Submitted:
09 July 2025
Posted:
11 July 2025
You are already at the latest version
Abstract
Keywords:
The Rapidly Expanded Homo Sapiens Brain and ASD Vulnerability
A Mini-Evolutionary Case Study, the BTBR Mouse: From Abnormal Taste Preferences to Calcium Signaling-Based ASD
Final Synthesis
- ○
- The evolutionary importance of, and potentially critical historical ecological niche permitting, a newly-evolving energy-hungry enlarged human “social brain”, conveying the uniquely human set of “theory of mind” capabilities underlying language and culture, but that are specifically challenging in ASD.
- ○
- The critical role of ITPR channel gating in calcium signals that homeostatically control mitochondrial oxidative metabolic energy production, and the molecular ITPR gating defect that compromises calcium signaling and energetics, that is observed in patients with an ADOS-confirmed diagnosis of ASD.
- ○
- The findings that the unique BTBR mouse model of ASD has cryptically harbored a unique missense mutation of that same mechanism, the Itpr3 gene, that causes a syndrome not merely of taste dysfunction and unusual hair, but that includes all conventional ASD behavioral abnormalities as well as an additional broad, recognizably-patient-related set of physiological abnormalities, of the gut, immune cells and sensory systems, all related to its ability to model a typical ASD syndrome, and already mechanistically-linked to signaling via the ITPR.
A Hopeful Future
Funding
Acknowledgments
Conflicts of Interest
References
- Kuzawa, C.W.; et al. Metabolic costs and evolutionary implications of human brain development. PNAS 2014, 111, 13010–13015. [Google Scholar] [CrossRef] [PubMed]
- Marean, C.W. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philos Trans R Soc Lond B Biol Sci. 2016, 371, 20150239. [Google Scholar] [CrossRef] [PubMed]
- Marean, C.W. Coastal South Africa and the coevolution of the modern human lineage and the coastal adaptation. African Archaeological Review. 2010, 27, 303–330. [Google Scholar]
- Gargus, J.J.; et al. In press 2025.
- Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioral correlates. Brain. 2006, 129 Pt 3, 564–583. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; et al. Aberrant striatal functional connectivity in children with autism. Biol Psychiatry. 2011, 69, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Krienen, F.M. The evolution of distributed association networks in the human brain. Trends Cogn Sci. 2013, 17, 648–665. [Google Scholar] [CrossRef] [PubMed]
- Utevsky, A.V.; Smith, D.V.; Huettel, S.A. Precuneus is a functional core of the default-mode network. J Neurosci. 2014, 34, 932–940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filipek, P.A.; Juranek, J.; Nguyen, M.T.; et al. Relative carnitine deficiency in autism. J Autism Dev Disord. 2004, 34, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Gargus, J.J.; Imtiaz, F. Mitochondrial Energy-Deficient Endophenotype in Autism. Am J Biochem Biotechnol. 2008, 4, 198–207. [Google Scholar] [CrossRef]
- Smith, M.; Flodman, P.L.; Gargus, J.J.; et al. Mitochondrial and ion channel gene alterations in autism. Biochim Biophys Acta. 2012, 1817, 1796–1802. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef] [PubMed]
- Shoffner, J.; Hyams, L.; Langley, G.N.; Cossette, S.; Mylacraine, L.; Dale, J.; Ollis, L.; Kuoch, S.; Bennett, K.; Aliberti, A.; Hyland, K. Fever plus mitochondrial disease could be risk factors for autistic regression. J Child Neurol. 2010, 25, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Papaleo, V.; Porcelli, V.; et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry. 2010, 15, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, H.; Shoji, H.; Hattori, S.; Sala, G.; Takamiya, Y.; Tanaka, M.; Ihara, M.; Shibutani, M.; Hatada, I.; Hori, K.; et al. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. Elife. 2024, 12, RP89376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Howarth, C.; Gleeson, P.; Attwell, D. Updated Energy Budgets for Neural Computation in the Neocortex and Cerebellum. J Cereb Blood Flow Metab. 2012, 32, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int J Mol Sci. 2020, 21, 8767. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Crawford, M.A. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J Hum Evol. 2014, 77, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Kothapalli, K.S.; Ye, K.; Gadgil, M.S.; Carlson, S.E.; O'Brien, K.O.; Zhang, J.Y.; Park, H.G.; Ojukwu, K.; Zou, J.; Hyon, S.S.; Joshi, K.S.; Gu, Z.; Keinan, A.; Brenna, J.T. Positive Selection on a Regulatory Insertion-Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid. Mol Biol Evol. 2016, 33, 1726–1739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron 2012, 75, 762–777. [Google Scholar] [CrossRef] [PubMed]
