Submitted:
20 August 2025
Posted:
20 August 2025
Read the latest preprint version here
Abstract
Objectives: To evaluate the safety and efficacy of the eight-chop technique in cataract surgery in patients with pseudoexfoliation (PEX) syndrome and assess the intraoperative parameters, changes in corneal endothelial cells, intraocular pressure (IOP), and intraoperative complications. Methods: This technique was applied in patients with and without PEX syndrome. Preoperative and postoperative assessments were conducted on best-corrected visual acuity, IOP, corneal endothelial cell density (CECD), coefficient of variation, percentage of hexagonal cells, and central corneal thickness. Intraoperative recordings included operative time, phaco time, aspiration time, cumulative dissipated energy (CDE), and fluid of volume used. Results: We analyzed 150 eyes from 150 patients (mean age, 75.5 ± 5.7 years; 59 men, 91 women). In the PEX group, operative time, phaco time, aspiration time, CDE, and volume of fluid used were 6.7 min, 17.4 s, 85.2 s, 6.91 µJ, and 33.4 mL, respectively, demonstrating favorable surgical metrics. On the other hand, in the control group, operative time, phaco time, aspiration time, CDE, and volume of fluid used were 4.5 min, 14.3 s, 64.0 s, 5.83 µJ, and 25.5 mL, respectively. In addition, CECD losses were 3.7% at week 7 and 2.7% at week 19 in the PEX group and 2.7% and 1.6%, respectively, in the control group. Significant decreases were observed at 7 and 19 weeks postoperatively in the PEX and control groups. No eye in the PEX group required a capsular tension ring due to zonular dialysis. Conclusion: The eight-chop technique in cataract surgery demonstrates excellent intraoperative parameters in patients with PEX, is effective against zonular weakness, and does not require the use of a capsular tension ring. This technique will aid in establishing personalized treatment strategies and improve cataract management and treatment.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Preoperative Assessment
2.4. Surgical Technique
2.5. Intraoperative Signs of Zonular Weakness
2.6. Literature Review of the Eight-Chop Technique and Other Surgical Techniques
2.7. Data Collection and Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Changes in CECD
3.3. Changes in CCT, CV, and PHC
3.4. Changes in IOP
3.5. Changes in BCVA Over Time
3.6. Intraoperative Parameters and Corneal Endothelial Cell Loss
3.7. Complications and Additional Procedures During Surgery
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PEX | Pseudoexfoliation |
| IOP | Intraocular pressure |
| CECD | Corneal endothelial cell density |
| CDE | Cumulative dissipated energy |
| IOL | Intraocular lens |
| BCVA | Best-corrected visual acuity |
| CCT | Central corneal thickness |
| CV | Coefficient of variation |
| PHC | Percentage of hexagonal cells |
| SD | Standard deviation |
| VFU | Volume of fluid used |
| NR | Not reported |
| CTR | Capsular tension ring |
References
- Thomas, M.N.; Skopiński, P.; Roberts, H.; Woronkowicz, M. The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review. Int J Mol Sci 2025, 26, 532. [Google Scholar] [CrossRef]
- Preoteasa, L.D.; Baltă, G.; Baltă, F.N. Investigation of Risk Factors Predicting Cataract Surgery Complications in Patients with Pseudoexfoliation Syndrome: A Systematic Review. J Clin Med 2024, 13, 1824. [Google Scholar] [CrossRef]
- Tomczyk-Socha, M.; Tomczak, W.; Winkler-Lach, W.; Turno-Kręcicka, A. Pseudoexfoliation Syndrome-Clinical Characteristics of Most Common Cause of Secondary Glaucoma. J Clin Med 2023, 12, 3580. [Google Scholar] [CrossRef] [PubMed]
- Zenkel, M.; Krysta, A.; Pasutto, F.; Juenemann, A.; Kruse, F.E.; Schlötzer-Schrehardt, U. Regulation of lysyl oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic factors associated with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 2011, 52, 8488–8495. [Google Scholar] [CrossRef] [PubMed]
