Submitted:
14 July 2025
Posted:
15 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Generalized Gamma Frailty and Normal Random Effects Model
2.1. Generalized Gamma Distribution
2.2. Weibull-Generalized Gamma-Normal Model
3. Likelihood Function and Estimation Method
4. Simulation Study and Model Discrimination
5. Illustrative Real-Life Data Analyses
5.1. Asthma Study
5.2. Bladder Study
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GG | generalized gamma |
References
- Molenberghs, G.; Verbeke, G.; Efendi, A.; Braekers, R.; Demetrio, C. A combined gamma frailty and normal random-effects model for repeated, overdispersed time-to-event data. Stat. Methods Med. Res. 2015, 24, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, L.; Janssen, P. The Frailty Model; Springer: New York, NY, USA, 2007. [Google Scholar]
- Hinde, J.; Demetrio, C. Overdispersion: models and estimation. Comput. Stat. Data Anal. 1998, 27, 151–170. [Google Scholar] [CrossRef]
- Molenberghs, G.; Verbeke, G.; Demetrio, C. A family of generalized linear models for repeated measures with normal and conjugate random effects. Stat. Sci. 2010, 25, 325–347. [Google Scholar] [CrossRef]
- Engel, B.; Keen, A. A simple approach for the analysis of generalized linear mixed models. Stat. Neerl. 1994, 48, 1–22. [Google Scholar] [CrossRef]
- Breslow, N.; Clayton, D. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 1993, 88, 9–25. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Peng, Y. Generalized gamma frailty. model. Stat. Med. 2006, 25, 2797–2816. [Google Scholar] [CrossRef] [PubMed]
- Stacy, E. A generalization of the gamma distribution. Ann. Math. Stat. 1962, 33, 1187–1192. [Google Scholar] [CrossRef]
- Johnson, N.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Vol. 2; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Prentice, R. A log gamma model and its maximum likelihood estimation. Biometrika 1974, 61, 539–544. [Google Scholar] [CrossRef]
- Lawless, J. Statistical Models and Methods for Lifetime Data, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Yamaguchi, K. Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of `permanent employment’ in Japan. J. Am. Stat. Assoc. 1992, 87, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Dear, K.; Denham, J. A generalized F mixture model for cure rate estimation. Stat. Med. 1998, 17, 813–830. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Pal, S. An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood-and information-based methods. Comput. Stat. 2015, 30, 151–189. [Google Scholar] [CrossRef]
- Shin, J.; Chang, J.; Kim, N. Statistical modeling of speech signals based on generalized gamma distribution. IEEE Signal Process. Lett. 2005, 12, 258–261. [Google Scholar] [CrossRef]
- Cox, C.; Chu, H.; Schneider, M.; Muñoz, A. Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat. Med. 2007, 26, 4352–4374. [Google Scholar] [CrossRef] [PubMed]
- Asher, I.; Pearce, N. Global burden of asthma among children. Int J Tuberc Lung Dis. 2014, 18, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.F.; Herzberg, A.M. Data: a Collection of Problems from Many Fields for the Student and Research Worker; Springer: New York, NY, USA, 2012. [Google Scholar]
- Wei, L.J.; Lin, D.Y.; Weissfeld, L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 1989, 84, 1065–1073. [Google Scholar] [CrossRef]
