Submitted:
17 June 2025
Posted:
18 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Cell Culture
Viral Material
Imaging Flow Cytometry
Statictical Analysis
3. Results
3.1. Oligonucleotide Design
3.2. Study of Antiretroviral Activity
3.3. Study of Oligonucleotide Internalization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menéndez-Arias, L.; Delgado, R. Update and Latest Advances in Antiretroviral Therapy. Trends in Pharmacological Sciences 2022, 43, 16–29. [CrossRef]
- Vanhamel, J.; Bruggemans, A.; Debyser, Z. Establishment of Latent HIV-1 Reservoirs: What Do We Really Know? Journal of Virus Eradication 2019, 5, 3–9. [CrossRef]
- Dufour, C.; Gantner, P.; Fromentin, R.; Chomont, N. The Multifaceted Nature of HIV Latency. Journal of Clinical Investigation 2020, 130, 3381–3390. [CrossRef]
- Bertagnolio, S.; Hermans, L.; Jordan, M.R.; Avila-Rios, S.; Iwuji, C.; Derache, A.; Delaporte, E.; Wensing, A.; Aves, T.; Borhan, A.S.M.; et al. Clinical Impact of Pretreatment Human Immunodeficiency Virus Drug Resistance in People Initiating Nonnucleoside Reverse Transcriptase Inhibitor–Containing Antiretroviral Therapy: A Systematic Review and Meta-Analysis. The Journal of Infectious Diseases 2021, 224, 377–388. [CrossRef]
- Zurbachew, Y.; Hiko, D.; Bacha, G.; Merga, H. Adolescent’s and Youth’s Adherence to Antiretroviral Therapy for Better Treatment Outcome and Its Determinants: Multi-Center Study in Public Health Facilities. AIDS Res Ther 2023, 20, 91. [CrossRef]
- Sitanggang, H.D.; Wahyono, T.Y.M.; Ayu, I.M. Effect of Non-Adherence to ARV Therapy on 3-Year Life of HIV/AIDS Patients: A Cohort Retrospective Study. RIK 2023, 12, 1. [CrossRef]
- González, V.; Martín, M.; Fernández, G.; García-Sacristán, A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals 2016, 9, 78. [CrossRef]
- Perrone, R.; Butovskaya, E.; Lago, S.; Garzino-Demo, A.; Pannecouque, C.; Palù, G.; Richter, S.N. The G-Quadruplex-Forming Aptamer AS1411 Potently Inhibits HIV-1 Attachment to the Host Cell. International Journal of Antimicrobial Agents 2016, 47, 311–316. [CrossRef]
- Xun, J.; Zhang, X.; Guo, S.; Lu, H.; Chen, J. Editing out HIV: Application of Gene Editing Technology to Achieve Functional Cure. Retrovirology 2021, 18, 39. [CrossRef]
- Del Corpo, O.; Goguen, R.P.; Malard, C.M.G.; Daher, A.; Colby-Germinario, S.; Scarborough, R.J.; Gatignol, A. A U1i RNA That Enhances HIV-1 RNA Splicing with an Elongated Recognition Domain Is an Optimal Candidate for Combination HIV-1 Gene Therapy. Molecular Therapy Nucleic Acids 2019, 18, 815–830. [CrossRef]
- Virgilio, A.; Esposito, V.; Tassinari, M.; Nadai, M.; Richter, S.N.; Galeone, A. Novel Monomolecular Derivatives of the Anti-HIV-1 G-Quadruplex-Forming Hotoda’s Aptamer Containing Inversion of Polarity Sites. European Journal of Medicinal Chemistry 2020, 208, 112786. [CrossRef]