- Balla, T.; Gulyas, G.; Kim, Y.J.; Pemberton, J. PHOSPHOINOSITIDES AND CALCIUM SIGNALING. A MARRIAGE ARRANGED IN ER-PM CONTACT SITES. Curr Opin Physiol. 2020, 17, 149–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smyth, J.T.; Hwang, S.Y.; Tomita, T.; DeHaven, W.I.; Mercer, J.C.; Putney, J.W. Activation and regulation of store-operated calcium entry. J Cell Mol Med 2010, 14, 2337–2349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hetz, C.; Papa, F.R. The Unfolded Protein Response and Cell Fate Control. Mol Cell 2018, 69, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Pakos-Zebrucka, K.; Koryga, I.; Mnich, K.; Ljujic, M.; Samali, A.; Gorman, A.M. The integrated stress response. EMBO Rep 2016, 17, 1374–1395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walter, P.; Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012, 13, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Schmunk, G.; Gargus, J.J. Channelopathy pathogenesis in autism spectrum disorders. Front Genet. 2013, 4, 222. [Google Scholar] [CrossRef] [PubMed]
- Schmunk, G.; Boubion, B.J.; Smith, I.F.; et al. Shared functional defect in IP₃R-mediated calcium signaling in diverse monogenic autism syndromes. Transl Psychiatry. 2015, 5, e643. [Google Scholar] [CrossRef] [PubMed]
- Schmunk, G.; Nguyen, R.L.; Ferguson, D.L.; et al. High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder. Sci Rep. 2017, 7, 40740. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, R.L.; Medvedeva, Y.V.; Ayyagari, T.E.; et al. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. Biochim Biophys Acta Mol Cell Res. 1: Pt B), 1718. [Google Scholar] [CrossRef] [PubMed]
- Gargus, J.J. Unraveling monogenic channelopathies and their implications for complex polygenic disease. Am J Hum Genet. 2003, 72, 785–803. [Google Scholar] [CrossRef] [PubMed]
- Gargus, J.J. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci. 2009, 1151, 133–156. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum JD, Daly MJ, Devlin B, Lehner T, Roeder K, State MW; Autism Sequencing Consortium. The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 2012, 76, 1052–1056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, J.M.; Satterstrom, F.K.; Peng, M.; Brand, H.; Collins, R.L.; Dong, S.; Wamsley, B.; Klei, L.; Wang, L.; Hao, S.P.; et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet 2022, 54, 1320–1331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koko M, Satterstrom, F. K.; Autism Sequencing, C.o.n.s.o.r.t.i.u.m.; APEXconsortium; Warrier V, Martin, H. Contribution of autosomal rare and de novo variants to sex differences in autism. Am J Hum Genet 2025, 112, 599–614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cárdenas, C.; Miller, R.A.; Smith, I.; Bui, T.; Molgó, J.; Müller, M.; Vais, H.; Cheung, K.H.; Yang, J.; Parker, I.; Thompson, C.B.; Birnbaum, M.J.; Hallows, K.R.; Foskett, J.K. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010, 142, 270–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pattabiraman, K.; Muchnik, S.K.; Sestan, N. The evolution of the human brain and disease susceptibility. Curr Opin Genet Dev. 2020, 65, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, A.; Lynch, C.J.; Schaer, M.; Menon, V. The default mode network in autism. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017, 2, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Floris, D.L.; Llera, A.; Zabihi, M.; et al. A multimodal neural signature of face processing in autism within the fusiform gyrus. Nat Ment Health. 2025, 3, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Leyhausen, J.; Schäfer, T.; Gurr, C.; et al. Differences in Intrinsic Gray Matter Connectivity and Their Genomic Underpinnings in Autism Spectrum Disorder. Biol Psychiatry. 2024, 95, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Barstein, J.; Ethridge, L.E.; et al. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord. 2013, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, E.; Garcés, P.; de Bildt, A.; etal., *!!! REPLACE !!!*. Atypical Resting-State EEG Graph Metrics of Network Efficiency Across Development in Autism and Their Association with Social Cognition: Results from the LEAP Study. J Autism Dev Disord. 2025. [CrossRef] [PubMed]