| True | Fitted Models | ||||||||
| Parameter | Gamma | Lognormal | Weibull | GG | |||||
| Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE | ||
| Gamma | 0.47 | 0.19 | -0.27 | 2.15 | -0.32 | 1.70 | 0.20 | 1.25 | |
| -0.65 | 0.20 | 65.68 | 50.46 | -7.50 | 0.97 | 9.87 | 9.16 | ||
| 3.13 | 0.49 | -0.17 | 0.71 | -0.42 | 0.54 | -0.18 | 0.42 | ||
| Lognormal | 1.78 | 0.20 | 0.62 | 1.47 | 0.79 | 1.83 | 0.68 | 1.47 | |
| -5.71 | 1.18 | 1.58 | 1.25 | -27.59 | 7.83 | -8.47 | 8.31 | ||
| 2.80 | 0.53 | -0.76 | 0.40 | -0.66 | 0.49 | -0.86 | 0.44 | ||
| Weibull | 0.44 | 0.22 | 0.35 | 2.59 | 0.86 | 2.02 | 0.66 | 1.49 | |
| 0.71 | 0.09 | 123.45 | 171.49 | 3.21 | 0.80 | 14.46 | 15.26 | ||
| 3.86 | 0.81 | 3.22 | 0.92 | 1.39 | 0.53 | 1.20 | 0.46 | ||
| Gamma | 0.58 | 0.23 | 0.50 | 1.20 | 0.27 | 0.99 | 0.11 | 0.56 | |
| -0.03 | 0.08 | 64.03 | 44.18 | -7.37 | 0.80 | 6.40 | 5.74 | ||
| 2.57 | 0.33 | 1.00 | 0.33 | 0.88 | 0.24 | 0.98 | 0.20 | ||
| Lognormal | 1.86 | 0.12 | 0.25 | 0.75 | -0.29 | 0.98 | 0.07 | 0.85 | |
| -5.65 | 1.09 | 0.21 | 0.65 | -27.90 | 7.89 | -7.84 | 3.79 | ||
| 3.12 | 0.52 | 0.04 | 0.18 | 0.18 | 0.25 | -0.02 | 0.23 | ||
| Weibull | 0.18 | 0.13 | 0.69 | 1.51 | 1.09 | 0.90 | 0.93 | 0.69 | |
| 0.70 | 0.03 | 123.48 | 165.46 | 3.05 | 0.56 | 8.50 | 7.64 | ||
| 3.52 | 0.85 | 3.50 | 0.71 | 1.16 | 0.28 | 1.23 | 0.27 | ||
| Gamma | 0.86 | 0.06 | 0.13 | 0.63 | 0.13 | 0.52 | 0.50 | 0.23 | |
| 0.12 | 0.06 | 62.72 | 41.13 | -7.61 | 0.74 | 4.92 | 4.47 | ||
| 2.50 | 0.25 | 1.57 | 0.19 | 0.86 | 0.13 | 1.27 | 0.12 | ||
| Lognormal | 2.16 | 0.11 | 0.52 | 0.32 | 0.21 | 0.46 | 0.51 | 0.36 | |
| -4.75 | 0.87 | 0.55 | 0.31 | -27.60 | 7.67 | -4.92 | 3.02 | ||
| 2.52 | 0.31 | 0.69 | 0.08 | 0.56 | 0.11 | 0.66 | 0.10 | ||
| Weibull | 0.24 | 0.09 | 0.39 | 0.93 | 0.47 | 0.52 | 0.41 | 0.36 | |
| 0.73 | 0.04 | 124.71 | 161.58 | 3.78 | 0.45 | 6.53 | 4.13 | ||
| 4.09 | 1.13 | 5.67 | 0.74 | 1.99 | 0.24 | 1.70 | 0.17 | ||
| True Model | Fitted Model | |||
| Gamma | Lognormal | Weibull | GG | |
| Gamma | 0.312 | 0.202 | 0.328 | 0.470 |
| Lognormal | 0.078 | 0.544 | 0.306 | 0.616 |
| Weibull | 0.262 | 0.092 | 0.496 | 0.646 |
| Gamma | 0.400 | 0.138 | 0.276 | 0.586 |
| Lognormal | 0.048 | 0.614 | 0.284 | 0.668 |
| Weibull | 0.290 | 0.040 | 0.514 | 0.670 |
| Gamma | 0.348 | 0.102 | 0.314 | 0.584 |
| Lognormal | 0.062 | 0.678 | 0.188 | 0.750 |
| Weibull | 0.192 | 0.020 | 0.622 | 0.788 |
| Patient ID | Drug | Begin | End | Status |
| 1 | 0 | 0 | 15 | 1 |
| 1 | 0 | 22 | 90 | 1 |
| 1 | 0 | 96 | 325 | 1 |
| 1 | 0 | 329 | 332 | 1 |
| 1 | 0 | 338 | 369 | 1 |
| 1 | 0 | 370 | 412 | 1 |
| 1 | 0 | 418 | 422 | 1 |
| 1 | 0 | 426 | 474 | 1 |
| 1 | 0 | 477 | 526 | 1 |
| 1 | 0 | 530 | 600 | 0 |
| 2 | 1 | 0 | 180 | 1 |
| 2 | 1 | 189 | 267 | 1 |
| 2 | 1 | 273 | 581 | 1 |
| 2 | 1 | 582 | 600 | 0 |
| Parameter | Gamma | Lognormal | Weibull | GG | |
| Intercept | -3.995(0.501) | -4.009(15.681) | -4.011(8.922) | -4.009(15.681) | |
| Treatment effect | -0.082(0.084) | -0.084(0.084) | -0.092(0.085) | -0.084(0.084) | |
| Scale parameter | 0.814(0.404) | 0.878(13.771) | 0.804(7.170) | 0.878(13.771) | |
| Shape parameter | 6.995(0.001) | - | - | - | |
| Shape parameter | q | - | - | - | 0 |
| Shape parameter | - | 0.462(0.057) | 3.693(0.608) | 0.462(0.057) | |
| SD random effect | 0.472(0.041) | 0.460(0.041) | 0.486(0.042) | 0.460(0.041) | |
| logL | -9314.007 | -9310.748 | -9317.422 | -9310.748 | |
