Submitted:
08 July 2025
Posted:
09 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- 1.
- Selective Model Utilization: The FHE Framework avoids the common pitfall of performance degradation caused by underperforming models by not mandatorily integrating all base models into the final prediction. Instead, it selectively includes only those models that are expected to contribute positively to forecasting accuracy. This eliminates the need for exhaustive pre-testing of individual models and enhances the framework’s adaptability across different sites.
- 2.
- Error-Based Meta-Modeling: A central innovation of the FHE Framework is its use of an error-informed meta-model. Unlike traditional meta-models that rely solely on base model outputs, the FHE meta-model incorporates both historical prediction errors and environmental variables to estimate the expected performance of each base model under specific conditions. This allows the system to dynamically assess and select the most suitable models for each forecasting instance.
- 3.
- Dynamic Base Model Selection: The framework predicts the expected error of each base model for a given input and selects the subset of models most likely to yield accurate predictions. This instance-specific selection enables the ensemble to adapt its configuration in real time, leveraging even models that may perform poorly on average but excel under certain conditions.
2. Materials and Methods
2.1. Meteorological and Solar Power Data Collection
- Plant 1: Data available from January 2019 to June 2022 at a 1-hour interval. Capacity: 998 kW.
- Plant 2: Data available from January 2019 to June 2022 at a 1-hour interval. Capacity: 369.85 kW.
- Plant 3: Data available from January 2019 to June 2022 at a 1-hour interval. Capacity: 48.3 kW.
- Plant 4: Data available from January 2019 to December 2021 at a 1-hour interval. Capacity: 905 kW.
2.2. Forecasting Hybrid Ensemble: A Modified Framework for Solar Power Prediction
2.2.1. Data Preparation and Feature Engineering
Data Scaling
Missing Data Imputation
-
SPG Data Imputation: For gaps shorter than three consecutive hours, linear interpolation was applied due to its simplicity and effectiveness in short-term continuity. For longer gaps, a historical similarity-based imputation method was used. This approach identifies past time points with similar environmental conditions and substitutes the missing SPG values accordingly. The similarity between the missing time step and a historical candidate is quantified using a weighted distance metric following Equation (3).Where denotes the j-th environmental variable (e.g., solar radiation, sunshine duration, cosine of the hour angle, elevation angle), and is its weight based on correlation with SPG. The historical time point minimizing this distance follows Equation (4)The corresponding SPG value at is then used to impute the missing value. This method leverages domain-specific correlations to enhance imputation accuracy, aligning with practices validated in prior PV forecasting studies [58]
-
Filling Gaps in Meteorological Data: To impute missing values in the ASOS meteorological data associated with each PV plant, the Inverse Distance Weighting (IDW) method was employed. This spatial interpolation technique estimates unknown values based on observations from nearby AWS monitoring stations located within a 10 km radius of each plant. By assigning greater influence to closer stations, IDW ensures that the interpolated values reflect local weather conditions with higher fidelity. Specifically, a missing value at location is estimated as a weighted average of known values from surrounding locations , using Equations (5) and (6).Where is the Euclidean distance between the target location and the known point . The exponent 1.7 was selected to balance the influence of proximity and spatial variability. This method, widely used in geospatial and meteorological applications, effectively captures local variability and has been validated in numerous studies [59].
Feature Space Expansion via Temporal and Astronomical Transformations
- Azimuth Angle: The azimuth angle, representing the sun’s horizontal position relative to true north, was calculated by mapping the sun’s celestial coordinates to the local horizon of each plant. This computation accounts for the rotation of the Earth and the apparent daily trajectory of the sun. Atmospheric refraction was also considered to improve accuracy [63]. The importance of azimuth angle in PV energy yield has been well established in prior studies, showing its significant influence on annual energy production [64].
- Elevation Angle: The elevation angle, indicating the sun’s vertical position above the horizon, was derived based on the plant’s geographic coordinates and the observation time. Corrections for Earth curvature and atmospheric conditions were included to ensure precision. These angles are critical for modeling solar irradiance on tilted surfaces and are widely used in solar energy modeling [65].
-
Temporal Encoding: To capture the inherent periodicity in solar irradiance, time-related features such as hour of day and month of year were transformed using sine and cosine functions. This approach avoids discontinuities in cyclical variables and enables the model to learn smooth temporal patterns. The transformation is defined in Equations (7) and (8).Where i denotes the time component (e.g., hour, month), and is the total number of units in the cycle (e.g., 24 for hours, 12 for months). This method of encoding cyclical time features has been shown to improve model performance in time-series forecasting tasks.
2.2.2. Base Model Training and Error Profiling
Data Splitting
- (60%): Used exclusively for training the base models.
- (40%): Reserved for error profiling and final evaluation.
- (70% of ): Used to evaluate the performance of each base model and collect errors for training the meta-model.
- Final Test Set (30% of ): Used for the final assessment of the FHE framework.
Base Model Training
2.2.3. Meta-Model Learning and Forecast Inference
| Algorithm 1 FHE framework: Forecasting with Heterogeneous Ensembles for photovoltaic power prediction. |
|
2.3. Evaluation Metric
3. Results and Discussion
3.1. Effect of Feature Engineering on Base Model Accuracy
- 1.
