Submitted:
18 June 2025
Posted:
20 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods and Materials
3. Diagnosis: How to Select Patients Who Really Need a Biopsy?
4. Prognosis: How to Distinguish Between Indolent and Aggressive Tumors?
5. Treatment: Should Treatment Be Intensified or De-Intensified?
6. Future Perspectives
7. Discussion
| USE | TEST | BIOMARKER | SAMPLE | AUC/NPV | SCORING AND INTERPRETATION | ADVANTAGES | LIMITATIONS | VALIDATED CLINICAL SETTING |
|---|---|---|---|---|---|---|---|---|
| Avoid initial and subsequent biopsies | PHI[11,12,13] | PSA, free PSA, isoform [-2] proPSA | Blood | AUC 0.70-0.75 | Score: 0 -55 Risk > 40 associated with significant PCa. PHI > 55: 50 % chance of PCa. |
Accessible and fast. Higher sensitivity and specificity than PSA, detects high-risk PCa. Complementary to PSA in AS to detect biochemical progression. |
Lower sensitivity in small tumors. |
Initial evaluation with PSA 4-10 ng/ml. |
| 4K Score[14,15] | PSA, free PSA, intact PSA, hK2 + rectal examen, age and previous biopsy | Blood | AUC: 0.82-0.87 NPV: 95 % |
Score: 0-100: risk of Gleason ≥ 7 PCa. | Integrates clinical variables, high precision in high-risk PCa. | High cost, not always available. | Patient selection for initial biopsy. | |
| Stockholm3[16,17] | PSA + 232 SNPs + 6 plasmatic proteins | Blood | AUC: 0.81-0.85 | Score: 0-15. > 11 suggests significant PCa. |
Includes genetic risk, avoids 50% of biopsies. | Only available in Europe. | Screening for the general population. | |
| SelectMDx[19,20,31] | mRNA from HOXC6, TDRD1 and DLX1 genes. | Urine post-DRE | AUC: 0.76 NPV: 90 % |
Score 0-1: positive = high risk of significant PCa. | Identifies high-risk PCa. Better in combination with mpMRI. |
Limited availability, influenced by sample gathering. | Decision to biopsy after high PSA. | |
| ExoDX[26,27,28] | Exosomal RNA from PCA3, ERG and SPEDF | Urine (no DRE) | AUC: 0.71-0.75 | Continuous score; >15.6 threshold for biopsy. | No DRE required, useful after PSA or mpMRI. | Limited use outside the United States. | Pre-biopsy. PSA 2-10 ng/ml. |
|
| MiPs[25] | PCA3 + PSA and TMPRSS2-ERG/ETV | Urine post-DRE | AUC: 0.77-0.81. NPV: > 90 % |
Individual risk, the higher the score, the higher the risk. | Improves the identification of high-risk PCa (better than only PCA) | Low specificity, requires DRE, limited evidence in some populations. | PSA 2-10 ng/ml with no previous biopsy. | |
| Re-biopsy | PCA3[21,22,23,24] | Non-coding mRNA PCA3 | Urine post-DRE | AUC: 0.66 | Continuous score; > 35 higher risk of PCa. | Not affected by prostatic volume. Better predictor of PSA. |
Only useful if combined with mpMRI. Outdated by more precise tests. |
Patients with a previously negative biopsy. |
| ConfirmMDx[18,29,30,126] | DNA methylation in APC, RASSF and GSTP1. | Tissue | AUC: 0.76 NPV: 88-96 % |
Binary result (positive/negative) for methylation. | High NPV (> 90 %) after negative biopsy. Detects the halo effect. | Only applicable after previous biopsy. Not useful in inflammation High cost. |
Decision to re-biopsy after a previously negative result. | |
|
Indication/ exclusion of AS |
Oncotype Dx[40,41,42] | 17 genes (proliferation, invasion…) | Tissue | AUC: 0.68-0.72 | Score 0-100; > 40 increased risk of progression. | Reclassifies Gleason 6-7. Predicts upgrading and progression. Useful in candidates for AS. |
Cost. Requires solid sample. | Choice for AS in Gleason ≤ 7. |
| Prolaris[43,44,45,46,47] | 31 cell cycle genes and 15 maintenance genes. | Tissue | AUC: 0.77-0.88 | Score: 0-10. CCP > 1 higher risk of progression. |
Robust data, easy to interpretate. Clear stratification for low risk. |
Not tailored for high-risk disease. The interpretation requires experience. |
Decision for AS in low Gleason with rising PSA. | |
| Decipher[35,36,37,38,39] | RNA from 22 genes (metastasis). GPS score. | Tissue | AUC: 0.75-0.80 | Score: 0-1. > 0.6: high risk < 0.4: low risk 0.4-0.6: intermediate risk |
Good predictor in Gleason 7-8 High prognostic discrimination. |
Cost. | Exclusion for AS; risk of early metastasis. | |
| Promark[48,49] | Proteomic signature of 8 proteins associated with tumor aggressiveness | Tissue | AUC: 0.70-0.78 | Score: 0-1 (continuous) > 0.33 increasing risk of progression or upgrading; > 0.8: high risk (77 % Gleason > 4+3 o T3+) |
Does not require complex techniques, useful in Gleason 3+3 and 3+4. | Only applicable in tissue; less validated than Decipher/Oncotype. | Choice for AS in Gleason 3+3 and 3+4. | |
| Treatment intensification | Decipher[70,71,74,75,76,77] | RNA from 22 genes. GC score. |
Tissue | AUC: 0.77 | Score: 0-1; > 0.6: high risk of metastasis. |
Robust stratification after prostatectomy. Predicts the risk of metastasis, recurrence and mortality. Guides the use of ADT after RT. | Requires enough tissue. Cost. Limited prospective validation. |
Post-prostatectomy with + margins or pT3. Salvage RT. Intermediate/high risk. Guides adjuvant ADT. |