- Siddiqui, M.; Pinti, P.; Brigadoi, S.; et al. Using multi-modal neuroimaging to characterise social brain specialisation in infants. eLife. 2023, 12, e84122. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.F.; Elwell, C.; Johnson, M.H. Mitochondrial Dysfunction in Autism Spectrum Disorders. Autism Open Access. 2016, 6, 1000190. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.F.; Lloyd-Fox, S.; Kaynezhad, P.; et al. Changes in Cytochrome-C-Oxidase Account for Changes in Attenuation of Near-Infrared Light in the Healthy Infant Brain. Adv Exp Med Biol. 2018, 1072, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.S. A history of mouse genetics. Annu Rev Genet. 1985, 19, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Silver, L.M. Mouse t haplotypes. Annu Rev Genet. 1985, 19, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.F. Hereditary hair loss in the tufted mutant of the house mouse. J Hered. 1956, 47, 101–103. [Google Scholar] [CrossRef]
- Jackson Labs Catalog. [https://www.jax.org/](https://www.jax.
- Leiter, E.H. The genetics of diabetes susceptibility in mice. FASEB J. 1989, 3, 2231–2234. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.; Zhang, Y.; Gao, D.; et al. Aberrant immune responses in a mouse with behavioral disorders. PLoS One. 2011, 6, e20912. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Yao, Y.; Manley, K.; et al. Development, phenotypes of immune cells in BTBR T+Itpr3tf/J mice. Cell Immunol. 2020, 358, 104223. [Google Scholar] [CrossRef] [PubMed]
- Mutovina, A.; Ayriyants, K.; Mezhlumyan, E.; et al. Unique Features of the Immune Response in BTBR Mice. Int J Mol Sci. 2022, 23, 15577. [Google Scholar] [CrossRef] [PubMed]
- Coretti, L.; Cristiano, C.; Florio, E.; et al. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci Rep. 2017, 7, 45356. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.J.; Poulson, S.J.; Mannan, E.; et al. Altered nociceptive behavior and emotional contagion of pain in mouse models of autism. Genes Brain Behav. 2022, 21, e12778. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, M.G.; Bachmanov, A.A.; Reed, D.R. Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content. Physiol Behav. 2007, 91, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, M.G.; Ellis, H.T. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene. Physiol Genomics. 2013, 45, 834–855. [Google Scholar] [CrossRef] [PubMed]
- Bolivar, V.J.; Walters, S.R.; Phoenix, J.L. Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res. 2007, 176, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Moy, S.S.; Nadler, J.J.; Young, N.B.; et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res. 2007, 176, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Ellegood, J.; Anagnostou, E.; Babineau, B.A.; et al. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry. 2015, 20, 118–125. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, H.G.; Kusek, G.K.; Yang, M.; et al. Autism-like behavioral phenotypes in BTBR T1tf/J mice. Genes Brain Behav. 2008, 7, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Scattoni, M.L.; Ricceri, L.; Crawley, J.N. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav. 2011, 10, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.L.; Gastrell, P.T.; Karras, M.N.; et al. Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb Cortex. 2015, 25, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Clarke, A.M.; Crawley, J.N. Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur J Neurosci. 2009, 29, 1663–1677. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, D.T.; O'Neill, S.M.; Narayan, S.; et al. Histopathologic characterization of the BTBR T+tf/J mouse model of autism. Mol Autism. 2011, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Fenlon, L.R.; Liu, S.; Gobius, I.; et al. Formation of functional areas in the cerebral cortex is disrupted in a mouse model of autism spectrum disorder. Neural Dev. 2015, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Meyza, K.Z.; Blanchard, D.C. The BTBR mouse model of idiopathic autism: current view on mechanisms. Neurosci Biobehav Rev. 2017, 76, 99–110. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Association; 2013.