- Ceña-Diez, R.; Singh, K.; Spetz, A.-L.; Sönnerborg, A. Novel Naturally Occurring Dipeptides and Single-Stranded Oligonucleotide Act as Entry Inhibitors and Exhibit a Strong Synergistic Anti-HIV-1 Profile. Infect Dis Ther 2022, 11, 1103–1116. [CrossRef]
- Gheibi-Hayat, S.M.; Jamialahmadi, K. Antisense Oligonucleotide (AS-ODN) Technology: Principle, Mechanism and Challenges. Biotech and App Biochem 2021, 68, 1086–1094. [CrossRef]
- Shen, W.; De Hoyos, C.L.; Migawa, M.T.; Vickers, T.A.; Sun, H.; Low, A.; Bell, T.A.; Rahdar, M.; Mukhopadhyay, S.; Hart, C.E.; et al. Chemical Modification of PS-ASO Therapeutics Reduces Cellular Protein-Binding and Improves the Therapeutic Index. Nat Biotechnol 2019, 37, 640–650. [CrossRef]
- Hatta, T.; Kim, S.-G.; Nakashima, H.; Yamamoto, N.; Sakamoto, K.; Yokoyama, S.; Takaku, H. Mechanisms of the Inhibition of Reverse Transcription by Unmodified and Modified Antisense Oligonucleotides. FEBS Letters 1993, 330, 161–164. [CrossRef]
- Jakobsen, M.R.; Haasnoot, J.; Wengel, J.; Berkhout, B.; Kjems, J. Efficient Inhibition of HIV-1 Expression by LNA Modified Antisense Oligonucleotides and DNAzymes Targeted to Functionally Selected Binding Sites. Retrovirology 2007, 4, 29. [CrossRef]
- Shadid, M.; Badawi, M.; Abulrob, A. Antisense Oligonucleotides: Absorption, Distribution, Metabolism, and Excretion. Expert Opinion on Drug Metabolism & Toxicology 2021, 17, 1281–1292. [CrossRef]
- Crooke, S.T.; Seth, P.P.; Vickers, T.A.; Liang, X. The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. J. Am. Chem. Soc. 2020, 142, 14754–14771. [CrossRef]
- Crooke, S.T.; Vickers, T.A.; Liang, X. Phosphorothioate Modified Oligonucleotide–Protein Interactions. Nucleic Acids Research 2020, 48, 5235–5253. [CrossRef]
- Hagedorn, P.H.; Persson, R.; Funder, E.D.; Albæk, N.; Diemer, S.L.; Hansen, D.J.; Møller, M.R.; Papargyri, N.; Christiansen, H.; Hansen, B.R.; et al. Locked Nucleic Acid: Modality, Diversity, and Drug Discovery. Drug Discovery Today 2018, 23, 101–114. [CrossRef]
- Stincarelli, M.A.; Rocca, A.; Antonelli, A.; Rossolini, G.M.; Giannecchini, S. Antiviral Activity of Oligonucleotides Targeting the SARS-CoV-2 Genomic RNA Stem-Loop Sequences within the 3′-End of the ORF1b. Pathogens 2022, 11, 1286. [CrossRef]
- Hagey, R.J.; Elazar, M.; Pham, E.A.; Tian, S.; Ben-Avi, L.; Bernardin-Souibgui, C.; Yee, M.F.; Moreira, F.R.; Rabinovitch, M.V.; Meganck, R.M.; et al. Programmable Antivirals Targeting Critical Conserved Viral RNA Secondary Structures from Influenza A Virus and SARS-CoV-2. Nat Med 2022, 28, 1944–1955. [CrossRef]