| Prolaris[66,67] | 31 cell cycle genes. | Tissue | AUC: 0.77-0.88 | Continuous score; CCR > 1: higher risk of progression. | Observational data, long follow up. Supports the decision for treatment intensification. | Not useful if ADT is already necessary. Lower impact in high risk. |
Pretreatment in intermediate risk. ADT indication nuclear. |
|
| Oncotype Dx[68,69] | 17 genes (proliferation, invasion…) | Tissue | AUC: 0.68-0.72 | Score: 0-100; > 40 high risk of progression or upgrading | Stratifies Gleason 6-7. Identifies candidates for intensification in intermediate risk. |
No estimation of long-term metastasis. Limited post-operatory validation. | Gleason 6-7 pretreatment. Intermediate risk. Decision between AS VA and intensified treatment. |
8. Conclusions
References
- Agbetuyi-Tayo, P.; Gbadebo, M.; Rotimi, O.A.; Rotimi, S.O. Advancements in Biomarkers of Prostate Cancer: A Review. Technol. Cancer Res. Treat. 2024, 23. [Google Scholar] [CrossRef] [PubMed]
- Samare-Najaf, M.; Kouchaki, H.; Mahini, S.M.; Rounkian, M.S.; Tavakoli, Y.; Samareh, A.; Azadbakht, M.K.; Jamali, N. Prostate cancer: Novel genetic and immunologic biomarkers. Clin. Chim. Acta 2024, 555, 117824. [Google Scholar] [CrossRef]
- Dahiya, V.; Hans, S.; Kumari, R.; Bagchi, G. Prostate cancer biomarkers: from early diagnosis to precision treatment. Clin. Transl. Oncol. 2024, 26, 2444–2456. [Google Scholar] [CrossRef]
- Baston, C.; Preda, A.; Iordache, A.; Olaru, V.; Surcel, C.; Sinescu, I.; Gingu, C. How to Integrate Prostate Cancer Biomarkers in Urology Clinical Practice: An Update. Cancers 2024, 16, 316. [Google Scholar] [CrossRef]
- Uhr, A.; Glick, L.; Gomella, L.G. An overview of biomarkers in the diagnosis and management of prostate cancer. . 2020, 27, 24–27. [Google Scholar]
- Munteanu, V.C.; Munteanu, R.A.; Gulei, D.; Schitcu, V.H.; Petrut, B.; Berindan Neagoe, I.; Achimas Cadariu, P.; Coman, I. PSA Based Biomarkers, Imagistic Techniques and Combined Tests for a Better Diagnostic of Localized Prostate Cancer. Diagnostics 2020, 10, 806. [Google Scholar] [CrossRef] [PubMed]
- Nassir, A.M. A piece in prostate cancer puzzle: Future perspective of novel molecular signatures. Saudi J. Biol. Sci. 2020, 27, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Alahdal, M.; Perera, R.A.; Moschovas, M.C.; Patel, V.; Perera, R.J. Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Mol. Ther. - Oncolytics 2023, 30, 27–38. [Google Scholar] [CrossRef]
- Hogenhout R, Remmers S, van Slooten-Midderigh ME, de Vos II, Roobol MJ. From Screening to Mortality Reduction: An Overview of Empirical Data on the Patient Journey in European Randomized Study of Screening for Prostate Cancer Rotterdam After 21 Years of Follow-up and a Reflection on Quality of Life. Eur Urol Oncol. 2024;7:713–20.
- Cornford P, Tilki D, van den Bergh RCN, Eberli D, De Meerler G, Gillessen S. EAU-EANM-ESTRO-ESUR-ISUP-SIOG-Guidelines-on-Prostate-Cancer-2025_2025-03-24-120144_rinw. 2025.
- Porzycki, P.; Ciszkowicz, E. Modern biomarkers in prostate cancer diagnosis. Central Eur. J. Urol. 2020, 73, 300–306. [Google Scholar] [CrossRef]
- Ito, K.; Yokomizo, A.; Tokunaga, S.; Arai, G.; Sugimoto, M.; Akakura, K.; Hasumi, H.; Sakai, H.; Ouraji, A.; Oki, R.; et al. Diagnostic Impacts of Clinical Laboratory Based p2PSA Indexes on any Grade, Gleason Grade Group 2 or Greater, or 3 or Greater Prostate Cancer and Prostate Specific Antigen below 10 ng/ml. J. Urol. 2020, 203, 83–91. [Google Scholar] [CrossRef]
- Sekine, Y.; Fujizuka, Y.; Nakazawa, S.; Tsuji, Y.; Ohtsu, A.; Miyazawa, Y.; Arai, S.; Nomura, M.; Koike, H.; Matsui, H.; et al. Utility of Combining Prostate Health Index and Magnetic Resonance Imaging for the Diagnosis of Prostate Cancer. Int. J. Urol. 2025, 32, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, A.; Månsson, M.; Kohestani, K.; Spyratou, V.; Wallström, J.; Hellström, M.; Lilja, H.; Vickers, A.; Carlsson, S.V.; Godtman, R.; et al. Performance of 4Kscore as a Reflex Test to Prostate-specific Antigen in the GÖTEBORG-2 Prostate Cancer Screening Trial. Eur. Urol. 2024, 86, 223–229. [Google Scholar] [CrossRef]
- Auvinen A, Tammela TLJ, Mirtti T, Lilja H, Tolonen T, Kenttämies A, et al. Prostate Cancer Screening With PSA, Kallikrein Panel, and MRI: The ProScreen Randomized Trial. JAMA. 2024;331:1452–9.
- Ström P, Nordström T, Aly M, Egevad L, Grönberg H, Eklund M. The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. Eur Urol. 2018;74:204–10.
- Vigneswaran, H.T.; Eklund, M.; Discacciati, A.; Nordström, T.; Hubbard, R.A.; Perlis, N.; Abern, M.R.; Moreira, D.M.; Eggener, S.; Yonover, P.; et al. Stockholm3 in a Multiethnic Cohort for Prostate Cancer Detection (SEPTA): A Prospective Multicentered Trial. J. Clin. Oncol. 2024, 42, 3806–3816. [Google Scholar] [CrossRef]
- Van Neste L, Partin AW, Stewart GD, Epstein JI, Harrison DJ, Van Criekinge W. Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies. Prostate. 2016;76:1078–87.
