontrol of avocado Demathophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol. Plant-Microb. Interact. 2006, 19, 418–428.
- Pliego, C.; Cazorla, F.M.; González-Sánchez, M.A.; Pérez-Jiménez, R.M.; de Vicente, A.; Ramos, C. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res. Microbiol. 2007, 158, 463–470.
- Al-Kahtani, M. D.; Fouda, A.; Attia, K. A.; Al-Otaibi, F.; Eid, A. M.; Ewais, E. E. D.; Abdelaal, K. A. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy. 2020, 10(9), 1325. https://doi.org/10.3390/agronomy10091325. [CrossRef]
- Solórzano-Acosta, R. A.; Quispe, K. R. Assessing the role of field isolated Pseudomonas and Bacillus as growth-promoting rizobacteria on avocado (Persea americana) seedlings. J. Sustain. Agric. Environ. 2024, 3(3), e12114. https://doi.org/10.1002/sae2.12114. [CrossRef]
- Molina-Romero, D.; M. Bustillos-Cristales, O.; Rodríguez-Andrade, Y. E.; Morales-García, Y.; Santiago-Saenz, M.; Castañeda-Lucio M.; Muñoz-Rojas, J. Mecanismos de f itoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas. 2015, 17: 24-34.
- Oteino, N.; Lally, R. D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K. J.; Dowling, D. N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. https://doi.org/10.3389/fmicb.2015.00745. [CrossRef]
- Walpola, B. C.; Hettiarachchi, R. H. A. N. Organic manure amended with phosphate solubilizing bacteria on soil phosphorous availability. J. Agric. Sci.-Sri Lanka. 2020, 15(2). https://doi.org/10.4038/jas.v15i2.8796. [CrossRef]
- Beltrán Pineda, M. E. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Cien. Tecnol. Agropecuaria. 2014, 15(1), 101-113.
- Torres, Ó. G. V. Importancia de los fosfatos y fosfitos en la nutrición de cultivos. Acta Agrícola y Pecuaria. 2016, 2(3), 55-61.
- Luo, G.; Sun, B.; Li, L.; Li, M.; Liu, M.; Zhu, Y.; Shen, Q. Understanding how long-term organic amendments increase soil phosphatase activities: insight into phoD-and phoC-harboring functional microbial populations. Soil Biol. Biochem. 2019, 139, 107632. https://doi.org/10.1016/j.soilbio.2019.107632. [CrossRef]
- López, F. M.; Duval, M.; Martínez, J. M.; Gabbarini, L.; Galantini, J. Condicionantes de la disponibilidad de fósforo en suelos bajo siembra directa del sudoeste bonaerense. Ciencia del suelo. 2019, 37(1), 158-163.
- Ma, W.; Luo, P.; Ahmed, S.; Hayat, H. S.; Anjum, S. A.; Nian, L.; Cai, L. Synergistic Effect of Biochar, Phosphate Fertilizer, and Phosphorous Solubilizing Bacteria for Mitigating Cadmium (Cd) Stress and Improving Maize Growth in Cd-Contaminated Soil. Plants. 2024, 13(23), 3333. https://doi.org/10.3390/plants13233333. [CrossRef]
- Paredes-Mendoza, M.; Espinosa-Victoria, D. Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: una revisión crítica. Terra Latinoam. 2010, 28(1), 61-70.
