Submitted:
28 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Model
2.1. Modeling Spiral Motion
2.2. The Mechanism of Time
2.3. General Relativity
Metric and Identification
Energy–Momentum Ansatz
Key Geometric Identities (Compact Form)
Einstein Equations and Friedmann Form
How to Include Model Components in
- 1.
- Effective perfect fluid. Treat the crust and its internal degrees of freedom as an effective homogeneous fluid with and . Insert these into the Friedmann equations and solve for .
- 2.
- Explicit scalar mediator contribution. If the mediator is dynamical and approximately homogeneous on cosmological scales, include and given above. If is strongly localized to crust microstructure, average appropriately and include only the coarse-grained contribution.
- 3.
- Shell / embedding effects. If the 3-dimensional crust is best modelled as a thin shell embedded in a higher-dimensional geometry, use Gauss–Codazzi relations and Israel junction conditions to derive an effective surface stress tensor that modifies the 4D dynamics (see Appendix C).
Remarks on Interpretation and Validity
- Identifying places the model squarely within standard cosmology for a closed universe; this allows direct comparison with observational constraints once and p are specified.
- The presence of a preferred timelike background explicitly breaks boost invariance; experimental constraints on Lorentz violation summarized in the Standard-Model Extension (SME) literature require that any low-energy Lorentz-violating effects be sufficiently suppressed, and we therefore assume such effects are Planck-suppressed or otherwise below current bounds [44].
- If mediator parameters or masses approach the Planck scale, the effective field theory treatment must be qualified: state explicitly any Planck cutoff and the regime of validity.
- If the crust carries intrinsic surface energy or tension, the embedding / junction approach is recommended to capture extrinsic curvature effects.
2.4. The Effects of Gravity on Spacetime
2.5. Evaluating Light Curvature
3. Results
4. Conclusion
Data Availability Statement
Appendix A. Retarded Propagator
Appendix A.1. Retarded Propagator for a Massive Scalar
Appendix A.2. Compton Wavelength and Order of Magnitude Estimates
Appendix A.3. Sample Energy Dependent Coupling
Appendix A.4. Numerical Example
Appendix B. Mass and Temporal Damping of the Mediator ϕ Y
Caveat.
Appendix C. Geometric Derivations
Appendix C.1. Full Geometric Components
Nonzero Christoffel Symbols
Ricci Tensor Components
Ricci Scalar
Einstein Tensor Components
Checks and remarks
- Substituting into Einstein’s equations yields the Friedmann equation
- The spatial components above are related to the acceleration equation and reproduce
- The listed Christoffel symbols, Ricci components and Einstein tensor are the standard background expressions for the closed FLRW metric; they can be reproduced symbolically (e.g. with Mathematica/Maple/Sage) by inputting the metric .
Appendix C.2. Full Christoffel, Ricci and Einstein Tensor (Background)
Appendix C.3. Gauss–Codazzi and Israel Junction Conditions (Shell Embedding)
Implementation Notes
- To reproduce the intermediate symbolic steps, run a symbolic CAS (Mathematica, Maple, or Sage) on the metric and export the Christoffel, Ricci and Einstein tensors.
- If you adopt the embedding / junction approach, state the higher-dimensional background explicitly (ambient metric) and compute the extrinsic curvature for the chosen embedding surface.
- When comparing with observations, convert to conventional cosmological units (Mpc, Gyr) and compute standard observables (Hubble parameter , comoving distance, angular diameter distance).
References
- Friedman, A. Z. Phys. 1922, 10, 377–386. [CrossRef]
- Lemaitre, G. Nature. 1931, 127, 706. [Google Scholar] [CrossRef]
- Peebles, P. J. E. Princeton University Press, 2020, ISBN 978-0-691-20981-4.
- Aghanim, N.; et al. [Planck], Astron. Astrophys. A6 [erratum: Astron. Astrophys. 652 (2021);[astro-ph.CO]. 2020, arXiv:1807.06209641, C4. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S. D. Phys. Rept [gr-qc]. 2011, arXiv:1011.0544505, 59–144. [CrossRef]
- Buchert, T. Gen. Rel. Grav. arXiv [gr-qc]. 2000, arXiv:gr32, 105–125. [Google Scholar] [CrossRef]
- Harlow, D.; Usatyuk, M.; Zhao, Y. arXiv [hep-th]. arXiv:2501.02359.
- Suvorov, A. G. Phys. Rev. D [gr-qc]. 2025, arXiv:2412.06696111(no.2), 023508. [CrossRef]
- Kamionkowski, M.; Toumbas, N. Phys. Rev. Lett. 1996, 77, 587–590. [CrossRef] [PubMed]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S. D. Astrophys. Space Sci. [gr-qc]. 2012, arXiv:1205.3421342, 155–228. [CrossRef]
- Celerier, M. N. Astron. Astrophys. [astro-ph]. 2000, arXiv:astro353, 63–71. [Google Scholar]
- Linde, A. D. [arXiv:hep-th/0211048 [hep-th]].