- Scenario 1: Meteorological + Radiation + Engineered Features
- 2.
- Scenario 2: Meteorological + Engineered Features (No Irradiance)
- 3.
- Scenario 3: Meteorological (No Irrandiance, No Engineered Features)
- 4.
- Scenario 4: Meteorological + Irradiance (No Engineered Features)
3.2. Comprehensive Performance Analysis of the FHE Framework
- 1.
- Baseline 1: Each base model was evaluated independently within the FHE framework, providing a reference for standalone performance.
- 2.
- Baseline 2: Conventional hybrid ensemble strategies were applied, including meta-modeling and bagging, which combine forecasts from all base models.
- 3.
- Baseline 3 (FHE): The proposed FHE approach selectively integrates forecasts from the best-performing model for specific conditions, optimizing prediction dynamically.
3.3. Evaluation of the Robustness of the FHE Framework
- CV 1: Training from 2019-01-01 to 2019-09-13
- CV 2: Training from 2019-01-01 to 2020-05-25
- CV 3: Training from 2019-01-01 to 2021-02-05
- CV 4: Training from 2019-01-01 to 2021-10-18
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tong, D.; Zhang, Q.; Zheng, Y.; Caldeira, K.; Shearer, C.; Hong, C.; Qin, Y.; Davis, S.J. Committed emissions from existing energy infrastructure jeopardize 1.5 C climate target. Nature 2019, 572, 373–377.
- Adaramola, M.S.; Paul, S.S.; Oyewola, O.M. Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. Energy for Sustainable Development 2014, 19, 72–82.
- Wu, D.; Zeng, H.; Lu, C.; Boulet, B. Two-stage energy management for office buildings with workplace EV charging and renewable energy. IEEE Transactions on Transportation Electrification 2017, 3, 225–237.
- Lund, P.D.; Mikkola, J.; Ypyä, J. Smart energy system design for large clean power schemes in urban areas. Journal of Cleaner Production 2015, 103, 437–445.
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Canizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar photovoltaics is ready to power a sustainable future. Joule 2021, 5, 1041–1056.
- Lu, H.; Tournet, J.; Dastafkan, K.; Liu, Y.; Ng, Y.H.; Karuturi, S.K.; Zhao, C.; Yin, Z. Noble-metal-free multicomponent nanointegration for sustainable energy conversion. Chemical Reviews 2021, 121, 10271–10366.
- Agency, I.E. World Energy Outlook 2022; International Energy Agency, 2022.
- Kruitwagen, L.; Story, K.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy generating units. Nature 2021, 598, 604–610.
- Energy, G.; et al. Western wind and solar integration study. Technical report, Citeseer, 2010.
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews 2018, 81, 912–928.
- Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of power and energy systems 2015, 1, 38–46.
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews 2020, 124, 109792.
- Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting 2016, 32, 914–938.
- Van der Meer, D.W.; Widén, J.; Munkhammar, J. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renewable and Sustainable Energy Reviews 2018, 81, 1484–1512.
- Mayer, M.J.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Applied Energy 2021, 283, 116239.
- Andrade, J.R.; Bessa, R.J. Improving renewable energy forecasting with a grid of numerical weather predictions. IEEE Transactions on Sustainable Energy 2017, 8, 1571–1580.
- Lonij, V.P.; Brooks, A.E.; Cronin, A.D.; Leuthold, M.; Koch, K. Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Solar energy 2013, 97, 58–66.
- Zhen, Z.; Pang, S.; Wang, F.; Li, K.; Li, Z.; Ren, H.; Shafie-khah, M.; Catalão, J.P. Pattern classification and PSO optimal weights based sky images cloud motion speed calculation method for solar PV power forecasting. IEEE Transactions on Industry Applications 2019, 55, 3331–3342.
- Janjai, S.; Laksanaboonsong, J.; Nunez, M.; Thongsathitya, A. Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Solar energy 2005, 78, 739–751.
- Perez, R.; Ineichen, P.; Kmiecik, M.; Moore, K.; Renne, D.; George, R. Producing satellite-derived irradiances in complex arid terrain. Solar Energy 2004, 77, 367–371.
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renewable and Sustainable Energy Reviews 2021, 144, 110992.
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225.
- Bacher, P.; Madsen, H.; Nielsen, H.A. Online short-term solar power forecasting. Solar energy 2009, 83, 1772–1783.
- Li, Y.; Su, Y.; Shu, L. An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy 2014, 66, 78–89.
- Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews 2013, 27, 65–76.
- Vagropoulos, S.I.; Chouliaras, G.; Kardakos, E.G.; Simoglou, C.K.; Bakirtzis, A.G. Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting. In Proceedings of the 2016 IEEE international energy conference (ENERGYCON). IEEE, 2016, pp. 1–6.
- Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.; Coimbra, C.F. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy 2018, 168, 60–101.
- Louzazni, M.; Mosalam, H.; Khouya, A.; Amechnoue, K. A non-linear auto-regressive exogenous method to forecast the photovoltaic power output. Sustainable Energy Technologies and Assessments 2020, 38, 100670.
- Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Applied Energy 2019, 251, 113315.
- Alcañiz, A.; Grzebyk, D.; Ziar, H.; Isabella, O. Trends and gaps in photovoltaic power forecasting with machine learning. Energy Reports 2023, 9, 447–471.
- David, M.; Ramahatana, F.; Trombe, P.J.; Lauret, P. Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models. Solar Energy 2016, 133, 55–72.
- Assouline, D.; Mohajeri, N.; Scartezzini, J.L. Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Applied energy 2018, 217, 189–211.
- Khan, W.; Walker, S.; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. Energy 2022, 240, 122812.
- Peng, T.; Zhang, C.; Zhou, J.; Nazir, M.S. An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy 2021, 221, 119887.
- Mellit, A.; Pavan, A.M. Performance prediction of 20 kWp grid-connected photovoltaic plant at Trieste (Italy) using artificial neural network. Energy Conversion and Management 2010, 51, 2431–2441.
- Simeunović, J.; Schubnel, B.; Alet, P.J.; Carrillo, R.E. Spatio-temporal graph neural networks for multi-site PV power forecasting. IEEE Transactions on Sustainable Energy 2021, 13, 1210–1220.
- Gaboitaolelwe, J.; Zungeru, A.M.; Yahya, A.; Lebekwe, C.K.; Vinod, D.N.; Salau, A.O. Machine learning based solar photovoltaic power forecasting: a review and comparison. IEEE Access 2023, 11, 40820–40845.
- Mondal, R.; Roy, S.K.; Giri, C. Solar power forecasting using domain knowledge. Energy 2024, 302, 131709.
- Salman, D.; Direkoglu, C.; Kusaf, M.; Fahrioglu, M. Hybrid deep learning models for time series forecasting of solar power. Neural Computing and Applications 2024, pp. 1–18.
- Duan, M.; Li, K.; Yang, C.; Li, K. A hybrid deep learning CNN–ELM for age and gender classification. Neurocomputing 2018, 275, 448–461.
- Abbes, D.; Martinez, A.; Champenois, G.; Robyns, B. Real time supervision for a hybrid renewable power system emulator. Simulation Modelling Practice and Theory 2014, 42, 53–72. [CrossRef]
- Schapire, R.E. The strength of weak learnability. Machine learning 1990, 5, 197–227.
- Breiman, L. Bagging predictors. Machine learning 1996, 24, 123–140.
- Wolpert, D.H. Stacked generalization. Neural networks 1992, 5, 241–259.
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Solar energy 2016, 136, 78–111.
- Shaw, R.; Howley, E.; Barrett, E. An intelligent ensemble learning approach for energy efficient and interference aware dynamic virtual machine consolidation. Simulation Modelling Practice and Theory 2020, 102, 101992. Special Issue on IoT, Cloud, Big Data and AI in Interdisciplinary Domains, . [CrossRef]
- Feng, C.; Cui, M.; Hodge, B.M.; Zhang, J. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Applied Energy 2017, 190, 1245–1257.
- Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanowski, J.; Woźniak, M. Ensemble learning for data stream analysis: A survey. Information Fusion 2017, 37, 132–156.
- Eseye, A.T.; Zhang, J.; Zheng, D. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information. Renewable energy 2018, 118, 357–367.
- Ramsami, P.; Oree, V. A hybrid method for forecasting the energy output of photovoltaic systems. Energy Conversion and Management 2015, 95, 406–413.
- Phan, Q.T.; Wu, Y.K.; Phan, Q.D. Enhancing One-Day-Ahead Probabilistic Solar Power Forecast With a Hybrid Transformer-LUBE Model and Missing Data Imputation. IEEE Transactions on Industry Applications 2023.
- Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. Journal of Cleaner Production 2021, 279, 123285.
- Emmanuel, T.; Maupong, T.; Mpoeleng, D.; Semong, T.; Mphago, B.; Tabona, O. A survey on missing data in machine learning. Journal of Big data 2021, 8, 1–37.
- Polikar, R. Ensemble based systems in decision making. IEEE Circuits and systems magazine 2006, 6, 21–45.
- Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y. A critical review of the models used to estimate solar radiation. Renewable and Sustainable Energy Reviews 2017, 70, 314–329.
- Zhang, Y.; Beaudin, M.; Taheri, R.; Zareipour, H.; Wood, D. Day-ahead power output forecasting for small-scale solar photovoltaic electricity generators. IEEE Transactions on Smart Grid 2015, 6, 2253–2262.
- .
- Kim, T.; Ko, W.; Kim, J. Analysis and Impact Evaluation of Missing Data Imputation in Day-ahead PV Generation Forecasting. Applied Sciences 2019, 9. [CrossRef]
- Armanuos, A.M.; Al-Ansari, N.; Yaseen, Z.M. Cross Assessment of Twenty-One Different Methods for Missing Precipitation Data Estimation. Atmosphere 2020, 11. [CrossRef]
- Schafer, J.L. Multiple imputation: a primer. Statistical methods in medical research 1999, 8, 3–15.
- Bennett, D.A. How can I deal with missing data in my study? Australian and New Zealand journal of public health 2001, 25, 464–469.