- Hendriks, R.J.; van der Leest, M.M.G.; Israël, B.; Hannink, G.; YantiSetiasti, A.; Cornel, E.B.; de Kaa, C.A.H.-V.; Klaver, O.S.; Sedelaar, J.P.M.; Van Criekinge, W.; et al. Clinical use of the SelectMDx urinary-biomarker test with or without mpMRI in prostate cancer diagnosis: a prospective, multicenter study in biopsy-naïve men. Prostate Cancer Prostatic Dis. 2021, 24, 1110–1119. [Google Scholar] [CrossRef]
- Constantin, T.; Savu, D.A.; Bucur, Ș.; Predoiu, G.; Constantin, M.M.; Jinga, V. The Role and Significance of Bioumoral Markers in Prostate Cancer. Cancers 2021, 13, 5932. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.E.G.; Matos, A.d.R.; Ferreira, L.B.; Gimba, E.R.P. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 2019, 10, 6589–6603. [Google Scholar] [CrossRef] [PubMed]
- Gittelman, M.C.; Hertzman, B.; Bailen, J.; Williams, T.; Koziol, I.; Henderson, R.J.; Efros, M.; Bidair, M.; Ward, J.F. PCA3 Molecular Urine Test as a Predictor of Repeat Prostate Biopsy Outcome in Men with Previous Negative Biopsies: A Prospective Multicenter Clinical Study. J. Urol. 2013, 190, 64–69. [Google Scholar] [CrossRef]
- Huskova, Z.; Knillova, J.; Kolar, Z.; Vrbkova, J.; Kral, M.; Bouchal, J. The Percentage of Free PSA and Urinary Markers Distinguish Prostate Cancer from Benign Hyperplasia and Contribute to a More Accurate Indication for Prostate Biopsy. Biomedicines 2020, 8, 173. [Google Scholar] [CrossRef]
- Kral, M.; Kurfurstova, D.; Zemla, P.; Elias, M.; Bouchal, J. New biomarkers and multiplex tests for diagnosis of aggressive prostate cancer and therapy management. Front. Oncol. 2025, 15, 1542511. [Google Scholar] [CrossRef]
- Salami, S.S.; Schmidt, F.; Laxman, B.; Regan, M.M.; Rickman, D.S.; Scherr, D.; Bueti, G.; Siddiqui, J.; Tomlins, S.A.; Wei, J.T.; et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 566–571. [Google Scholar] [CrossRef]
- McKiernan, J.; Donovan, M.J.; Margolis, E.; Partin, A.; Carter, B.; Brown, G.; Torkler, P.; Noerholm, M.; Skog, J.; Shore, N.; et al. A Prospective Adaptive Utility Trial to Validate Performance of a Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer in Patients with Prostate-specific Antigen 2–10 ng/ml at Initial Biopsy. Eur. Urol. 2018, 74, 731–738. [Google Scholar] [CrossRef]
- McKiernan, J.; Donovan, M.J.; O’Neill, V.; Bentink, S.; Noerholm, M.; Belzer, S.; Skog, J.; Kattan, M.W.; Partin, A.; Andriole, G.; et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol. 2016, 2, 882–889. [Google Scholar] [CrossRef]
- Kretschmer, A.; Tutrone, R.; Alter, J.; Berg, E.; Fischer, C.; Kumar, S.; Torkler, P.; Tadigotla, V.; Donovan, M.; Sant, G.; et al. Pre-diagnosis urine exosomal RNA (ExoDx EPI score) is associated with post-prostatectomy pathology outcome. World J. Urol. 2022, 40, 983–989. [Google Scholar] [CrossRef]
- Hanson, J.A.; Gillespie, J.W.; Grover, A.; Tangrea, M.A.; Chuaqui, R.F.; Emmert-Buck, M.R.; Tangrea, J.A.; Libutti, S.K.; Linehan, W.M.; Woodson, K.G. Gene Promoter Methylation in Prostate Tumor–Associated Stromal Cells. JNCI J. Natl. Cancer Inst. 2006, 98, 255–261. [Google Scholar] [CrossRef]
- Partin, A.W.; Van Neste, L.; Klein, E.A.; Marks, L.S.; Gee, J.R.; Troyer, D.A.; Rieger-Christ, K.; Jones, J.S.; Magi-Galluzzi, C.; Mangold, L.A.; et al. Clinical Validation of an Epigenetic Assay to Predict Negative Histopathological Results in Repeat Prostate Biopsies. J. Urol. 2014, 192, 1081–1087. [Google Scholar] [CrossRef]
- Van Neste, L.; Hendriks, R.J.; Dijkstra, S.; Trooskens, G.; Cornel, E.B.; Jannink, S.A.; de Jong, H.; Hessels, D.; Smit, F.P.; Melchers, W.J.G.; et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker–Based Risk Score. Eur. Urol. 2016, 70, 740–748. [Google Scholar] [CrossRef]
- Pollard, M.E.; Hobbs, A.R.; Kwon, Y.S.; Katsigeorgis, M.; Lavery, H.J.; Levinson, A.; Bernstein, A.N.; Collingwood, S.A.; Hall, S.J.; Samadi, D.B.; et al. Heterogeneity of Outcomes in D'Amico Intermediate-Risk Prostate Cancer Patients after Radical Prostatectomy: Influence of Primary and Secondary Gleason Score. Oncol. Res. Treat. 2017, 40, 508–514. [Google Scholar] [CrossRef]
- Fernández-Anguita, P.J.; Ventosa-Puig, M.; Migallón, I.D.d.M.-S.; Legido-Gómez, O.; Carrión-López, P.; Martínez-Ruiz, J.; Salinas-Sánchez, A.S.; Giménez-Bachs, J.M. Value of Prostate-Specific Antigen Kinetics in Patients with Low-Risk Prostate Cancer under Active Surveillance. Urol. Int. 2023, 107, 706–712. [Google Scholar] [CrossRef]
- Nelson, T.J.; Javier-DesLoges, J.; Deka, R.; Courtney, P.T.; Nalawade, V.; Mell, L.; Murphy, J.; Parsons, J.K.; Rose, B.S. Association of Prostate-Specific Antigen Velocity With Clinical Progression Among African American and Non-Hispanic White Men Treated for Low-Risk Prostate Cancer With Active Surveillance. JAMA Netw. Open 2021, 4, e219452. [Google Scholar] [CrossRef]
- Erho, N.; Crisan, A.; Vergara, I.A.; Mitra, A.P.; Ghadessi, M.; Buerki, C.; Bergstralh, E.J.; Kollmeyer, T.; Fink, S.; Haddad, Z.; et al. Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy. PLoS ONE 2013, 8, e66855. [Google Scholar] [CrossRef]