| AIC | 18638.014 | 18631.496 | 18644.843 | 18631.496 | |
| for Gamma | |||||
| Model | Z-value | p-value |
| Exponential-Gamma-Normal | -1.0550 | 0.1457 |
| Exponential-Lognormal-Normal | -1.0024 | 0.1581 |
| Exponential-Weibull-Normal | -1.0873 | 0.1385 |
| Exponential-GG-Normal | -1.0547 | 0.1458 |
| Parameter | Gamma | Lognormal | Weibull | GG | |
| Intercept | -4.021(0.070) | -3.988(13.552) | -4.033(23.971) | -3.988(13.552) | |
| Treatment effect | -0.112(0.099) | -0.108(0.099) | -0.127(0.101) | -0.108(0.099) | |
| Scale parameter | 0.787(0.0001) | 0.822(11.140) | 0.780(18.705) | 0.822(11.140) | |
| Shape parameter | 3.836(0.001) | - | - | - | |
| Shape parameter | q | - | - | - | 0 |
| Shape parameter | - | 0.630(0.058) | 2.310(0.256) | 0.630(0.058) | |
| SD random effect | 0.567(0.001) | 0.560(0.050) | 0.561(0.051) | 0.5601(0.050) | |
| logL | -8326.454 | -8319.916 | -8328.188 | -8319.916 | |
| AIC | 16662.908 | 16649.832 | 16666.376 | 16649.832 | |
| for Gamma | |||||
| Parameter | Gamma | Lognormal | Weibull | GG | |
| Intercept | -4.207(0.058) | -4.244(0.069) | -4.158(0.077) | -4.197(0.065) | |
| Treatment effect | -0.092(0.082) | -0.081(0.084) | -0.097(0.084) | -0.088(0.086) | |
| Shape parameter | 7.839(0.0002) | - | - | - | |
| Shape parameter | q | - | - | - | -0.510(0.001) |
| Shape parameter | - | 3.715(0.609) | 0.440(0.059) | 0.461(0.009) | |
| SD random effect | 0.473(0.0004) | 0.482(0.040) | 0.461(0.040) | 0.473(0.043) | |
| logL | -9313.029 | -9315.605 | -9314.543 | -9312.541 | |
| AIC | 18634.058 | 18639.210 | 18637.086 | 18635.082 | |
| for Gamma | |||||
| Parameter | Gamma | Lognormal | Weibull | GG | |
| Intercept | -4.258(0.089) | -4.184(0.090) | -4.282(0.082) | -4.184(0.090) | |
| Treatment effect | -0.112(0.113) | -0.108(0.099) | -0.127(0.101) | -0.108(0.099) | |
| Shape parameter | 3.5634(0.0016) | - | - | - | |
| Shape parameter | q | - | - | - | 0 |
| Shape parameter | - | 0.630(0.058) | 2.310(0.256) | 0.630(0.058) | |
| SD random effect | 0.562(0.007) | 0.560(0.050) | 0.561(0.051) | 0.560(0.050) | |
| logL | -8324.160 | -8319.916 | -8328.188 | -8319.916 | |
| AIC | 16656.320 | 16647.832 | 16664.376 | 16647.832 | |
| for Gamma | |||||
| Model | Z-value | p-value |
| Exponential-Gamma-Normal without censoring | -1.1262 | 0.1300 |
| Exponential-Lognormal-Normal without censoring | -1.1567 | 0.1237 |
| Exponential-Weibull-Normal without censoring | -0.9667 | 0.1669 |
| Exponential-GG-Normal without censoring | -1.0315 | 0.1512 |
| Exponential-Gamma-Normal with censoring | -0.9885 | 0.1615 |
| Exponential-Lognormal-Normal with censoring | -1.0983 | 0.1360 |
| Exponential-Weibull-Normal with censoring | -1.2637 | 0.1032 |
| Exponential-GG-Normal with censoring | -1.1079 | 0.1340 |
| Parameter | Gamma | Lognormal | Weibull | GG | |
| Treatment effect | -0.349(0.125) | -0.316(0.323) | -0.533(0.337) | -0.533(0.337) | |
| Scale parameter | 0.187(0.012) | 0.051(0.028) | 0.072(0.037)) | 0.072(0.037) | |
| Shape parameter | 0.528(0.002) | - | - | - | |
| Shape parameter | q | - | - | - | - |
| Shape parameter | - | 0.132(1.010) | 4.307(8.419) | 4.307(8.419) | |
| SD random effect | 0.240(0.013) | 1.069(0.200) | 1.057(0.206) | 1.057(0.206) | |
| logL | -449.5437 | -441.8936 | -441.6807 | -441.6807 | |
| AIC | 891.7872 | 891.3614 | 891.3614 | ||
| for Gamma | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