- Rhodes, B. Skyfield: High precision research-grade positions for planets and Earth satellites generator. Astrophysics Source Code Library 2019, pp. ascl–1907.
- Barnie, T.; Hjörvar, T.; Titos, M.; Sigurðsson, E.M.; Pálsson, S.K.; Bergsson, B.; Ingvarsson, Þ.; Pfeffer, M.A.; Barsotti, S.; Arason, Þ.; et al. Volcanic plume height monitoring using calibrated web cameras at the Icelandic Meteorological Office: system overview and first application during the 2021 Fagradalsfjall eruption. Journal of Applied Volcanology 2023, 12, 4.
- Dhimish, M.; Silvestre, S. Estimating the impact of azimuth-angle variations on photovoltaic annual energy production. Clean Energy 2019, 3, 47–58, [https://academic.oup.com/ce/article-pdf/3/1/47/53678227/zky022.pdf]. [CrossRef]
- Zhang, T.; Stackhouse, P.W.; Macpherson, B.; Mikovitz, J.C. A solar azimuth formula that renders circumstantial treatment unnecessary without compromising mathematical rigor: Mathematical setup, application and extension of a formula based on the subsolar point and atan2 function. Renewable Energy 2021, 172, 1333–1340. [CrossRef]
- Zhao, X.; Liu, J.; Yu, D.; Chang, J. One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data. Energy Conversion and Management 2018, 164, 560–569.
- Prasad, R.; Ali, M.; Kwan, P.; Khan, H. Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Applied energy 2019, 236, 778–792.
- Yang, H.T.; Huang, C.M.; Huang, Y.C.; Pai, Y.S. A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE transactions on sustainable energy 2014, 5, 917–926.
- Li, X.; Ma, L.; Chen, P.; Xu, H.; Xing, Q.; Yan, J.; Lu, S.; Fan, H.; Yang, L.; Cheng, Y. Probabilistic solar irradiance forecasting based on XGBoost. Energy Reports 2022, 8, 1087–1095.
- Yang, J.; He, H.; Zhao, X.; Wang, J.; Yao, T.; Cao, H.; Wan, M. Day-Ahead PV Power Forecasting Model Based on Fine-Grained Temporal Attention and Cloud-Coverage Spatial Attention. IEEE Transactions on Sustainable Energy 2023.
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 2623–2631.
- Maldonado, S.; López, J.; Iturriaga, A. Out-of-time cross-validation strategies for classification in the presence of dataset shift. Applied Intelligence 2022, 52, 5770–5783.
| 1 | Data available at: http://www.kma.go.kr/
|
| 2 | The data that support the findings of this study are available from the corresponding author upon reasonable request. |





| Engineered | ||||
|---|---|---|---|---|
| Features (Units) | ASOS | AWS | Features | Plant Data |
| Solar Power Generation (kW) | √ | |||
| Temperature (°C) | √ | √ | ||
| Rainfall (mm) | √ | √ | ||
| Wind Speed (m/s) | √ | √ | ||
| Wind Direction (16 cat.) | √ | |||
| Humidity (%) | √ | √ | ||
| Steam Pressure (hPa) | √ | √ | ||
| Site Pressure (hPa) | √ | √ | ||
| Dew Point (°C) | √ | |||
| Sunshine Duration (hr) | √ | |||
| Solar Irradiance (MJ/m²)* | √ | |||
| Visibility (×10 m) | √ | |||
| Azimuth (°) | √ | |||
| Elevation (°) | √ | |||
| Time Sin | √ | |||
| Time Cos | √ |
| Parameter | Value/Method |
|---|---|
| MLP Hidden Layers | 10 |
| Transformer Layers | 3 |
| Transformer Heads | 4 |
| Batch Size | 32 |
| Learning Rate | |
| Loss Function | MAE |
| Optimizer | AdamW |