- Rana, G.; Mandal, T.; Mandal, N. K.; Sakha, D.; Meikap, B. C. Calcite solubilization by bacteria: A novel method of environment pollution control. Geomicrobiol. J. 2015, 32(9), 846-852. https://doi.org/10.1080/01490451.2015.1010755. [CrossRef]
- Bellenger, J. P.; Darnajoux, R.; Zhang, X.; Kraepiel, A. M. L. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: review. Biogeochemistry. 2020, 149, 53-73. https://doi.org/10.1007/s10533-020-00666-7. [CrossRef]
- Sepp, S. K.; Vasar, M.; Davison, J.; Oja, J.; Anslan, S.; Al-Quraishy, S.; Zobel, M. Global diversity and distribution of nitrogen-fixing bacteria in the soil. Front. Plant Sci. 2023, 14, 1100235. https://doi.org/10.3389/fpls.2023.1100235. [CrossRef]
- Igiehon, N. O.; Babalola, O. O. Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public. Health. 2018, 15(4), 574. https://doi.org/10.3390/ijerph15040574. [CrossRef]
- Wolińska, A.; Kuźniar, A.; Zielenkiewicz, U.; Izak, D.; Szafranek-Nakonieczna, A.; Banach, A.; Błaszczyk, M. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. App. Soil Ecol. 2017, 119, 128-137. https://doi.org/10.1016/j.apsoil.2017.06.009. [CrossRef]
- Liao, H., Li, Y., & Yao, H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J. Soils Sediments. 2018, 18, 1076-1086. https://doi.org/10.1007/s11368-017-1836-8. [CrossRef]
- Li, X.,Geng, X.; Xie, R.; Fu, L.; Jiang, J.; Gao, L.; Sun, J. The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of hybrid Pennisetum. Biotechnol. Biofuels Bioprod. 2016, 9, 190. https://doi.org/10.1186/s13068-016-0592-0. [CrossRef]
- Banik, A.; Dash, G.K.; Swain, P.; Kumar, U.; Mukhopadhyay, S.K.; Dangar, T.K. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiol. Res. 2019, 219, 56–65. https://doi.org/10.1016/j.micres.2018.11.004. [CrossRef]
- Rodrigues, A.A.; Forzani, M.V.; Soares, R.; Sibov, S.T.; Vieira, J. Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesqui. Agropecu. Trop. 2016, 46, 149–158. https://doi.org/10.1590/1983-40632016v4639526. [CrossRef]
- Renganathan, P.; Andrade-Bustamante, G.; Martínez-Ruiz, F. E.; Puente, E. O. R. Microbial Diversity and Functional Profiles of Three Commercial Biofertilizers and Impacts on the Bacterial Communities of Avocado’s Soil Rhizosphere. Cien. Tecnol. Agropecuaria. 2024, 25(1). https://doi.org/10.21930/rcta.vol25_num1_art:3251. [CrossRef]
- Lin, L.; Zhengyi, L.; Chunjin, H.; Zhang, X.; Chang, S.; Yang, L.; Yangrui, L.; Qianli, A. Plant growth-promoting nitrogen-fixing Enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ. 2012, 27, 391–398. https://doi.org/10.1264/jsme2.ME11275. [CrossRef]
- Gyaneshwar, P.; Naresh, K.G.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil. 2022, 245, 83–93. https://doi.org/10.1023/A:1020663916259. [CrossRef]
- Orozco, M.; Ma del C.; Ma del, C.R.; Bernard, R.G.; Gustavo, S. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 2018, 208, 25–31. https://doi.org/10.1016/j.micres.2018.01.005. [CrossRef]
- Vurukonda, S. S. K. P.; Giovanadri, D.; Stefani, E. Growth Promotion and Biocontrol Activity of Endophytic Streptomyces spp. Prime Archives in Molecular Sciences, 2nd Edition. 2021, 1, 1-55.
- Tzec-Interián, J. A.; Desgarennes, D.; Carrión, G.; Monribot-Villanueva, J. L.; Guerrero-Analco, J. A.; Ferrera-Rodríguez, O.; Ortiz-Castro, R. Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS One. 2020, 15(4), e0231215. https://doi.org/10.1371/journal.pone.0231215. [CrossRef]
- Chow, Y.Y.; Rahman, S.; Ting, A.S.Y. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay. J. Adv. Res. 2017, 8, 13–21. https://doi.org/10.1016/j.jare.2016.10.008. [CrossRef]
- Khan, N.; Zandi, P.; Ali, S.; Mehmood, A.; Adnan Shahid, M.; Yang, J. Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annus. Front. Microbiol. 2018, 9, 2507. https://doi.org/10.3389/fmicb.2018.02507. [CrossRef]
- González-Sánchez, M. Á.; Pérez-Jiménez, R. M.; Pliego, C.; Ramos, C.; De Vicente, A.; Cazorla, F. M. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. J. Appl. Microbiol. 2010, 109(1), 65-78. https://doi.org/10.1111/j.1365-2672.2009.04628.x. [CrossRef]
- Weller, D.M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev. Phytopathol. 1988, 26, 379–407.