- Mastronikolis, S.; Pagkalou, M.; Baroutas, G.; Kyriakopoulou, K.; Makri O, E.; Georgakopoulos, C.D. Pseudoexfoliation syndrome: The critical role of the extracellular matrix in pathogenesis and treatment. IUBMB Life 2022, 74, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Ovodenko, B.; Rostagno, A.; Neubert, T.A.; Shetty, V.; Thomas, S.; Yang, A.; Liebmann, J.; Ghiso, J.; Ritch, R. Proteomic analysis of exfoliation deposits. Invest Ophthalmol Vis Sci 2007, 48, 1447–1457. [Google Scholar] [CrossRef]
- Bora, R.R.; Prasad, R.; Mathurkar, S.; Bhojwani, K.; Prasad, A. Cardiovascular Manifestations of Pseudoexfoliation Syndrome: A Narrative Review. Cureus 2024, 16, e51492. [Google Scholar] [CrossRef]
- Jeong, W.C.; Min, J.Y.; Kang, T.G.; Bae, H. Association between pseudoexfoliation and Alzheimer's disease-related brain atrophy. PLoS One 2023, 18, e0286727. [Google Scholar] [CrossRef]
- Cinal, H.; Yener, H. Aging of the skin in pseudoexfoliation syndrome. Cutan Ocul Toxicol 2023, 42, 204–208. [Google Scholar] [CrossRef]
- Naumann, G.O.; Schlötzer-Schrehardt, U. Keratopathy in pseudoexfoliation syndrome as a cause of corneal endothelial decompensation: a clinicopathologic study. Ophthalmology 2000, 107, 1111–1124. [Google Scholar] [CrossRef]
- Kristianslund, O.; Pathak, M.; Østern, A.E.; Drolsum, L. Corneal endothelial cell loss following cataract surgery in patients with pseudoexfoliation syndrome: a 2-year prospective comparative study. Acta Ophthalmol 2020, 98, 337–342. [Google Scholar] [CrossRef]
- Aoki, T.; Kitazawa, K.; Inatomi, T.; Kusada, N.; Horiuchi, N.; Takeda, K.; Yokoi, N.; Kinoshita, S.; Sotozono, C. Risk Factors for Corneal Endothelial Cell Loss in Patients with Pseudoexfoliation Syndrome. Sci Rep 2020, 10, 7260. [Google Scholar] [CrossRef]
- Batur, M.; Seven, E.; Tekin, S.; Yasar, T. Anterior Lens Capsule and Iris Thicknesses in Pseudoexfoliation Syndrome. Curr Eye Res 2017, 42, 1445–1449. [Google Scholar] [CrossRef]
- Schuknecht, A.; Wachtl, J.; Fleischhauer, J.; Kniestedt, C. Intraocular Pressure in Eyes with Intraocular Lens Dislocation and Pseudoexfoliation Syndrome. Klin Monbl Augenheilkd 2022, 239, 424–428. [Google Scholar] [CrossRef]
- Eremenko, R.; Neimark, E.; Shalev, D.; Harel, G.; Kleinmann, G. Prevalence and prediction of intraoperative floppy iris syndrome in patients with pseudoexfoliation syndrome. Can J Ophthalmol 2025, 60, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Thevi, T.; Abas, A.L. Intraoperative and postoperative complications of cataract surgery in eyes with pseudoexfoliation - An 8-year analysis. Oman J Ophthalmol 2019, 12, 160–165. [Google Scholar] [CrossRef]
- Borjan, I.; Stanić, R.; Pleština-Borjan, I.; Pavić, M.; Hertzberg, S.N.W.; Znaor, L.; Petrovski, B.; Petrovski, G. Pseudoexfoliative Syndrome in Cataract Surgery-A Quality Register Study and Health Economic Analysis in the Split-Dalmatia County, Croatia. J Clin Med 2023, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 479–484. [Google Scholar] [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J Clin Med 2024, 13, 7298. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique. J Clin Med 2025, 14, 2576. [Google Scholar] [CrossRef]
- Sato, T. Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes. J Pers Med 2025, 15, 209. [Google Scholar] [CrossRef]
- Sato, T. Corneal endothelial cell loss in shallow anterior chamber eyes after phacoemulsification using the eight-chop technique. J Clin Med 2025, 14, 3045. [Google Scholar] [CrossRef] [PubMed]
- Emery, J.M. Kelman phacoemulsification; patient selection. In Extracapsular cataract surgery; Emery, J.M., Mclyntyre, D.J., Eds.; CV Mosby: St Louis, USA, 1983; pp. 95–100.