| Learning Rate Scheduler | ReduceLROnPlateau |
| Initialization Method | He |
| Early Stopping | 10 epochs |
| Plant 1 (Capacity: 998 kW) | Plant 2 (Capacity: 369.85 kW) | Plant 3 (Capacity: 48.3 kW) | Plant 4 (Capacity: 905 kW) | ||||||||||||
| Model | MSE (kW, ↓) | NMAE (%, ↓) | (↑) | MSE (kW, ↓) | NMAE (%, ↓) | MSE (kW, ↓) | NMAE (%, ↓) | (↑) | MSE (kW, ↓) | NMAE (%, ↓) | (↑) | ||||
| Scenario 1: Meteorological + Radiation + Engineered Features | |||||||||||||||
| RF | 4.016 | 4.161 | 0.869 | 1.786 | 4.325 | 0.897 | 0.362 | 5.124 | 0.859 | 3.341 | 3.784 | 0.898 | |||
| SVR | 4.364 | 4.690 | 0.858 | 2.006 | 5.413 | 0.885 | 0.364 | 6.004 | 0.858 | 3.930 | 4.888 | 0.880 | |||
| LGBM | 3.998 | 4.198 | 0.870 | 1.788 | 4.493 | 0.897 | 0.365 | 5.305 | 0.857 | 3.427 | 3.790 | 0.896 | |||
| XGB | 4.825 | 4.647 | 0.843 | 1.963 | 4.775 | 0.887 | 0.401 | 5.750 | 0.843 | 3.961 | 4.046 | 0.879 | |||
| Transformer | 6.456 | 5.312 | 0.789 | 2.192 | 4.828 | 0.874 | 0.411 | 5.756 | 0.840 | 3.843 | 4.270 | 0.883 | |||
| MLP | 4.544 | 4.915 | 0.852 | 1.925 | 5.272 | 0.889 | 0.394 | 5.867 | 0.846 | 3.224 | 3.882 | 0.902 | |||
| Scenarios 2: Meteorological + Engineered Features (No Irradiance) | |||||||||||||||
| RF | 4.682 | 4.630 | 0.848 | 2.117 | 4.912 | 0.888 | 0.473 | 7.001 | 0.815 | 4.463 | 4.558 | 0.864 | |||
| SVR | 5.128 | 5.200 | 0.823 | 2.692 | 6.094 | 0.867 | 0.479 | 7.498 | 0.813 | 4.574 | 5.344 | 0.861 | |||
| LGBM | 4.627 | 4.613 | 0.849 | 2.279 | 4.966 | 0.889 | 0.458 | 7.035 | 0.821 | 4.501 | 4.596 | 0.863 | |||
| XGB | 6.114 | 5.308 | 0.800 | 2.472 | 5.265 | 0.877 | 0.460 | 6.988 | 0.820 | 4.881 | 4.950 | 0.851 | |||
| Transformer | 8.001 | 6.087 | 0.739 | 3.196 | 6.000 | 0.828 | 0.619 | 8.434 | 0.758 | 5.076 | 5.138 | 0.845 | |||
| MLP | 4.504 | 4.835 | 0.853 | 2.628 | 6.051 | 0.866 | 0.578 | 8.542 | 0.774 | 4.607 | 5.212 | 0.860 | |||
| Scenarios 3: Meteorological (No Irrandiance, No Engineered Features) | |||||||||||||||
| RF | 22.818 | 12.028 | 0.255 | 11.869 | 14.316 | 0.318 | 2.233 | 17.715 | 0.128 | 19.326 | 11.708 | 0.411 | |||
| SVR | 21.305 | 11.366 | 0.305 | 11.357 | 13.700 | 0.347 | 1.952 | 16.142 | 0.238 | 18.365 | 11.296 | 0.440 | |||
| LGBM | 22.271 | 11.852 | 0.273 | 11.568 | 14.139 | 0.335 | 2.201 | 17.633 | 0.140 | 19.095 | 11.643 | 0.418 | |||
| XGB | 23.544 | 12.379 | 0.232 | 12.043 | 14.292 | 0.308 | 2.348 | 18.139 | 0.083 | 20.727 | 11.986 | 0.368 | |||
| Transformer | 28.878 | 13.332 | 0.057 | 14.643 | 15.379 | 0.158 | 2.574 | 18.873 | 0.056 | 22.502 | 12.303 | 0.314 | |||
| MLP | 23.357 | 12.551 | 0.238 | 11.685 | 14.398 | 0.337 | 2.357 | 18.490 | 0.079 | 20.508 | 12.492 | 0.375 | |||
| Scenario 4: Meteorological + Irradiance (No Engineered Features) | |||||||||||||||
| RF | 5.109 | 5.080 | 0.833 | 1.893 | 5.080 | 0.833 | 0.414 | 5.860 | 0.838 | 4.009 | 4.618 | 0.878 | |||
| SVR | 4.533 | 4.828 | 0.852 | 1.680 | 4.828 | 0.852 | 0.389 | 5.988 | 0.848 | 4.120 | 4.969 | 0.874 | |||
| LGBM | 4.931 | 4.973 | 0.839 | 1.828 | 4.973 | 0.839 | 0.409 | 5.840 | 0.840 | 4.130 | 4.673 | 0.874 | |||
| XGB | 5.883 | 5.527 | 0.808 | 2.180 | 5.527 | 0.808 | 0.437 | 6.033 | 0.829 | 4.856 | 5.076 | 0.852 | |||