- Ellis, H.T.; Tordoff, M.G.; Parker, M.R. Itpr3 Is responsible for the mouse tufted (tf) locus. J Hered. 2013, 104, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Rhine, M.A.; Parrott, J.M.; Schultz, M.N.; et al. Hypothesis-driven investigations of diverse pharmacological targets in two mouse models of autism. Autism Res. 2019, 12, 401–421. [Google Scholar] [CrossRef] [PubMed]
- Bove, M.; Palmieri, M.A.; Santoro, M.; et al. Amygdalar neurotransmission alterations in the BTBR mice model of idiopathic autism. Transl Psychiatry. 2024, 14, 193. [Google Scholar] [CrossRef] [PubMed]
- Daimon, C.M.; Jasien, J.M.; Wood WH3rd et, a.l. Hippocampal transcriptomic and proteomic alterations in the BTBR mouse model of autism spectrum disorder. Front Physiol. 2015, 6, 324. [Google Scholar] [CrossRef] [PubMed]
- Charles River catalog. https://www.criver.com/products-services/discovery-services/pharmacology-studies/neuroscience-models-assays/psychiatric-disease-studies/autism-spectrum-disorder-mouse-model? 3701.
- Kisaretova, P.; Tsybko, A.; Bondar, N.; et al. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines. 2023, 11, 289. [Google Scholar] [CrossRef] [PubMed]
- Khanbabaei, M.; Hughes, E.; Ellegood, J.; et al. Precocious myelination in a mouse model of autism. Transl Psychiatry. 2019, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.L.; Tolu, S.S.; Barkan, C.L.; Crawley, J.N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology. 2010, 35, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.L.; Smith, D.G.; Rizzo, S.J.; et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 2012, 4, 131ra51. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, S.; Nardi, L.; Leukel, P.; et al. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front Psychiatry. 2023, 14, 1110525. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Gu, X.; Shan, X.; et al. Nanoformulated bumetanide ameliorates social deficiency in BTBR mice model of autism spectrum disorder. Front. Immunol. 2022, 13, 870577. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.K. , Park, H.Y., Go, J., et al. Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology (Berl.) 2021, 238, 1833–1845. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.; Urruela, M.; Devine, D.P. Effects of environmental enrichment on repetitive behaviors in the BTBR T+tf/J mouse model of autism. Autism Res. 2013, 6, 337–343. [Google Scholar] [CrossRef] [PubMed]
- van Elst, K.; Brouwers, J.F.; Merkens, J.E.; et al. Chronic dietary changes in n-6/n-3 polyunsaturated fatty acid ratios cause developmental delay and reduce social interest in mice. Eur Neuropsychopharmacol. 2019, 29, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Ruskin, D.N.; Svedova, J.; Cote, J.L.; et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS One. 2013, 8, e65021. [Google Scholar] [CrossRef] [PubMed]
- Möhrle, D.; Murari, K.; Rho, J.M. , Cheng, N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024, 561, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xi, H.; Xue, X.; et al. Clostridium butyricum regulates intestinal barrier function via TREK1 to improve behavioral abnormalities in mice with autism spectrum disorder. Cell Biosci. 2024, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Morris, J.L. , Yang, K., et al. SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP₃R3-mediated Ca²⁺ flux to mitochondria. Nat. Commun. 2021, 12, 5404. [Google Scholar] [CrossRef] [PubMed]
- Kerkhofs, M.; Seitaj, B.; Ivanova, H.; Monaco, G.; Bultynck, G.; Parys, J.B. Pathophysiological consequences of isoform-specific IP3 receptor mutations. Biochim Biophys Acta Mol Cell Res. 2018, 1865, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Katona, M.; Bartók, Á.; Nichtova, Z.; Csordás, G.; Berezhnaya, E.; Weaver, D.; Ghosh, A.; Várnai, P.; Yule, D.I.; Hajnóczky, G. Capture at the ER-mitochondrial contacts licenses IP3 receptors to stimulate local Ca2+ transfer and oxidative metabolism. Nat Commun 2022, 13, 6779. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marean, C.W. THE MOST INVASIVE SPECIES OF ALL. Sci Am 2015, 313, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Marean, C.W. When the sea saved humanity. Sci Am 2010, 303, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Autism diagnosis at birth via functional analysis of IP3 RECEPTORCa+2 signaling in fibroblasts Gargus, J.; Justus, D.; Dolinsky, J.S.; Limon, J.; Chao, E.; Smith, I. Autism diagnosis at birth via functional analysis of IP3 RECEPTORCa+2 signaling in fibroblasts Gargus, J.; Justus, D.; Dolinsky, J.S.; Limon, J.; Chao, E.; Smith, I. INSAR meeting abstract, Seatle, 4/30/25-5/3/25, 2025.