- Herlemann, A.; Huang, H.-C.; Alam, R.; Tosoian, J.J.; Kim, H.L.; Klein, E.A.; Simko, J.P.; Chan, J.M.; Lane, B.R.; Davis, J.W.; et al. Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis. 2020, 23, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Michalopoulos, S.N.; Kella, N.; Payne, R.; Yohannes, P.; Singh, A.; Hettinger, C.; Yousefi, K.; Hornberger, J. ; on behalf of the PRO-ACT Study Group Influence of a genomic classifier on post-operative treatment decisions in high-risk prostate cancer patients: results from the PRO-ACT study. Curr. Med Res. Opin. 2014, 30, 1547–1556. [Google Scholar] [CrossRef]
- Badani, K.K.; Thompson, D.J.; Brown, G.; Holmes, D.; Kella, N.; Albala, D.; Singh, A.; Buerki, C.; Davicioni, E.; Hornberger, J. Effect of a genomic classifier test on clinical practice decisions for patients with high-risk prostate cancer after surgery. BJU Int. 2015, 115, 419–429. [Google Scholar] [CrossRef]
- Zhu, A.; Proudfoot, J.A.; Davicioni, E.; Ross, A.E.; Petkov, V.I.; Bonds, S.; Schussler, N.; Zaorsky, N.G.; Jia, A.Y.; Spratt, D.E.; et al. Use of Decipher Prostate Biopsy Test in Patients with Favorable-risk Disease Undergoing Conservative Management or Radical Prostatectomy in the Surveillance, Epidemiology, and End Results Registry. Eur. Urol. Oncol. 2024, 7, 1504–1512. [Google Scholar] [CrossRef]
- Knezevic, D.; Goddard, A.D.; Natraj, N.; Cherbavaz, D.B.; Clark-Langone, K.M.; Snable, J.; Watson, D.; Falzarano, S.M.; Magi-Galluzzi, C.; A Klein, E.; et al. Analytical validation of the Oncotype DX prostate cancer assay – a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genom. 2013, 14, 690–690. [Google Scholar] [CrossRef]
- Klein, E.A.; Cooperberg, M.R.; Magi-Galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.; Cowan, J.E.; Tsiatis, A.C.; et al. A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and Biopsy Undersampling. Eur. Urol. 2014, 66, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Brand, T.C.; Zhang, N.; Crager, M.R.; Maddala, T.; Dee, A.; Sesterhenn, I.A.; Simko, J.P.; Cooperberg, M.R.; Srivastava, S.; Rosner, I.L.; et al. Patient-specific Meta-analysis of 2 Clinical Validation Studies to Predict Pathologic Outcomes in Prostate Cancer Using the 17-Gene Genomic Prostate Score. Urology 2016, 89, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.W.; Salami, S.S. Biomarkers for prostate cancer detection and risk stratification. Ther. Adv. Urol. 2022, 14. [Google Scholar] [CrossRef]
- Cuzick, J.; Swanson, G.P.; Fisher, G.; Brothman, A.R.; Berney, D.M.; Reid, J.E.; Mesher, D.; Speights, V.O.; Stankiewicz, E.; Foster, C.S.; et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 2011, 12, 245–255. [Google Scholar] [CrossRef]
- Shore, N.D.; Kella, N.; Moran, B.; Boczko, J.; Bianco, F.J.; Crawford, E.D.; Davis, T.; Roundy, K.M.; Rushton, K.; Grier, C.; et al. Impact of the Cell Cycle Progression Test on Physician and Patient Treatment Selection for Localized Prostate Cancer. J. Urol. 2016, 195, 612–618. [Google Scholar] [CrossRef]
- Kaul, S.; Wojno, K.J.; Stone, S.; Evans, B.; Bernhisel, R.; Meek, S.; E D’anna, R.; Ferguson, J.; Glaser, J.; Morgan, T.M.; et al. Clinical Outcomes in Men with Prostate Cancer who Selected Active Surveillance Using a Clinical Cell Cycle Risk Score. Pers. Med. 2019, 16, 491–499. [Google Scholar] [CrossRef]
- Lenz, L.; Clegg, W.; Iliev, D.; Kasten, C.R.; Korman, H.; Morgan, T.M.; Hafron, J.; DeHaan, A.; Olsson, C.; Tutrone, R.F.; et al. Active surveillance selection and 3-year durability in intermediate-risk prostate cancer following genomic testing. Prostate Cancer Prostatic Dis. 2024, 28, 1–8. [Google Scholar] [CrossRef]
- Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP, et al. Development and Clinical Validation of an In Situ Biopsy-Based Multimarker Assay for Risk Stratification in Prostate Cancer. Clinical Cancer Research. 2015;21:2591–600.
- Roidos, C.; Anastasiadis, A.; Tsiakaras, S.; Loutradis, C.; Baniotis, P.; Memmos, D.; Dimitriadis, G.; Papaioannou, M. Integration of Genomic Tests in Prostate Cancer Care: Implications for Clinical Practice and Patient Outcomes. Curr. Issues Mol. Biol. 2024, 46, 14408–14421. [Google Scholar] [CrossRef]
- Tabriz AA, Boyer MJ, Gordon AM, Carpenter DJ, Gingrich JR, Raman SR, et al. Impact of Genomic Classifiers on Risk Stratification and Treatment Intensity in Patients With Localized Prostate Cancer. Ann Intern Med. 2025;178:218–28.
- Foltz, W.D.; Wu, A.; Chung, P.; Catton, C.; Bayley, A.; Milosevic, M.; Bristow, R.; Warde, P.; Simeonov, A.; Jaffray, D.A.; et al. Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer. J. Magn. Reson. Imaging 2013, 37, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Onal, C.; Erbay, G.; Guler, O.C.; Oymak, E. The prognostic value of mean apparent diffusion coefficient measured with diffusion-weighted magnetic resonance image in patients with prostate cancer treated with definitive radiotherapy. Radiother. Oncol. 2022, 173, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Roberts MJ, Morton A, Donato P, Kyle S, Pattison DA, Thomas P, et al. 68Ga-PSMA PET/CT tumour intensity pre-operatively predicts adverse pathological outcomes and progression-free survival in localised prostate cancer. Eur J Nucl Med Mol Imaging. 2021;48:477–82.