| Transformer | 7.699 | 6.466 | 0.749 | 2.853 | 6.466 | 0.749 | 0.435 | 6.097 | 0.830 | 5.068 | 4.999 | 0.46 | |||
| MLP | 4.965 | 4.941 | 0.838 | 1.840 | 4.941 | 0.838 | 0.433 | 6.278 | 0.831 | 4.037 | 4.760 | 0.877 | |||
| Plant 1 (Capacity: 998 kW) | Plant 2 (Capacity: 369.85 kW) | |||||||||
| Model | RMSE (kW, ↓) | MAE (%, ↓) | (↑) | MAPE (%, ↓) | NMAE (%, ↓) | RMSE (kW, ↓) | MAE (%, ↓) | (↑) | MAPE (%, ↓) | NMAE (%, ↓) |
| RF | 68.112 | 46.207 | 0.848 | 14.480 | 4.630 | 26.865 | 18.165 | 0.888 | 13.721 | 4.912 |
| SVR | 71.535 | 51.891 | 0.823 | 17.328 | 5.200 | 29.235 | 22.538 | 0.867 | 16.854 | 6.094 |
| LGBM | 67.957 | 46.036 | 0.849 | 14.773 | 4.613 | 26.698 | 18.367 | 0.889 | 14.284 | 4.966 |
| XGB | 78.115 | 52.975 | 0.800 | 16.417 | 5.308 | 28.141 | 19.473 | 0.877 | 14.668 | 5.265 |
| Transformer | 89.360 | 60.747 | 0.739 | 18.934 | 6.087 | 33.292 | 22.190 | 0.828 | 17.381 | 6.000 |
| MLP | 67.047 | 48.253 | 0.853 | 15.206 | 4.835 | 29.379 | 22.381 | 0.866 | 16.534 | 6.051 |
| Bagging Ensemble | 70.896 | 48.259 | 0.818 | 16.969 | 4.935 | 27.159 | 18.222 | 0.884 | 14.837 | 5.227 |
| Meta Ensemble | 75.387 | 50.242 | 0.814 | 15.213 | 5.034 | 28.541 | 19.993 | 0.873 | 14.731 | 5.406 |
| Proposed FHE | 65.785 | 43.470 | 0.864 | 12.923 | 4.356 | 24.837 | 16.700 | 0.906 | 12.332 | 4.686 |
| Plant 3 (Capacity: 48.3 kW) | Plant 4 (Capacity: 905 kW) | |||||||||
| RF | 4.777 | 3.381 | 0.815 | 18.508 | 7.001 | 63.483 | 41.200 | 0.864 | 14.116 | 4.558 |
| SVR | 4.811 | 3.621 | 0.813 | 19.875 | 7.498 | 64.265 | 48.309 | 0.861 | 17.645 | 5.344 |
| LGBM | 4.702 | 3.398 | 0.821 | 18.751 | 7.035 | 63.754 | 41.549 | 0.863 | 14.447 | 4.596 |
| XGB | 4.714 | 3.375 | 0.820 | 18.677 | 6.988 | 66.391 | 44.745 | 0.851 | 15.346 | 4.950 |
| Transformer | 5.469 | 4.074 | 0.758 | 22.701 | 8.434 | 67.703 | 46.501 | 0.845 | 16.397 | 5.138 |
| MLP | 5.283 | 4.126 | 0.774 | 21.674 | 8.542 | 64.501 | 47.165 | 0.860 | 16.537 | 5.212 |
| Bagging Ensemble | 4.969 | 3.764 | 0.804 | 18.819 | 7.473 | 59.248 | 40.298 | 0.881 | 14.051 | 4.458 |
| Meta Ensemble | 4.642 | 3.370 | 0.826 | 18.509 | 6.978 | 64.441 | 45.384 | 0.860 | 14.809 | 5.015 |
| Proposed FHE | 4.512 | 3.191 | 0.838 | 16.841 | 6.714 | 55.568 | 36.535 | 0.902 | 12.196 | 4.052 |
| Plant 1 (Capacity: 998 kW) | Plant 2 (Capacity: 369.85 kW) | |||||||||||
| 12% Testing set | 16% Testing set | 20% Testing set | 12% Testing set | 16% Testing set | 20% Testing set | |||||||
| Model | MAPE (%, ↓) | NMAE (%, ↓) | MAPE (%, ↓) | NMAE (%, ↓) | MAPE (%, ↓) | NMAE (%, ↓) | MAPE (%) | NMAE (%) | MAPE (%) | NMAE (%) | MAPE (%) | NMAE (%) |
| RF | 14.480 | 4.630 | 17.425 | 5.815 | 17.065 | 4.944 | 13.721 | 4.912 | 15.661 | 5.336 | 15.279 | 5.214 |
| SVR | 17.328 | 5.200 | 18.937 | 5.624 | 19.786 | 5.748 | 16.854 | 6.094 | 17.895 | 6.195 | 18.353 | 6.356 |
| LGBM | 14.773 | 4.613 | 16.972 | 4.929 | 17.577 | 5.014 | 14.284 | 4.966 | 14.940 | 5.031 | 15.719 | 5.239 |
| XGB | 16.417 | 5.308 | 18.142 | 5.354 | 18.618 | 5.438 | 14.668 | 5.265 | 15.512 | 5.324 | 16.053 | 5.464 |
| Transformer | 18.934 | 6.087 | 20.326 | 6.196 | 21.158 | 6.339 | 17.381 | 6.000 | 14.144 | 6.159 | 18.849 | 6.345 |