- Whipps, J.M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 2001, 52, 487–511.
- Cortazar-Murillo, EM.; Méndez-Bravo, A.; Monribot-Villanueva, J.L.; Garay-Serrano, E.; Kiel-Martínez, AL.; Ramírez-Vázquez, M.; Guevara-Avendaño, E.; Méndez-Bravo, A.; Guerrero-Analco, J.A.; Reverchon, F. Biocontrol and plant growth promoting traits of two avocado rhizobacteria are orchestrated by the emission of diffusible and volatile compounds. Front. Microbiol. 2023, 14:1152597. https://doi.org/10.3389/fmicb.2023.1152597. [CrossRef]
- Ruano-Rosa, D.; Cazorla, F. M.; Bonilla, N.; Martín-Pérez, R.; De Vicente, A.; López-Herrera, C. J. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur. J. Plant Pathol. 2014, 138, 751-762. https://doi.org/10.1007/s10658-013-0347-8. [CrossRef]
| Physicochemical and biological parameters | Orchards with conventional management (CM) |
Orchards with organic management (OM) |
|---|---|---|
| Textual Class | Sandy clay loam | Sandy loam |
| Bulk Density (g cm-3) | 0.85 | 2 |
| Porosity (%) | 61.3 | 57.7 |
| pH (H2O) 1:2 | 5.94 | 7.08 |
| EC (dSm-1) | 0.8 | 0.5 |
| Organic Matter (%) | 5.87 | 10.23 |
| CEC meq100g-1 | 20.65 | 40.5 |
| Nitrogen (mg kg-1) | 119.58 | 106.2 |
| Phosphorus (mg kg-1) | 169.17 | 330.8 |
| Potassium (mg kg-1) | 1,827 | 1,414 |
| Calcium (mg kg-1) | 1,946 | 3,688 |
| Magnesium (mg kg-1) | 689 | 1,697 |
| Sodium (mg kg-1) | 23.2 | 265 |
| Iron (mg kg-1) | 64.8 | 56.9 |
| Zinc (mg kg-1) | 11.81 | 78.7 |
| Manganese (mg kg-1) | 42.4 | 39.23 |
| Copper (mg kg-1) | 20.5 | 29.26 |
| Isolates bacterial | 15 b1 | 20 a |
| Shannon Diversity Index | 1.75 b | 2.44 a |
| Morphological characteristics of the bacterial isolate | Bacterial isolates from conventional management (CM) orchard soils | Bacterial isolates from organic management (OM) orchard soils |
|---|---|---|
| Colony size | Punctate, small, medium and large | Punctate, small, medium and large |
| Colony shape | Circular, fusiform, rhizoids and irregular | Circular, fusiform, rhizoids and irregular |
| Colony edge | Entire, undulate and rhizoids | Entire, rhizoids, filamentous and lobed |
| Colony transparency | Opaque and transparent | Opaque and transparent |
| Colony luster | L and WL* | L and WL |
| Colony color | White and yellow | White and yellow |
| Colony texture | Lisas | Lisas |
| Colony elevation | Convex, raised and flat | Raised and flat |
| Consistency | Soft, mucoid and hard | Soft, mucoid and hard |
| Positive Gram | 8 | 10 |
| Negative Gram | 7 | 10 |
| Microscopic morphology | Long bacilli with spores in initial, central and final positions | Long, short, wide, bacilli sporulated |