- Moradi, F.; Duan, H.; Song, H.; Davidzon, G.A.; Chung, B.I.; Thong, A.E.C.; Loening, A.M.; Ghanouni, P.; Sonn, G.; Iagaru, A. 68Ga-PSMA-11 PET/MRI in Patients with Newly Diagnosed Intermediate- or High-Risk Prostate Adenocarcinoma: PET Findings Correlate with Outcomes After Definitive Treatment. J. Nucl. Med. 2022, 63, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Andela, S.B.; Amthauer, H.; Furth, C.; Rogasch, J.M.; Beck, M.; Mehrhof, F.; Ghadjar, P.; Hoff, J.v.D.; Klatte, T.; Tahbaz, R.; et al. Quantitative PSMA-PET parameters in localized prostate cancer: prognostic and potential predictive value. Radiat. Oncol. 2024, 19, 97. [Google Scholar] [CrossRef]
- D’Amico A, V. Biochemical Outcome After Radical Prostatectomy, External Beam Radiation Therapy, or Interstitial Radiation Therapy for Clinically Localized Prostate Cancer. JAMA. 1998;280:969.
- Thompson, I.; Thrasher, J.B.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; Cookson, M.S.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; et al. Guideline for the Management of Clinically Localized Prostate Cancer: 2007 Update. J. Urol. 2007, 177, 2106–2131. [Google Scholar] [CrossRef]
- Tendulkar, R.D.; Agrawal, S.; Gao, T.; Efstathiou, J.A.; Pisansky, T.M.; Michalski, J.M.; Koontz, B.F.; Hamstra, D.A.; Feng, F.Y.; Liauw, S.L.; et al. Contemporary Update of a Multi-Institutional Predictive Nomogram for Salvage Radiotherapy After Radical Prostatectomy. J. Clin. Oncol. 2016, 34, 3648–3654. [Google Scholar] [CrossRef]
- Markowski, M.C.; Chen, Y.; Feng, Z.; Cullen, J.; Trock, B.J.; Suzman, D.; Antonarakis, E.S.; Paller, C.J.; Rosner, I.; Han, M.; et al. PSA Doubling Time and Absolute PSA Predict Metastasis-free Survival in Men With Biochemically Recurrent Prostate Cancer After Radical Prostatectomy. Clin. Genitourin. Cancer 2019, 17, 470–475.e1. [Google Scholar] [CrossRef]
- Stephenson, A.J.; Scardino, P.T.; Kattan, M.W.; Pisansky, T.M.; Slawin, K.M.; Klein, E.A.; Anscher, M.S.; Michalski, J.M.; Sandler, H.M.; Lin, D.W.; et al. Predicting the Outcome of Salvage Radiation Therapy for Recurrent Prostate Cancer After Radical Prostatectomy. J. Clin. Oncol. 2007, 25, 2035–2041. [Google Scholar] [CrossRef]
- Broeck, T.V.D.; Bergh, R.C.v.D.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Scharl, S.; Gartner, L.; Böhmer, D.H.G.; Siegmann, A.; Thamm, R.; Krafcsik, M.; Mayer, B.; Zips, D.; Ruf, C.; Wiegel, T. Undetectable PSA predicts outcome after salvage radiotherapy for biochemical recurrence following radical prostatectomy. Radiother. Oncol. 2024, 200, 110476. [Google Scholar] [CrossRef]
- Wenzel, M.; Dariane, C.; Saad, F.; Karakiewicz, P.I.; Mandel, P.; Chun, F.K.; Tilki, D.; Graefen, M.; Delouya, G.; Taussky, D.; et al. The impact of time to prostate specific antigen nadir on biochemical recurrence and mortality rates after radiation therapy for localized prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2022, 40, 57.e15–57.e23. [Google Scholar] [CrossRef]
- Brajtbord, J.S.; Leapman, M.S.; Cooperberg, M.R. The CAPRA Score at 10 Years: Contemporary Perspectives and Analysis of Supporting Studies. Eur. Urol. 2017, 71, 705–709. [Google Scholar] [CrossRef]
- Otani, K.; Konieczkowski, D.J.; Drumm, M.; Otani, Y.; Wu, S.; Davicioni, E.; Saylor, P.J.; Wu, C.-L.; Efstathiou, J.A.; Miyamoto, D.T. Impact of AR-V7 and other androgen receptor splice variant expression on outcomes of post-prostatectomy salvage therapy. J. Clin. Oncol. 2022, 40, 274–274. [Google Scholar] [CrossRef]
- Hutten, R.J.; Odei, B.; Johnson, S.B.; Tward, J.D. Validation of the Combined Clinical Cell-Cycle Risk Score to Prognosticate Early Prostate Cancer Metastasis From Biopsy Specimens and Comparison With Other Routinely Used Risk Classifiers. JCO Precis. Oncol. 2024, 8, e2300364. [Google Scholar] [CrossRef]
- Tward, J.D.; Lenz, L.; Gutin, A.; Clegg, W.; Kasten, C.R.; Finch, R.; Cohen, T.; Michalski, J.; Kishan, A.U. Using the Cell-Cycle Risk Score to Predict the Benefit of Androgen-Deprivation Therapy Added to Radiation Therapy in Patients With Newly Diagnosed Prostate Cancer. JCO Precis. Oncol. 2024, 8, e2300722. [Google Scholar] [CrossRef]
- Cui, F.; Tang, X.; Man, C.; Fan, Y. Prognostic value of 17-Gene genomic prostate score in patients with clinically localized prostate cancer: a meta-analysis. BMC Cancer 2024, 24, 628. [Google Scholar] [CrossRef]
- Janes, J.L.; Boyer, M.J.; Bennett, J.P.; Thomas, V.M.; De Hoedt, A.M.; V, D.K.E.; Singla, P.K.; Abran, J.M.; Aboushwareb, T.; Salama, J.K.; et al. The 17-Gene Genomic Prostate Score Test Is Prognostic for Outcomes After Primary External Beam Radiation Therapy in Men With Clinically Localized Prostate Cancer. Int. J. Radiat. Oncol. 2023, 115, 120–131. [Google Scholar] [CrossRef]
- Feng, F.Y.; Huang, H.-C.; Spratt, D.E.; Zhao, S. (.; Sandler, H.M.; Simko, J.P.; Davicioni, E.; Nguyen, P.L.; Pollack, A.; Efstathiou, J.A.; et al. Validation of a 22-Gene Genomic Classifier in Patients With Recurrent Prostate Cancer. JAMA Oncol. 2021, 7, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Liu, V.Y.; Michalski, J.; Davicioni, E.; Berlin, A.; Simko, J.P.; Efstathiou, J.A.; Tran, P.T.; Sandler, H.M.; Hall, W.A.; et al. Genomic Classifier Performance in Intermediate-Risk Prostate Cancer: Results From NRG Oncology/RTOG 0126 Randomized Phase 3 Trial. Int. J. Radiat. Oncol. 2023, 117, 370–377. [Google Scholar] [CrossRef]
- Spratt, D.E.; Tang, S.; Sun, Y.; Huang, H.-C.; Chen, E.; Mohamad, O.; Armstrong, A.J.; Tward, J.D.; Nguyen, P.L.; Lang, J.M.; et al. Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer. NEJM Évid. 2023, 2. [Google Scholar] [CrossRef]
- Dal Pra A, Ghadjar P, Ryu HM, Proudfoot JA, Hayoz S, Michalski JM, et al. Predicting dose response to prostate cancer radiotherapy: validation of a radiation signature in the randomized phase III NRG/RTOG 0126 and SAKK 09/10 trials. Annals of Oncology. 2025;36:572–82.