| MLP | 15.206 | 4.835 | 17.564 | 5.276 | 18.206 | 5.386 | 16.534 | 6.051 | 16.326 | 5.641 | 16.855 | 5.805 |
| Bagging Ensemble | 16.969 | 4.935 | 15.955 | 4.705 | 16.667 | 4.829 | 14.837 | 5.227 | 15.128 | 5.226 | 15.269 | 5.170 |
| Meta Ensemble | 15.213 | 5.034 | 16.407 | 4.919 | 17.040 | 5.044 | 14.731 | 5.406 | 15.675 | 5.309 | 16.389 | 5.578 |
| Proposed FHE | 12.923 | 4.356 | 14.600 | 4.459 | 15.079 | 4.585 | 12.332 | 4.686 | 13.486 | 4.843 | 14.079 | 4.968 |
| Plant 3 (Capacity: 48.3 kW) | Plant 4 (Capacity: 905 kW) | |||||||||||
| RF | 18.508 | 7.001 | 19.486 | 7.701 | 19.443 | 7.326 | 14.116 | 4.558 | 14.223 | 4.634 | 14.536 | 4.722 |
| SVR | 19.875 | 7.498 | 20.574 | 7.918 | 20.471 | 7.561 | 17.645 | 5.344 | 17.380 | 5.333 | 17.660 | 5.403 |
| LGBM | 18.751 | 7.035 | 19.585 | 7.694 | 19.199 | 7.247 | 14.447 | 4.596 | 14.371 | 4.638 | 14.499 | 4.670 |
| XGB | 18.677 | 6.988 | 19.861 | 7.705 | 19.954 | 7.426 | 15.346 | 4.950 | 15.248 | 4.986 | 15.370 | 5.002 |
| Transformer | 22.701 | 8.434 | 22.953 | 8.734 | 22.842 | 8.418 | 16.397 | 5.138 | 16.553 | 5.232 | 16.639 | 5.256 |
| MLP | 21.674 | 8.542 | 22.069 | 8.974 | 21.542 | 8.419 | 16.537 | 5.212 | 16.370 | 5.208 | 16.610 | 5.268 |
| Bagging Ensemble | 18.819 | 7.473 | 18.779 | 7.406 | 18.909 | 7.256 | 14.051 | 4.458 | 14.027 | 5.641 | 14.255 | 4.548 |
| Meta Ensemble | 18.509 | 6.978 | 19.679 | 7.768 | 19.672 | 7.375 | 14.809 | 5.015 | 14.686 | 5.055 | 14.978 | 5.038 |
| Proposed FHE | 16.841 | 6.714 | 17.773 | 7.306 | 17.586 | 6.967 | 12.196 | 4.052 | 12.451 | 4.179 | 12.771 | 4.278 |
| ↓ Lower is better. | ||||||||||||
| Plant 1 (Capacity: 998 kW) | Plant 2 (Capacity: 369.85 kW) | Plant 3 (Capacity: 48.3 kW) | Plant 4 (Capacity: 905 kW) | ||||||||||||
| Model | MAPE (%, ↓) | NMAE (%, ↓) | (↑) | MAPE (%) | NMAE (%) | MAPE (%) | NMAE (%) | MAPE (%) | NMAE (%) | ||||||
| CV Iteration 1: 2019-01-01 to 2019-09-13 | |||||||||||||||
| RF | 22.522 | 6.070 | 0.762 | 20.442 | 6.107 | 0.802 | 23.768 | 6.910 | 0.735 | 21.449 | 5.796 | 0.815 | |||
| SVR | 28.626 | 7.802 | 0.649 | 31.369 | 8.996 | 0.657 | 36.921 | 10.012 | 0.605 | 27.680 | 7.736 | 0.679 | |||
| LGBM | 21.946 | 5.853 | 0.761 | 22.186 | 6.225 | 0.798 | 26.108 | 7.357 | 0.720 | 17.706 | 5.156 | 0.843 | |||
| XGB | 24.903 | 6.620 | 0.726 | 22.711 | 6.628 | 0.762 | 31.497 | 8.139 | 0.677 | 23.354 | 6.402 | 0.774 | |||
| Transformer | 28.156 | 6.926 | 0.712 | 28.028 | 8.697 | 0.675 | 32.454 | 10.356 | 0.657 | 26.227 | 6.853 | 0.743 | |||
| MLP | 36.166 | 9.225 | 0.532 | 37.291 | 10.371 | 0.539 | 35.113 | 10.525 | 0.610 | 25.843 | 8.007 | 0.651 | |||
| Bagging Ensemble | 21.657 | 5.650 | 0.792 | 22.551 | 6.746 | 0.779 | 23.796 | 6.944 | 0.769 | 19.878 | 5.599 | 0.830 | |||
| Meta Ensemble | 21.418 | 5.978 | 0.760 | 22.455 | 6.472 | 0.779 | 24.547 | 7.277 | 0.734 | 19.704 | 6.250 | 0.761 | |||
| Proposed FHE | 19.138 | 5.236 | 0.816 | 19.968 | 5.801 | 0.816 | 21.911 | 6.425 | 0.779 | 16.565 | 4.795 | 0.869 | |||
| CV Iteration 2: 2019-01-01 to 2020-05-25 | |||||||||||||||
| RF | 17.204 | 5.240 | 0.835 | 18.723 | 6.211 | 0.841 | 18.685 | 6.145 | 0.856 | 15.584 | 4.851 | 0.896 | |||