- Huang, J.; Savini, G.; Hoffer, K.J.; Chen, H.; Lu, W.; Hu, Q.; Bao, F.; Wang, Q. Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOLMaster. Br J Ophthalmol 2017, 101, 493–498. [Google Scholar] [CrossRef]
- Shingleton, B.J.; Neo, Y.N.; Cvintal, V.; Shaikh, A.M.; Liberman, P.; O'Donoghue, M.W. Outcome of phacoemulsification and intraocular lens implantion in eyes with pseudoexfoliation and weak zonules. Acta Ophthalmol 2017, 95, 182–187. [Google Scholar] [CrossRef]
- Shaban, M.; Osman, Y.M.; Mohamed, N.A.; Shaban, M.M. Empowering breast cancer clients through AI chatbots: transforming knowledge and attitudes for enhanced nursing care. BMC Nurs 2025, 24, 994. [Google Scholar] [CrossRef]
- Opala, A.; Kołodziejski, Ł.; Grabska-Liberek, I. Impact of Well-Controlled Type 2 Diabetes on Corneal Endothelium Following Cataract Surgery: A Prospective Longitudinal Analysis. J Clin Med 2025, 14, 3603. [Google Scholar] [CrossRef]
- Spaulding, J.; Hall, B. Efficiency of phacoemulsification handpieces with high and low intraocular pressure settings. J Cataract Refract Surg 2025, 51, 218–221. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; Wang, R.; Wang, X.; Luo, F.; Kuang, J.; Li, Z.; Yang, C.; Zeng, M. Subnuclear Phacoemulsification to Reduce Corneal Injury in Nuclear Cataract Surgery: Evidence From a Randomized Controlled Trial. J Ophthalmol 2025, 2025, 1737599. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tao, J.; Yu, X.; Diao, W.; Bai, H.; Yao, L. Safety and prognosis of phacoemulsification using active sentry and active fluidics with different IOP settings - a randomized, controlled study. BMC Ophthalmol 2024, 24, 350. [Google Scholar] [CrossRef]
- Fernández-Muñoz, E.; Chávez-Romero, Y.; Rivero-Gómez, R.; Aridjis, R.; Gonzalez-Salinas, R. Cumulative dissipated energy (CDE) in three phaco-fragmentation techniques for dense cataract removal. Clin Ophthalmol 2023, 17, 2405–2412. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.; Koh, E.; Lee, D.H.; Lee, S.J.; Nam, D.H. Comparison of patient experiences and clinical outcomes between an illuminated chopper and a conventional chopper under a surgical microscope. J Cataract Refract Surg 2023, 49, 1036–1042. [Google Scholar] [CrossRef]
- Sinha, A.; Morya, A.K.; Gupta, V.; Prasad, R. A randomized controlled trial to assess safety and efficacy between terminal chop, stop and chop, and direct chop. Indian J Ophthalmol 2023, 71, 3658–3662. [Google Scholar] [CrossRef]
- Tao, J.; Wan, Y.; Song, X. Comparison of the reverse chopper-assisted prechop and phaco-chop nucleotomy techniques during phacoemulsification for cataracts with grade III nuclei: a randomized controlled trial. Ann Transl Med 2023, 11, 105. [Google Scholar] [CrossRef]
- Cyril, D.; Brahmani, P.; Prasad, S.; Rashme, V.L.; R, S.; Kamble, N.R.; Balakrishnan, L.; Nagu, K.; Shekhar, M. Comparison of two phacoemulsification system handpieces: prospective randomized comparative study. J Cataract Refract Surg 2022, 48, 328–333. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: a randomized study. Indian J Ophthalmol 2022, 70, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Abdelmotaal, H.; Abdel-Radi, M.; Rateb, M.F.; Eldaly, Z.H.; Abdelazeem, K. Comparison of the phaco chop and drill-and-crack techniques for phacoemulsification of hard cataracts: a fellow eye study. Acta Ophthalmol 2021, 99, e378–e386. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: A prospective randomized clinical trial. Am J Ophthalmol 2019, 207, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Manabe, S.; Yoshimura, K.; Kondo, H. Corneal endothelial damage after cataract surgery in eyes with pseudoexfoliation syndrome. J Cataract Refract Surg 2013, 39, 881–887. [Google Scholar] [CrossRef]