- Shore, N.D.; Moul, J.W.; Pienta, K.J.; Czernin, J.; King, M.T.; Freedland, S.J. Biochemical recurrence in patients with prostate cancer after primary definitive therapy: treatment based on risk stratification. Prostate Cancer Prostatic Dis. 2023, 27, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Gore, J.L.; du Plessis, M.; Zhang, J.; Dai, D.; Thompson, D.J.; Karsh, L.; Lane, B.; Franks, M.; Chen, D.Y.; Bianco, F.J.; et al. Clinical Utility of a Genomic Classifier in Men Undergoing Radical Prostatectomy: The PRO-IMPACT Trial. Pr. Radiat. Oncol. 2020, 10, e82–e90. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.M.; Daignault-Newton, S.; Spratt, D.E.; Dunn, R.L.; Singhal, U.; Okoth, L.A.; Feng, F.Y.; Johnson, A.M.; Lane, B.R.; Linsell, S.; et al. Impact of Gene Expression Classifier Testing on Adjuvant Treatment Following Radical Prostatectomy: The G-MINOR Prospective Randomized Cluster-crossover Trial. Eur. Urol. 2025, 87, 228–237. [Google Scholar] [CrossRef]
- Pollack, A.; Johnson, M.; Proudfoot, J.; Davicioni, E.; Pra, A.D.; Simko, J.; Martin, A.-G.; Lukka, H.; Angyalfi, S.; Michalski, J.M.; et al. Decipher score as a predictor of response to treatment intensification in the NRG Oncology-RTOG 0534 (SPPORT) phase III randomized post-prostatectomy salvage radiotherapy trial. J. Clin. Oncol. 2025, 43, 399–399. [Google Scholar] [CrossRef]
- Bitting, R.L.; Wu, Y.; Somarelli, J.A.; Proudfoot, J.A.; Liu, Y.; Davicioni, E.; George, D.J.; Armstrong, A.J. Transcriptomic Signatures Associated With Outcomes in Recurrent Prostate Cancer Treated With Salvage Radiation, Androgen-Deprivation Therapy, and Enzalutamide: Correlative Analysis of the STREAM Trial. JCO Precis. Oncol. 2023, 7, e2300214. [Google Scholar] [CrossRef]
- Coradduzza, D.; Solinas, T.; Balzano, F.; Culeddu, N.; Rossi, N.; Cruciani, S.; Azara, E.; Maioli, M.; Zinellu, A.; De Miglio, M.R.; et al. miRNAs as Molecular Biomarkers for Prostate Cancer. J. Mol. Diagn. 2022, 24, 1171–1180. [Google Scholar] [CrossRef]
- Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2021;1876:188570.
- Endzeliņš, E.; Berger, A.; Melne, V.; Bajo-Santos, C.; Soboļevska, K.; Ābols, A.; Rodriguez, M.; Šantare, D.; Rudņickiha, A.; Lietuvietis, V.; et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 2017, 17, 730. [Google Scholar] [CrossRef]
- Clayton, A.; Mitchell, J.P.; Court, J.; Linnane, S.; Mason, M.D.; Tabi, Z. Human Tumor-Derived Exosomes Down-Modulate NKG2D Expression. J. Immunol. 2008, 180, 7249–7258. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, X.-. -X.; Fu, H.; Tang, Y.-.-C.; Meng, B.-.-Q.; Chen, C.-.-H. Early diagnostic role of PSA combined miR-155 detection in prostate cancer. 2018, 22, 1615–1621.