| SVR | 20.179 | 6.454 | 0.800 | 22.142 | 7.339 | 0.817 | 22.102 | 7.410 | 0.822 | 20.245 | 6.629 | 0.824 | |||
| LGBM | 17.183 | 5.176 | 0.848 | 18.307 | 6.202 | 0.848 | 18.709 | 6.280 | 0.857 | 14.444 | 4.559 | 0.908 | |||
| XGB | 17.917 | 5.478 | 0.827 | 20.053 | 6.593 | 0.829 | 19.968 | 6.586 | 0.848 | 15.659 | 4.878 | 0.889 | |||
| Transformer | 18.611 | 5.516 | 0.805 | 21.171 | 6.785 | 0.816 | 22.384 | 7.497 | 0.789 | 14.735 | 4.830 | 0.880 | |||
| MLP | 20.756 | 6.761 | 0.784 | 20.875 | 7.045 | 0.820 | 21.902 | 7.721 | 0.811 | 19.466 | 6.265 | 0.841 | |||
| Bagging Ensemble | 16.517 | 5.193 | 0.848 | 18.493 | 6.156 | 0.852 | 18.273 | 6.221 | 0.864 | 14.869 | 4.836 | 0.899 | |||
| Meta Ensemble | 16.786 | 5.119 | 0.843 | 18.444 | 6.295 | 0.835 | 19.146 | 6.557 | 0.840 | 14.344 | 4.531 | 0.907 | |||
| Proposed FHE | 15.059 | 4.518 | 0.874 | 16.706 | 5.453 | 0.868 | 16.019 | 5.415 | 0.885 | 13.454 | 4.265 | 0.915 | |||
| CV Iteration 3: 2019-01-01 to 2021-02-05 | |||||||||||||||
| RF | 18.610 | 5.360 | 0.797 | 21.179 | 6.230 | 0.823 | 21.986 | 6.756 | 0.796 | 18.439 | 5.591 | 0.734 | |||
| SVR | 22.465 | 6.250 | 0.766 | 23.864 | 7.387 | 0.780 | 24.043 | 7.135 | 0.783 | 21.889 | 6.504 | 0.787 | |||
| LGBM | 19.515 | 5.491 | 0.796 | 21.841 | 6.437 | 0.814 | 21.865 | 6.789 | 0.792 | 18.879 | 5.732 | 0.772 | |||
| XGB | 20.108 | 5.666 | 0.770 | 22.249 | 6.522 | 0.809 | 22.177 | 6.850 | 0.787 | 20.084 | 6.201 | 0.729 | |||
| Transformer | 22.091 | 6.196 | 0.725 | 23.291 | 6.894 | 0.758 | 24.676 | 8.016 | 0.705 | 21.308 | 6.704 | 0.676 | |||
| MLP | 20.727 | 6.217 | 0.769 | 23.614 | 7.710 | 0.769 | 23.009 | 7.397 | 0.763 | 19.402 | 6.062 | 0.783 | |||
| Bagging Ensemble | 18.320 | 5.275 | 0.810 | 20.601 | 6.241 | 0.825 | 20.856 | 6.592 | 0.802 | 17.944 | 5.570 | 0.797 | |||
| Meta Ensemble | 19.212 | 5.527 | 0.798 | 20.030 | 6.174 | 0.831 | 20.897 | 6.729 | 0.789 | 16.740 | 4.928 | 0.864 | |||
| Proposed FHE | 16.649 | 4.691 | 0.839 | 18.773 | 5.575 | 0.848 | 19.743 | 6.044 | 0.827 | 16.684 | 4.967 | 0.846 | |||
| CV Iteration 4: 2019-01-01 to 2021-10-18 | |||||||||||||||
| RF | 18.964 | 5.200 | 0.783 | 18.798 | 6.126 | 0.828 | 19.630 | 6.899 | 0.776 | 14.920 | 4.657 | 0.874 | |||
| SVR | 21.855 | 6.094 | 0.754 | 21.721 | 7.382 | 0.781 | 21.331 | 7.365 | 0.771 | 17.578 | 5.427 | 0.853 | |||
| LGBM | 19.219 | 5.229 | 0.779 | 18.960 | 6.122 | 0.835 | 20.187 | 7.032 | 0.769 | 14.748 | 4.562 | 0.880 | |||
| XGB | 20.945 | 5.712 | 0.745 | 20.097 | 6.505 | 0.813 | 21.325 | 7.515 | 0.742 | 15.635 | 4.871 | 0.864 | |||
| Transformer | 24.036 | 6.606 | 0.749 | 22.583 | 7.249 | 0.760 | 22.276 | 7.710 | 0.728 | 17.215 | 5.387 | 0.831 | |||
| MLP | 20.208 | 5.570 | 0.763 | 20.738 | 7.097 | 0.801 | 21.668 | 7.976 | 0.738 | 16.484 | 5.505 | 0.847 | |||
| Bagging Ensemble | 19.080 | 5.183 | 0.787 | 18.698 | 6.137 | 0.831 | 19.320 | 6.895 | 0.785 | 14.186 | 4.467 | 0.886 | |||
| Meta Ensemble | 19.376 | 5.550 | 0.776 | 18.806 | 6.054 | 0.837 | 20.0645 | 7.056 | 0.776 | 15.222 | 5.020 | 0.853 | |||
| Proposed FHE | 17.728 | 4.832 | 0.807 | 17.655 | 5.726 | 0.846 | 18.226 | 6.377 | 0.810 | 13.985 | 4.307 | 0.887 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