- Dawson, G.; Rogers, S.; Munson, J.; Smith, M.; Winter, J.; Greenson, J.; Donaldson, A.; Varley, J. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics 2010, 125, e17–e23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitehouse, A.J.O.; Varcin, K.J.; Pillar, S.; Billingham, W.; Alvares, G.A.; Barbaro, J.; Bent, C.A.; Blenkley, D.; Boutrus, M.; Chee, A.; et al. Effect of Preemptive Intervention on Developmental Outcomes Among Infants Showing Early Signs of Autism: A Randomized Clinical Trial of Outcomes to Diagnosis. JAMA Pediatr 2021, 175, e213298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith CG, Jones EJH, Wass SV, Pasco G, Johnson MH, Charman T, Wan MW; BASIS Team. Infant Effortful Control Mediates Relations Between Nondirective Parenting and Internalising-Related Child Behaviours in an Autism-Enriched Infant Cohort. J Autism Dev Disord 2022, 52, 3496–3511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azumaya, C.M.; Linton, E.A.; Risener, C.J.; Nakagawa, T.; Karakas, E. Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. J Biol Chem 2020, 295, 1743–1753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nam, Y.W.; Im, D.; Garcia, A.S.C.; Tringides, M.L.; Nguyen, H.M.; Liu, Y.; Orfali, R.; Ramanishka, A.; Pintilie, G.; Su, C.C.; et al. Cryo-EM structures of the small-conductance Ca2+-activated KCa2.2 channel. Nat Commun 2025, 16, 3690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ong, S.T.; Nam, Y.W.; Nasburg, J.A.; Ramanishka, A.; Ng, X.R.; Zhuang, Z.; Goay, S.S.M.; Nguyen, H.M.; Singh, L.; Singh, V.; Rivera, A.; Eyster, M.E.; Xu, Y.; Alper, S.L.; Wulff, H.; Zhang, M.; Chandy, K.G. Design and structural basis of selective 1,4-dihydropyridine inhibitors of the calcium-activated potassium channel KCa3. 1. Proc Natl Acad Sci U S A 2025, 122, e2425494122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Feng, J.; Xie, C.; Song, N.; Jin, C.; Wang, J.; Zhao, Q.; Zhang, L.; Wang, B.; Sun, Y.; Guo, F.; Li, Y.; Zhu, S. Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus. Cell 2025, 188, 1198–1207.e13. [Google Scholar] [CrossRef] [PubMed]
- Kumar Mondal, A.; Carrillo, E.; Jayaraman, V.; Twomey, E.C. Glutamate gating of AMPA-subtype iGluRs at physiological temperatures. Nature 2025, 641, 788–796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Huang, J.; Zang, J.; Jin, X.; Yan, N. Drug discovery targeting Nav1.8: Structural insights and therapeutic potential. Curr Opin Chem Biol. 2024, 83, 102538. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).