| Agronomic Management |
Key to thebacterial isolate | Phosphate Solubilization index |
P-nitrophenylphosphate acids (µgmL-1) |
P-nitrophenylphosphste alkaline (µgmL-1) |
Calcium solubilization index |
Nitrogen fixation NO3- ppm |
|---|---|---|---|---|---|---|
| IBC-1 | - | - | - | 2.77 b | 67b | |
| IBC-2 | - | - | - | - | 64b | |
| IBC-3 | 3.15 a* | 15.87 a | 8.48 b | - | 73b | |
| IBC-4 | - | - | - | - | 70b | |
| IBC-5 | - | - | - | - | 71b | |
| Conventional Management | IBC-6 | - | - | - | 3.05 a | 85.5b |
| IBC-7 | - | - | - | - | 96.75b | |
| IBC-8 | - | - | - | - | 73b | |
| IBC-9 | - | - | - | - | 74b | |
| IBC-10 | - | - | - | - | 39b | |
| IBC-11 | - | - | - | - | 63b | |
| IBC-12 | - | - | - | - | 66b | |
| IBC-13 | - | - | - | - | 73b | |
| IBC-14 | - | - | - | - | 42b | |
| IBC-15 | - | - | - | - | 70b | |
| IBO-1 | - | - | - | - | 115b | |
| IBO-2 | - | - | - | - | 57.7b | |
| IBO-3 | - | - | - | - | 104b | |
| IBO-4 | - | - | - | - | 157.5a | |
| IBO-5 | - | - | - | - | 139.3a | |
| IBO-6 | - | - | - | - | 139.3a | |
| IBO-7 | - | - | - | - | 136.5a | |
| IBO-8 | - | - | - | - | 72b | |
| IBO-9 | - | - | - | 6.33a | 127.50a | |
| Organic | IBO-10 | 2.14b | 11.15a | 12.79a | 1.96b | 106.8b |
| Management | IBO-11 | - | - | - | - | 117.50b |
| IBO-12 | 2.41b | 13.05a | 11.57a | - | 119.75a | |
| IBO-13 | 3.5a | 15.88a | 13.76a | 2.83b | 162.5a | |
| IBO-14 | 3.22a | 10.22a | 5.66b | - | 114b | |
| IBO-15 | - | - | - | - | 123.8a | |
| IBO-16 | - | - | - | - | 106.3b | |
| IBO-17 | 4.31a | 14.64a | 11.91a | 4.06a | 125.5a | |
| IBO-18 | 2.74b | 12.14a | 14.68a | 2.66b | 134.8a | |
| IBO-19 | 2.95b | 13.03a | 6.56b | 132.5a | ||
| IBO-20 | 2.91b | 13.09a | 12.58a | 2.21b | 107.3b | |
| Positive control |
Bacillus thuringiensis |
2.46b | 0.345b | 3.01b | 2.93b | - |
|
Azotobacter vinelandii |
- | - | - | - | 62.25b |
| Agronomic Management |
Key to the bacterial isolate |
PS | CS | NF | PH cm |
RL cm |
TFB g |
TDB g |
|---|---|---|---|---|---|---|---|---|
| IBC-1 | - | - | - | 4.77 fg* | 6.64 ab | 0.238 c | 0.065 b | |
| IBC-2 | - | - | - | 5.33 cd | 6.02 b | 0.150 d | 0.098 b | |
| IBC-3 | + | - | - | 5.9 ab | 4.05 g | 0.270 cd | 0.055 b | |
| IBC-4 | - | - | - | 4.42 h | 6.33 b | 0.271 c | 0.047 bc | |
| IBC-5 | - | - | - | 4.78f g | 5.08 d | 0.217 c | 0.024 ef | |
| Conventional Management | IBC-6 | - | - | + | 5.15 e | 5.70 c | 0.385 b | 0.052 b |
| IBC-7 | - | - | - | 5.09 ef | 5.22 cd | 0.250 c | 0.041 c | |
| IBC-8 | - | - | - | 5.04 ef | 4.09 fg | 0.202 c | 0.027 e | |
| IBC-9 | - | - | - | 5.05 ef | 5.19 cd | 0.174 cd | 0.027 e | |
| IBC-10 | - | - | - | 5.65 b | 4.6 e | 0.234 c | 0.033 d | |