- Wani, S.; Kaul, D.; Mavuduru, R.; Kakkar, N.; Bhatia, A. Urinary-exosomal miR-2909: A novel pathognomonic trait of prostate cancer severity. J. Biotechnol. 2017, 259, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Valbuena, G.N.; Curry, E.; Bevan, C.L.; Keun, H.C. MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br. J. Cancer 2022, 126, 502–513. [Google Scholar] [CrossRef]
- Fujita, Y.; Kojima, K.; Ohhashi, R.; Hamada, N.; Nozawa, Y.; Kitamoto, A.; Sato, A.; Kondo, S.; Kojima, T.; Deguchi, T.; et al. MiR-148a Attenuates Paclitaxel Resistance of Hormone-refractory, Drug-resistant Prostate Cancer PC3 Cells by Regulating MSK1 Expression. J. Biol. Chem. 2010, 285, 19076–19084. [Google Scholar] [CrossRef]
- Huang, S.; Zou, C.; Tang, Y.; Wa, Q.; Peng, X.; Chen, X.; Yang, C.; Ren, D.; Huang, Y.; Liao, Z.; et al. miR-582-3p and miR-582-5p Suppress Prostate Cancer Metastasis to Bone by Repressing TGF-β Signaling. Mol. Ther. - Nucleic Acids 2019, 16, 91–104. [Google Scholar] [CrossRef]
- Elimam, H.; Zaki, M.B.; Abd-Elmawla, M.A.; Darwish, H.A.; Hatawsh, A.; Aborehab, N.M.; Mageed, S.S.A.; Moussa, R.; Mohammed, O.A.; Abdel-Reheim, M.A.; et al. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. Naunyn-Schmiedeberg's Arch. Pharmacol. 2025, 398, 6349–6368. [Google Scholar] [CrossRef]
- Wang, F.; Ren, S.; Chen, R.; Lu, J.; Shi, X.; Zhu, Y.; Zhang, W.; Jing, T.; Zhang, C.; Shen, J.; et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget 2014, 5, 11091–11102. [Google Scholar] [CrossRef]
- Ren, S.; Liu, Y.; Xu, W.; Sun, Y.; Lu, J.; Wang, F.; Wei, M.; Shen, J.; Hou, J.; Gao, X.; et al. Long Noncoding RNA MALAT-1 is a New Potential Therapeutic Target for Castration Resistant Prostate Cancer. J. Urol. 2013, 190, 2278–2287. [Google Scholar] [CrossRef]
- Yang, G.; Li, T.; Liu, J.; Quan, Z.; Liu, M.; Guo, Y.; Wu, Y.; Ou, L.; Wu, X.; Zheng, Y. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics 2023, 115, 110599. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Mudd, A.; Gu, X. LncRNA PVT1 predicts prognosis and regulates tumor growth in prostate cancer. Biosci. Biotechnol. Biochem. 2017, 81, 2301–2306. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, Q.; Lv, C.; Wang, M.; Jiao, Y.; Wang, C. PVT1 Expression Is a Predictor for Poor Survival of Prostate Cancer Patients. Technol. Cancer Res. Treat. 2021, 20, 1533033820971610. [Google Scholar] [CrossRef] [PubMed]
- Li S, Ruan X, Liu T. PCAT-1 Expression is Associated With The Prognosis in Prostate Cancer. 2020.
- Zhang, S.; Dong, X.; Ji, T.; Chen, G.; Shan, L. Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am J Transl Res. 2017;9:366–75.
- Su, W.; Xu, M.; Chen, X.; Chen, N.; Gong, J.; Nie, L.; Li, L.; Li, X.; Zhang, M.; Zhou, Q. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol. Cancer 2017, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Liu, J.; Xu, Z.; Ye, M.; Li, J.; Birková, A. lncRNA PCAT14 Is a Diagnostic Marker for Prostate Cancer and Is Associated with Immune Cell Infiltration. Dis. Markers 2021, 2021, 9494619. [Google Scholar] [CrossRef] [PubMed]
- Allemailem KS, Almatroudi A, Alrumaihi F, Makki Almansour N, Aldakheel FM, Rather RA, et al. Single nucleotide polymorphisms (SNPs) in prostate cancer: its implications in diagnostics and therapeutics. Am J Transl Res. 2021;13:3868–89.
- A Eeles, R.; The UK ProtecT Study Collaborators; The PRACTICAL Consortium; Kote-Jarai, Z.; Al Olama, A.A.; Giles, G.G.; Guy, M.; Severi, G.; Muir, K.; et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet. 2009, 41, 1116–1121. [CrossRef]
- Han P-Z, Cao D-H, Zhang X-L, Ren Z-J, Wei Q. Association between TP53 gene codon72 polymorphism and prostate cancer risk: A systematic review and meta-analysis. Medicine. 2019;98:e16135.
- Chang, H.-H.; Lee, C.-H.; Chen, Y.-T.; Huang, C.-Y.; Yu, C.-C.; Lin, V.C.; Geng, J.-H.; Lu, T.-L.; Huang, S.-P.; Bao, B.-Y. Genetic Analysis Reveals the Prognostic Significance of the DNA Mismatch Repair Gene MSH2 in Advanced Prostate Cancer. Cancers 2022, 14, 223. [Google Scholar] [CrossRef]
- Lee, C.-H.; Pao, J.-B.; Lu, T.-L.; Lee, H.-Z.; Lee, Y.-C.; Liu, C.-C.; Huang, C.-Y.; Lin, V.C.; Yu, C.-C.; Yin, H.-L.; et al. Prognostic Value of Prostaglandin-endoperoxide Synthase 2 Polymorphisms in Prostate Cancer Recurrence after Radical Prostatectomy. Int. J. Med Sci. 2016, 13, 696–700. [Google Scholar] [CrossRef]
- Dupont, W.D.; Breyer, J.P.; Plummer, W.D.; Chang, S.S.; Cookson, M.S.; Smith, J.A.; University of Washington Center for Mendelian Genomics; Blue, E.E.; Bamshad, M.J.; Chong, J.; et al. 8q24 genetic variation and comprehensive haplotypes altering familial risk of prostate cancer. Nat. Commun. 2020, 11, 1523. [CrossRef]
- Golombos, D.M.; Ayangbesan, A.; O'MAlley, P.; Lewicki, P.; Barlow, L.; Barbieri, C.E.; Chan, C.; DuLong, C.; Abu-Ali, G.; Huttenhower, C.; et al. The Role of Gut Microbiome in the Pathogenesis of Prostate Cancer: A Prospective, Pilot Study. Urology 2018, 111, 122–128. [Google Scholar] [CrossRef]
- Li, K.; Wang, Q.; Tang, X.; Akakuru, O.U.; Li, R.; Wang, Y.; Zhang, R.; Jiang, Z.; Yang, Z. Advances in Prostate Cancer Biomarkers and Probes. Cyborg and Bionic Systems 2024, 5. [Google Scholar] [CrossRef]
- Wu L, Wang J, Cai Q, Cavazos TB, Emami NC, Long J, et al. Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in Over 140,000 European Descendants. Cancer Res. 2019;79:3192–204.
- Dahiya, V.; Hans, S.; Kumari, R.; Bagchi, G. Prostate cancer biomarkers: from early diagnosis to precision treatment. Clin. Transl. Oncol. 2024, 26, 2444–2456. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, J.P.; Salta, S.; Freitas, R.; López-López, R.; Díaz-Lagares, Á.; Henrique, R.; Jerónimo, C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers 2024, 16, 1363. [Google Scholar] [CrossRef]
- Ferro M, Buonerba C, Terracciano D, Lucarelli G, Cosimato V, Bottero D, et al. Biomarkers in localized prostate cancer. Future Oncol. 2016;12:399–411.