- Alnes, H.; Amarzguioui, M.; Gron, O. Phys. Rev. D 2006, 73, 083519. [CrossRef]
- Bolejko, K.; Celerier, M. N.; Krasinski, A. Class. Quant. Grav. [astro-ph.CO]. 2011, arXiv:1102.144928, 164002. [Google Scholar] [CrossRef]
- Rasanen, S. JCAP [astro-ph]. 2006, arXiv:astro11, 003. [CrossRef]
- Cespedes, S.; de Alwis, S. P.; Muia, F.; Quevedo, F. Phys. Rev. D [hep-th]. 2021, arXiv:2011.13936104(no.2), 026013. [CrossRef]
- Ratra, B. Phys. Rev. D [astro-ph.CO]. 2017, arXiv:1707.0343996(no.10), 103534. [CrossRef]
- Nappi, C. R.; Witten, E. Phys. Lett. B [hep-th]. 1992, arXiv:hep293, 309–314. [CrossRef]
- Clarkson, C.; Ellis, G.; Larena, J.; Umeh, O. Rept. Prog. Phys. [astro-ph.CO]. 2011, arXiv:1109.231474, 112901. [CrossRef]
- Guth, A. H.; Steinhardt, P. J. Spektrum Wiss 1984, 7, 80–94.
- Dabrowski, M. P.; Stachowiak, T.; Szydlowski, M. Phys. Rev. D [hep-th]. 2003, arXiv:hep68, 103519. [CrossRef]
- Dutta, S.; Maor, I. Phys. Rev. D [gr-qc]. 2007, arXiv:gr75, 063507. [CrossRef]
- Weinberg, S. John Wiley and Sons; 1972; ISBN 978-0-471-92567-5, 978-0-471-92567-5. [Google Scholar]
- Caldwell, R. R.; Kamionkowski, M.; Weinberg, N. N. Phys. Rev. Lett. 2003, 91, 071301. [CrossRef]
- Kolb, E. W.; Turner, M. S. Front. In Phys.; Taylor and Francis, 1990; Volume 69, pp. 1–547. ISBN 978-0-429-49286-0, 978-0-201-62674-2. [Google Scholar] [CrossRef]
- Ford, L. H. Phys. Rev. D 1976, 14, 3304–3313. [CrossRef]
- Ellis, G. F. R.; P. McEwan, W. R.; Stoeger, S.J.; Dunsby, P. Gen. Rel. Grav. [gr-qc]. 2002, arXiv:gr34, 1461–1481. [CrossRef]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G. F.; Nelson, D.; Hernquist, L. Mon. Not. Roy. Astron. Soc. [astro-ph.CO]. 2014, arXiv:1405.2921444(no.2), 1518–1547. [CrossRef]
- Nojiri, S.; Odintsov, S. D. eConf C0602061 [hep-th]. 2006, arXiv:hep06. [CrossRef]
- Handley, W. Phys. Rev. D [astro-ph.CO]. 2021, arXiv:1908.09139103(no.4), L041301. [CrossRef]
- Gratton, S.; Lewis, A.; Turok, N. Phys. Rev. D 2002, 65, 043513. [CrossRef]
- S. Kalyana Rama. Phys. Lett. B [hep-th]. 1999, arXiv:hep457, 268–274. [CrossRef]
- Burgarth, D.; Facchi, P. arXiv [quant-ph]. arXiv:2506.03254.
- Sami, M.; Toporensky, A. Mod. Phys. Lett. A [gr-qc]. 2004, arXiv:gr19, 1509. [CrossRef]
- Lesgourgues, J.; Tram, T. JCAP [astro-ph.CO]. 2014, arXiv:1312.269709 032. [CrossRef]
- Cline, J. M.; Jeon, S.; Moore, G. D. Phys. Rev. D [hep-ph]. 2004, arXiv:hep70, 043543. [CrossRef]
- Carr, B. J.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Phys. Rev. D [astro-ph.CO]. 2010, arXiv:0912.529781, 104019. [CrossRef]
- Bezerra, V. B.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Romero, C. Phys. Rev. D 2011, 83, 104042. [CrossRef]
- A. Einstein. Annalen Phys. 49 (1916)(no.7), 769–822. [CrossRef]
- Hubble, E. Proc. Nat. Acad. Sci. 1929, 15, 168–173. [CrossRef] [PubMed]
- Spergel, D. N.; et al. [WMAP]. Astrophys. J. Suppl. 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Chasnov, J. R. Int. J. Math. Sci. [math.NA]. 2016, arXiv:1601.0000010, 123–145. [CrossRef]
- Arfken, G. B.; Weber, H. J.; Harris, F. E. Academic Press, 7th edition; 2011. [Google Scholar]
- Tasson, J. D. Symmetry [gr-qc]. 2016, arXiv:1610.053578, 111. [CrossRef]
- W. Israel, Nuovo Cim. B 44S10 (1966). erratum: Nuovo Cim. B 48 (1967). 1, 463. [CrossRef]
- Liddle, A. R. arXiv [astro-ph]. arXiv:astro.
- Paranjape, A.; Singh, T. P. Gen. Rel. Grav. 2008, 40, 139–157. [CrossRef]
- Brizuela, D.; Martin-Garcia, J. M.; Mena Marugan, G. A. Gen. Rel. Grav. [gr-qc]. 2009, arXiv:0807.082441, 2415–2431. [CrossRef]
- Mukhanov, V. F.; Feldman, H. A.; Brandenberger, R. H. Phys. Rept 1992, 215, 203–333. [CrossRef]








| Points | ||
|---|---|---|
| A | 521 | 1.648 |
| B | 859 | 1.650 |
| C | 1418 | 1.643 |
| D | 2330 | - |
| Property | Value (SI) | Value (natural units) |
|---|---|---|
| Electric charge | 0 C | 0 (gauge singlet) |
| Spin | 0 | |
| Mass (benchmark) | ||
| Compton time | ||
| Effective temporal damping |
| Path | Color | Spatial distance |
|---|---|---|
| Distance observed by telescope | brown | |
| Real distance at now | green | |
| Traveling distance | purple |
| 53382 | 49569 | ||
| 2008 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