- Dowerah, D.; V. N. Uppuladinne, M.; Sarma, P.J.; Biswakarma, N.; Sonavane, U.B.; Joshi, R.R.; Ray, S.K.; Namsa, N.D.; Deka, R.Ch. Design of LNA Analogues Using a Combined Density Functional Theory and Molecular Dynamics Approach for RNA Therapeutics. ACS Omega 2023, 8, 22382–22405. [CrossRef]
- Hillebrand, F.; Ostermann, P.N.; Müller, L.; Degrandi, D.; Erkelenz, S.; Widera, M.; Pfeffer, K.; Schaal, H. Gymnotic Delivery of LNA Mixmers Targeting Viral SREs Induces HIV-1 mRNA Degradation. IJMS 2019, 20, 1088. [CrossRef]
- Riera-Tur, I.; Hinterdobler, J.; Maaske, A.; Sadewasser, A.; Schell, M.; Sekar, J.; Michel, S.; Klar, R.; Jaschinski, F. Characterization of the TLR9-Activating Potential of LNA-Modified Antisense Oligonucleotides. Nucleic Acid Therapeutics 2024, 34, 257–271. [CrossRef]
- Kirichenko, A.; Lapovok, I.; Baryshev, P.; Van De Vijver, D.A.M.C.; Van Kampen, J.J.A.; Boucher, C.A.B.; Paraskevis, D.; Kireev, D. Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs. Viruses 2020, 12, 838. [CrossRef]
- Reed, L.J.; Muench, H. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. American Journal of Epidemiology 1938, 27, 493–497. [CrossRef]
- Crooke, S.T.; Wang, S.; Vickers, T.A.; Shen, W.; Liang, X. Cellular Uptake and Trafficking of Antisense Oligonucleotides. Nat Biotechnol 2017, 35, 230–237. [CrossRef]
- Takahashi, M.; Li, H.; Zhou, J.; Chomchan, P.; Aishwarya, V.; Damha, M.J.; Rossi, J.J. Dual Mechanisms of Action of Self-Delivering, Anti-HIV-1 FANA Oligonucleotides as a Potential New Approach to HIV Therapy. Molecular Therapy - Nucleic Acids 2019, 17, 615–625. [CrossRef]
- Juliano, R.L. The Delivery of Therapeutic Oligonucleotides. Nucleic Acids Res 2016, 44, 6518–6548. [CrossRef]
- Zhou, J.; Satheesan, S.; Li, H.; Weinberg, M.S.; Morris, K.V.; Burnett, J.C.; Rossi, J.J. Cell-Specific RNA Aptamer against Human CCR5 Specifically Targets HIV-1 Susceptible Cells and Inhibits HIV-1 Infectivity. Chemistry & Biology 2015, 22, 379–390. [CrossRef]
- Vranic, S.; Boggetto, N.; Contremoulins, V.; Mornet, S.; Reinhardt, N.; Marano, F.; Baeza-Squiban, A.; Boland, S. Deciphering the Mechanisms of Cellular Uptake of Engineered Nanoparticles by Accurate Evaluation of Internalization Using Imaging Flow Cytometry. Part Fibre Toxicol 2013, 10, 2. [CrossRef]
- Phanse, Y.; Ramer-Tait, A.E.; Friend, S.L.; Carrillo-Conde, B.; Lueth, P.; Oster, C.J.; Phillips, G.J.; Narasimhan, B.; Wannemuehler, M.J.; Bellaire, B.H. Analyzing Cellular Internalization of Nanoparticles and Bacteria by Multi-Spectral Imaging Flow Cytometry. JoVE 2012, 3884. [CrossRef]
- Koshkin, A.A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V.K.; Singh, S.K.; Wengel, J. LNA (Locked Nucleic Acid): An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes. J. Am. Chem. Soc. 1998, 120, 13252–13253. [CrossRef]