- Ramezani, F.; Nazarian, M.; Rezaei, L. Intraocular pressure changes after phacoemulsification in pseudoexfoliation versus healthy eyes. BMC Ophthalmol 2021, 21, 198. [Google Scholar] [CrossRef] [PubMed]
- Demircan, S.; Atas, M.; Yurtsever, Y. Effect of torsional mode phacoemulsification on cornea in eyes with/without pseudoexfoliation. Int J Ophthalmol 2015, 8, 281–287. [Google Scholar]
- Tulu Aygun, B.; Altan, C.; Kirmaci Kabakci, A. Comparison of phacoemulsification parameters in eyes with and without exfoliation syndrome. J Fr Ophtalmol 2020, 43, 1031–1038. [Google Scholar] [CrossRef]
- Kaljurand, K.; Teesalu, P. Exfoliation syndrome as a risk factor for corneal endothelial cell loss in cataract surgery. Ann Ophthalmol (Skokie) 2007, 39, 327–333. [Google Scholar] [CrossRef]
- Khalid, M.; Hanif, M.K.; Islam, Q.U.; Mehboob, M.A. Change in corneal endothelial cell density after phacoemulsification in patients with type II diabetes mellitus. Pak J Med Sci 2019, 35, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Ciorba, A.L.; Teusdea, A.; Roiu, G.; Cavalu, D.S. Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification. Geriatrics (Basel) 2024, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Guedes, J.; Pereira, S.F.; Amaral, D.C.; Hespanhol, L.C.; Faneli, A.C.; Oliveira, R.D.C.; Mora-Paez, D.J.; Fontes, B.M. Phaco-Chop versus Divide-and-Conquer in Patients Who Underwent Cataract Surgery: A Systematic Review and Meta-Analysis. Clin Ophthalmol 2024, 18, 1535–1546. [Google Scholar] [CrossRef]
- Joo, J.H.; Kim, T.G. Comparison of corneal endothelial cell changes after phacoemulsification between type 2 diabetic and nondiabetic patients. Medicine (Baltimore) 2021, 100, e27141. [Google Scholar] [CrossRef] [PubMed]
- Palko, J.R.; Qi, O.; Sheybani, A. Corneal Alterations Associated with Pseudoexfoliation Syndrome and Glaucoma: A Literature Review. J Ophthalmic Vis Res 2017, 12, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Damji, K.F.; Konstas, A.G.; Liebmann, J.M.; Hodge, W.G.; Ziakas, N.G.; Giannikakis, S.; Mintsioulis, G.; Merkur, A.; Pan, Y.; Ritch, R. Intraocular pressure following phacoemulsification in patients with and without exfoliation syndrome: a 2 year prospective study. Br J Ophthalmol 2006, 90, 1014–1018. [Google Scholar] [CrossRef]
- Moghimi, S.; Johari, M.; Mahmoudi, A.; Chen, R.; Mazloumi, M.; He, M.; Lin, S.C. Predictors of intraocular pressure change after phacoemulsification in patients with pseudoexfoliation syndrome. Br J Ophthalmol 2017, 101, 283–289. [Google Scholar] [CrossRef]
- Moghimi, S.; Abdi, F.; Latifi, G.; Fakhraie, G.; Ramezani, F.; He, M.; Lin, S.C. Lens parameters as predictors of intraocular pressure changes after phacoemulsification. Eye (Lond) 2015, 29, 1469–1476. [Google Scholar] [CrossRef]