| IBC-11 | - | - | - | 4.91 f | 3.86 gh | 0.229 c | 0.032 d | |
| IBC-12 | - | - | - | 5.40 c | 5.70 c | 0.236 c | 0.041 c | |
| IBC-13 | - | - | - | 4.59 gh | 4.25 f | 0.304 bc | 0.053 b | |
| IBC-14 | - | - | - | 5.15 e | 4.60 e | 0.223 c | 0.034 d | |
| IBC-15 | - | - | - | 6.33 ab | 5.08 d | 0.377 ab | 0.061 b | |
| IBO-1 | - | - | - | 4.36 i | 5.34 c | 0.187 cd | 0.035 d | |
| IBO-2 | - | - | - | 4.74f g | 6.91 ab | 0.327 b | 0.040 c | |
| IBO-3 | - | - | - | 5.13 e | 5.76 c | 0.218 c | 0.032 d | |
| IBO-4 | - | - | + | 4.96 f | 4.75 d | 0.269 c | 0.043 c | |
| IBO-5 | - | - | + | 4.79 fg | 4.42 ef | 0.272 c | 0.056 b | |
| IBO-6 | - | - | + | 4.32 ij | 5.49 c | 0.275 c | 0.048 b | |
| IBO-7 | - | - | + | 4.63 g | 6.56 b | 0.222 c | 0.025 e | |
| IBO-8 | - | - | - | 4.75 fg | 6.34 b | 0.301 bc | 0.069 b | |
| IBO-9 | - | + | + | 6.55 ab | 5.51 c | 0.316 b | 0.054 b | |
| Organic | IBO-10 | + | + | - | 5.89 ab | 5.91 bc | 0.443 a | 0.062 b |
| Management | IBO-11 | - | - | - | 6.99 a | 5.25 c | 0.402 a | 0.140 a |
| IBO-12 | + | + | + | 6.6 a | 4.65 d | 0.344 b | 0.138 a | |
| IBO-13 | + | + | + | 5.2 d | 4.64 de | 0.340 b | 0.045 c | |
| IBO-14 | + | + | - | 5.44 b | 6.06 b | 0.224 c | 0.108 a | |
| IBO-15 | - | - | + | 6.54 ab | 7.95 a | 0.324 b | 0.032 d | |
| IBO-16 | - | - | - | 5.79 b | 6.65 b | 0.244 c | 0.028 e | |
| IBO-17 | + | + | + | 5.70 b | 6.28 b | 0.402 a | 0.041 c | |
| IBO-18 | + | + | + | 5.9 ab | 7.12 a | 0.348 b | 0.026 e | |
| IBO-19 | + | - | + | 4.97 f | 4.09 fg | 0.246 c | 0.039 c | |
| IBO-20 | + | + | + | 5.55 b | 4.91 d | 0.332 b | 0.038 cd | |
| Control | Without inoculation | 3.65 j | 3.19 h | 0.141 d | 0.018 f |
| Agronomic Management |
Key to the bacterial isolate |
Percentage inhibition of micellar growth Fusarium sp. |
|---|---|---|
| IBC-1 | - | |
| IBC-2 | 89.62 a* | |
| IBC-3 | 68.80 a | |
| IBC-4 | 88.97 a | |
| IBC-5 | - | |
| Conventional Management | IBC-6 | 86.28 a |
| IBC-7 | - | |
| IBC-8 | 92.35 a | |
| IBC-9 | - | |
| IBC-10 | 76.44 a | |
| IBC-11 | - | |
| IBC-12 | - | |
| IBC-13 | 91.97 a | |
| IBC-14 | 92.33 a | |
| IBC-15 | - | |
| IBO-1 | - | |
| IBO-2 | - | |
| IBO-3 | 93.69 a | |
| IBO-4 | 51.29 b | |
| IBO-5 | - | |
| IBO-6 | - | |
| IBO-7 | - | |
| IBO-8 | 90.09 a | |
| IBO-9 | 69.51 a | |
| Organic | IBO-10 | - |
| Management | IBO-11 | - |
| IBO-12 | - | |
| IBO-13 | 88.13 a | |
| IBO-14 | - | |
| IBO-15 | - | |
| IBO-16 | - | |
| IBO-17 | 86.63 a | |
| IBO-18 | - | |
| IBO-19 | - | |
| IBO-20 | - | |
| Positive Control | Bacillus subtilis | 79.06a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