- Verbeek, J.F.; Bangma, C.H.; Kweldam, C.F.; van der Kwast, T.H.; Kümmerlin, I.P.; van Leenders, G.J.; Roobol, M.J. Reducing unnecessary biopsies while detecting clinically significant prostate cancer including cribriform growth with the ERSPC Rotterdam risk calculator and 4Kscore. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 138–144. [Google Scholar] [CrossRef]
- Voigt, J.D.; Dong, Y.; Linder, V.; Zappala, S. Use of the 4Kscore test to predict the risk of aggressive prostate cancer prior to prostate biopsy: Overall cost savings and improved quality of care to the us healthcare system. Rev Urol. 2017, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Welsch, E.; Bonstingl, L.; Holzer, B.; Schuster, E.; Weiß, E.; Zaharie, A.-T.; Krainer, M.; Fischer, M.B.; El-Heliebi, A.; Zeillinger, R.; et al. Multi-marker analysis of circulating tumor cells in localized intermediate/high-risk and metastatic prostate cancer. Clin. Exp. Metastasis 2024, 41, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Broncy, L.; Paterlini-Bréchot, P. Clinical Impact of Circulating Tumor Cells in Patients with Localized Prostate Cancer. Cells 2019, 8, 676. [Google Scholar] [CrossRef]
- Velmurugan, P.; Mohanavel, V.; Shrestha, A.; Sivakumar, S.; Oyouni, A.A.A.; Al-Amer, O.M.; Alzahrani, O.R.; Alasseiri, M.I.; Hamadi, A.; Alalawy, A.I. Developing a Multimodal Model for Detecting Higher-Grade Prostate Cancer Using Biomarkers and Risk Factors. BioMed Res. Int. 2022, 2022, 9223400. [Google Scholar] [CrossRef]
- Bjartell A, Krzyzanowska A, Liu VYT, Tierney M, Royce TJ, Sjöström M, et al. Validation of a Digital Pathology–Based Multimodal Artificial Intelligence Biomarker in a Prospective, Real-World Prostate Cancer Cohort Treated with Prostatectomy. Clinical Cancer Research. 2025;31:1546–53.
- Ou, W.; Zhang, X.-X.; Li, B.; Tuo, Y.; Lin, R.-X.; Liu, P.-F.; Guo, J.-P.; Un, H.-C.; Li, M.-H.; Lei, J.-H.; et al. Integrated proteogenomic characterization of localized prostate cancer identifies biological insights and subtype-specific therapeutic strategies. Nat. Commun. 2025, 16, 3189. [Google Scholar] [CrossRef]
- Fridhammar, A.; Frisell, O.; Wahlberg, K.; Berglund, E.; Röbeck, P.; Persson, S. Prognostic Testing for Prostate Cancer—A Cost-Effectiveness Analysis Comparing a Prostatype P-Score Biomarker Approach to Standard Clinical Practice. PharmacoEconomics 2025, 43, 509–520. [Google Scholar] [CrossRef]
- McLeod, O.D.; Palsdottir, T.; Walz, J.; Tilki, D.; Briganti, A.; Stabile, A.; Vigmostad, M.N.; Mortezavi, A.; Elyan, A.; Dudderidge, T.; et al. Cost Analysis of Prostate Cancer Care Using a Biomarker-enhanced Diagnostic Strategy with Stockholm3. Eur. Urol. Open Sci. 2024, 66, 26–32. [Google Scholar] [CrossRef]
- Keeney, E.; Thom, H.; Turner, E.; Martin, R.M.; Morley, J.; Sanghera, S. Systematic Review of Cost-Effectiveness Models in Prostate Cancer: Exploring New Developments in Testing and Diagnosis. Value Heal. 2022, 25, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Kedves, A.; Akay, M.; Akay, Y.; Kisiván, K.; Glavák, C.; Miovecz, Á.; Schiffer, Á.; Kisander, Z.; Lőrincz, A.; Szőke, A.; et al. Predictive value of magnetic resonance imaging diffusion parameters using artificial intelligence in low-and intermediate-risk prostate cancer patients treated with stereotactic ablative radiotherapy: A pilot study. Radiography 2024, 30, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, E.; Esengur, O.T.; Zhang, H.; Simon, B.D.; Harmon, S.A.; Turkbey, B. An overview of utilizing artificial intelligence in localized prostate cancer imaging. Expert Rev. Med Devices 2025, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, L.; Liu, J.; Wang, L. Artificial intelligence-based personalized clinical decision-making for patients with localized prostate cancer: surgery versus radiotherapy. Oncologist 2024, 29, e1692–e1700. [Google Scholar] [CrossRef]
- Riaz I Bin, Harmon S, Chen Z, Naqvi SAA, Cheng L. Applications of Artificial Intelligence in Prostate Cancer Care: A Path to Enhanced Efficiency and Outcomes. Am Soc Clin Oncol Educ Book. 2024;44:e438516.
- Rodler, S.; Kopliku, R.; Ulrich, D.; Kaltenhauser, A.; Casuscelli, J.; Eismann, L.; Waidelich, R.; Buchner, A.; Butz, A.; Cacciamani, G.E.; et al. Patients’ Trust in Artificial Intelligence–based Decision-making for Localized Prostate Cancer: Results from a Prospective Trial. Eur. Urol. Focus 2024, 10, 654–661. [Google Scholar] [CrossRef]
- Diaz, G.M.; Palencia, P.S.; Leapman, M.S. Delivering on the Promise of Precision Oncology in Prostate Cancer: Prediagnostic Strategies, Postdiagnostic Applications, and Future Directions. A Narrative Review. J. Urol. Oncol. 2025, 23, 4–13. [Google Scholar] [CrossRef]
- Stewart, G.D.; Van Neste, L.; Delvenne, P.; Delrée, P.; Delga, A.; McNeill, S.A.; O'DOnnell, M.; Clark, J.; Van Criekinge, W.; Bigley, J.; et al. Clinical Utility of an Epigenetic Assay to Detect Occult Prostate Cancer in Histopathologically Negative Biopsies: Results of the MATLOC Study. J. Urol. 2013, 189, 1110–1116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