- Drolsum, L.; Ringvold, A.; Nicolaissen, B. Cataract and glaucoma surgery in pseudoexfoliation syndrome: a review. Acta Ophthalmol Scand 2007, 85, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Shingleton, B.J.; Marvin, A.C.; Heier, J.S.; O'Donoghue, M.W.; Laul, A.; Wolff, B.; Rowland, A. Pseudoexfoliation: High risk factors for zonule weakness and concurrent vitrectomy during phacoemulsification. J Cataract Refract Surg 2010, 36, 1261–1269. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, M.; Manabe, S.I.; Hirata, A. High-risk factors for zonular complications during cataract surgery in eyes with pseudoexfoliation syndrome. Br J Ophthalmol 2024, 108, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Feng, K.; Mo, E.; Xu, Y.; Zhu, C.; Zhao, Y.E.; Li, J.; Huang, F. Effect of Capsular Tension Ring on the Accuracy of Nine New-Generation IOL Formulas in Long Eyes. J Refract Surg 2025, 41, e114–e119. [Google Scholar] [CrossRef]
- Liu, E.; Cole, S.; Werner, L.; Hengerer, F.; Mamalis, N.; Kohnen, T. Pathologic evidence of pseudoexfoliation in cases of in-the-bag intraocular lens subluxation or dislocation. J Cataract Refract Surg 2015, 41, 929–935. [Google Scholar] [CrossRef]
- Ahmed, II; Chen, S.H.; Kranemann, C.; Wong, D.T. Surgical repositioning of dislocated capsular tension rings. Ophthalmology 2005, 112, 1725–1733. [CrossRef]
- Artzen, D.; Samolov, B.; Lundström, M.; Montan, P. Visual acuity and intraocular pressure after surgical management of late in-the-bag dislocation of intraocular lenses. A single-centre prospective study. Eye (Lond) 2020, 34, 1406–1412. [Google Scholar] [CrossRef]
- Mayer-Xanthaki, C.F.; Hirnschall, N.; Pregartner, G.; Gabriel, M.; Falb, T.; Sommer, M.; Haas, A. Capsular tension ring as protective measure against in-the-bag dislocations after cataract surgery. J Cataract Refract Surg 2023, 49, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Akahoshi, T. Phaco Prechop. In Phaco Chop and Advanced Phaco Techniques; Chang, D.F., Ed.; SLACK Incorporated: Thorofare, NJ, USA, 2013; pp. 55–76. [Google Scholar]
- Sato, T. Reply: Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 1078–1079. [Google Scholar] [CrossRef]
- Abdelmotaal, H.; Abdel-Radi, M.; Rateb, M.F.; Eldaly, Z.H.; Abdelazeem, K. Comparison of the phaco chop and drill-and-crack techniques for phacoemulsification of hard cataracts: A fellow eye study. Acta Ophthalmol 2021, 99, e378–e386. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: A randomized study. Indian J Ophthalmol 2022, 70, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sharma, A.K.; Katiyar, V.; Kumar, G.; Gupta, S.K. Corneal endothelial changes following cataract surgery in hard nuclear cataract: randomized trial comparing phacoemulsification to manual small-incision cataract surgery. Indian J Ophthalmol 2022, 70, 3904–3909. [Google Scholar] [CrossRef] [PubMed]
| Characteristic/Parameter | PEX Group | Control Group | p-value |
|---|---|---|---|
| Number of eyes | 75 | 75 | |
| Age (y) | 75.4 ± 7.3 | 75.7 ± 3.5 | 0.55 a |
| Gender: Men | 28 (37.3%) | 31 (41.3%) | 0.62 b |
| Women | 47 (62.7%) | 44 (58.7%) | |
| Glaucoma | 21 (28.0%) | 0 | |
| Anterior chamber depth (mm) | 3.27 ± 0.57 | 3.27 ± 0.36 | 0.97 a |
| Preoperative pupil size (mm) | 6.2 ± 1.0 | 6.9 ± 0.5 | <0.01 c |
| Lens hardness | 2.3 ± 0.3 | 2.3 ± 0.3 | 0.66 a |
| Operative time (min) | 6.7 ± 3.4 | 4.5 ± 0.8 | <0.01 c |
| Phaco time (s) | 17.4 ± 7.8 | 14.3 ± 3.9 | 0.02 c |
| Aspiration time (s) | 85.2 ± 26.6 | 64.0 ± 12.5 | <0.01 c |
| CDE (µJ) | 6.91 ± 2.87 | 5.83 ± 1.57 | 0.04 c |