- Vaillant, A.; Juteau, J.-M.; Lu, H.; Liu, S.; Lackman-Smith, C.; Ptak, R.; Jiang, S. Phosphorothioate Oligonucleotides Inhibit Human Immunodeficiency Virus Type 1 Fusion by Blocking Gp41 Core Formation. Antimicrob Agents Chemother 2006, 50, 1393–1401. [CrossRef]
- Ushijima, K.; Shirakawa, M.; Kagoshima, K.; Park, W.-S.; Miyano-Kurosaki, N.; Takaku, H. Anti-HIV-1 Activity of an Antisense Phosphorothioate Oligonucleotide Bearing Imidazole and Primary Amine Groups. Bioorganic & Medicinal Chemistry 2001, 9, 2165–2169. [CrossRef]
- Ivanova, G.; Arzumanov, A.; Gait, M.J.; Reigadas, S.; Toulmé, J.-J.; Andreola, M.-L.; Ittig, D.; Leumann, C. Comparative Studies of Tricyclo-DNA- and LNA-Containing Oligonucleotides as Inhibitors of HIV-1 Gene Expression. Nucleosides, Nucleotides and Nucleic Acids 2007, 26, 747–750. [CrossRef]
- Pedersen, E.B.; Nielsen, J.T.; Nielsen, C.; Filichev, V.V. Enhanced Anti-HIV-1 Activity of G-Quadruplexes Comprising Locked Nucleic Acids and Intercalating Nucleic Acids. Nucleic Acids Research 2011, 39, 2470–2481. [CrossRef]






| Oligonucleotide | Sequence (5′–3′) |
|---|---|
| Oligonucleotide derivatives targeting a conserved region of the HIV-1 genome in the primer-binding site region | |
| PbS | GSTSCSCSCSTSGSTSTSCSGSGSGSCSGSCSCSASCST |
| PbS_3′-LNA | GSTSCSCSCSTSGSTSTSCSGSGSGSCSGLCLCLALCLT |
| PbS_5′-LNA | LGLTLCLCLCTSGSTSTSCSGSGSGSCSGSCSCSASCST |
| PbS_5′/3′-LNA | LGLTLCLCLCTSGSTSTSCSGSGSGSCSGLCLCLALCLT |
| Oligonucleotide derivatives targeting a conserved region encoding HIV-1 integrase | |
| Int | CSTSTSGSASCSTSTSTSGSGSGSGSASTSTSGSTSASGSGSG |
| Int_3′-LNA | CSTSTSGSASCSTSTSTSGSGSGSGSASTSTSGLTLALGLGLG |
| Int_5′-LNA | LCLTLTLGLACSTSTSTSGSGSGSGSASTSTSGSTSASGSGSG |
| Int_5′/3′-LNA | LCLTLTLGLACSTSTSTSGSGSGSGSASTSTSG+T+A+G+G+G |
| Oligonucleotide derivatives targeting a conserved region of the HIV-1 gag gene | |
| Gag | TSCSGSCSASCSCSCSASTSCSTSCSTSCSTSCSCSTST |
| Gag_3′-LNA | TSCSGSCSASCSCSCSASTSCSTSCSTSCLTLCLCLTLT |
| Gag_5′-LNA | LTLCLGLCLACSCSCSASTSCSTSCSTSCSTSCSCSTST |
| Gag_5′/3′-LNA | LTLCLGLCLACSCSCSASTSCSTSCSTSCLTLCLCLTLT |
| Oligonucleotide derivatives used for the investigation of cellular internalization capacity | |
| FAM-Int | [FAM]-CSTSTSGSASCSTSTSTSGSGSGSGSASTSTSGSTSASGSGSG |
| FAM-Int_3′-LNA | [FAM]-CSTSTSGSASCSTSTSTSGSGSGSGSASTSTSGLTLALGLGLG |
| FAM-Int_5′-LNA | [FAM]-LCLTLTLGLACSTSTSTSGSGSGSGSASTSTSGSTSASGSGSG |
| FAM-Int_5′/3′-LNA | [FAM]-LCLTLTLGLACSTSTSTSGSGSGSGSASTSTSG+T+A+G+G+G |
| Oligonucleotide | IC50, μM |
|---|---|
| PbS | 0,45 ± 0,05 |
| PbS_3′-LNA | 3,27 ± 0,14 |
| PbS_5′-LNA | 3,37 ± 0,14 |
| PbS_5′/3′-LNA | 13,98 ± 0,93 |
| Int | 0,09 ± 0,01 |
| Int_3′-LNA | 1,30 ± 0,03 |
| Int_5′-LNA | 1,12 ± 0,03 |
| Int_5′/3′-LNA | 11,75 ± 0,64 |
| Gag | 0,15 ± 0,02 |
| Gag_3′-LNA | 2,34 ± 0,07 |
| Gag_5′-LNA | 2,11 ± 0,07 |
| Gag_5′/3′-LNA | 15,80 ± 0,84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