| Volume of fluid used (mL) | 33.4 ± 10.9 | 25.5 ± 5.4 | <0.01 c |
| Mean CECD ± SD (% Decrease) | |||
|---|---|---|---|
| Time period | PEX group (n = 59) |
Control group (n = 75) |
p-value |
| Preoperatively | 2532 ± 342 | 2710 ± 248 | <0.01 a |
| 7 weeks postoperatively | 2432 ± 400 b | 2637 ± 245 b | <0.01 a |
| % Decrease | 3.7 ± 12.7 | 2.7 ± 2.6 | 0.87 c |
| 19 weeks postoperatively | 2461 ± 381 b | 2668 ± 256 b | <0.01 a |
| % Decrease | 2.7 ± 8.8 | 1.6 ± 2.2 | 0.29 c |
| Time period | PEX group (n = 54) |
Control group (n = 75) |
p-value |
|---|---|---|---|
| CCT | Mean ± SD | ||
| Preoperatively | 530 ± 34.4 | 534 ± 31.0 | 0.60 a |
| 7 weeks postoperatively | 540 ± 40.5 c | 536 ± 29.8 d | 0.59 a |
| 19 weeks postoperatively | 532 ± 36.5 d | 533 ± 29.9 d | 0.82 a |
| CV | Mean ± SD | ||
| Preoperatively | 39.8 ± 6.3 | 39.2 ± 6.1 | 0.51 a |
| 7 weeks postoperatively | 41.5 ± 5.6 d | 38.8 ± 5.5 d | < 0.01 b |
| 19 weeks postoperatively | 39.1 ± 5.9 d | 37.1 ± 5.3 c | 0.06 a |
| PHC | Mean ± SD | ||
| Preoperatively | 44.5 ± 7.0 | 45.3 ± 6.6 | 0.70 a |
| 7 weeks postoperatively | 41.8 ± 7.0 c | 45.9 ± 6.4 d | < 0.01 b |
| 19 weeks postoperatively | 44.5 ± 6.7 d | 47.9 ± 6.0 c | 0.01 b |
| Time period | Mean IOP ± SD (% Decrease) | ||
|---|---|---|---|
| PEX group (n = 69) | Control group (n = 75) | p-value | |
| Preoperatively | 14.5 ± 3.0 | 14.0 ± 1.9 | 0.34 a |
| 7 weeks postoperatively | 12.4 ± 3.1 b | 11.9 ± 1.5 b | 0.54 a |
| % Decrease | 13.4 ± 17.4 | 14.2 ± 9.2 | 0.89 a |
| 19 weeks postoperatively | 12.4 ± 2.8 b | 12.5 ± 1.7 b | 0.53 a |
| % Decrease | 12.9 ± 16.1 | 10.0 ± 11.5 | 0.28 a |
| Best-corrected visual acuity logMAR | |||
|---|---|---|---|
| Time period | PEX group (n = 54) | Control group (n = 75) | p-value |
| Preoperatively | 0.114 ± 0.211 | 0.087 ± 0.119 | 0.86 a |
| 7 weeks postoperatively | -0.059 ± 0.041 b | -0.070 ± 0.026 b | 0.08 a |
| 19 weeks postoperatively | -0.062 ± 0.033 b | -0.069 ± 0.027 b | 0.15 a |
| Study | Year | Eyes | Surgical technique | Operative-time (min) | Phaco time (s) | Aspiration-time (s) | CDE (µJ) | VFU (mL) | CECD loss (%) |
|---|---|---|---|---|---|---|---|---|---|
| Opala[27] | 2025 | 80 | Stop-and-chop | NR | NR | NR | 4.19 | NR | 18.8 |
| Spaulding[28] | 2025 | 36 | Stop-and-chop | NR | 29.5 | 90.1 | 5.00 | 32.8 | NR |
| Wang[29] | 2025 | 123 | Phaco-chop | NR | 68.9 | NR | 18.2 | NR | 10.6 |
| Wang[30] | 2024 | 55 | Phaco-chop | NR | 30.6 | NR | 5.22 | 45.1 | 4.3 |
| Fernández-Muñoz[31] | 2023 | 30 | Phaco-chop | NR | 94.0 | NR | 20.11 | NR | 31.8 |
| Eom[32] | 2023 | 76 | Phaco-chop | 12.3 | 25.7 | NR | NR | NR | 8.1 |
| Sinha[33] | 2023 | 50 | Stop-and-chop | NR | 122.4 | NR | 6.9 | NR | 10.1 |
| Tao[34] | 2023 | 45 | Reverse-chop | NR | NR | NR | 7.53 | NR | 15.9 |
| Cyril[35] | 2022 | 82 | Phaco-chop | NR | NR | NR | 4.80 | 36.1 | NR |
| Upadhyay[36] | 2022 | 50 | Crater-chop | NR | NR | NR | NR | 105.9 | 4.4 |
| Abdelmotaal[37] | 2021 | 66 | Phaco-chop | 12.3 | NR | NR | 19.13 | NR | 15.2 |
| Igarashi[38] | 2019 | 32 | Divide-and-conquer | 19.2 | 45.9 | NR | NR | 354.7 | 8.5 |
| Sato[19] | 2024 | 65 | Eight-chop | 4.6 | 16.2 | 72.1 | 7.00 | 28.9 | 1.2 |
| Sato[18] | 2023 | 50 | Eight-chop | 3.7 | 11.6 | NR | 5.00 | 22.9 | 0.9 |
| Present | 2025 | 75 | Eight-chop | 6.7 | 17.4 | 85.2 | 6.91 | 33.4 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
