Submitted:
16 June 2025
Posted:
17 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Locations and Experimental Management
2.2. Experimental Design, N Management and Data Acquisition
2.3. Low-Altitude Remote Sensing Data, VR-N Calculation and Fertiliser Application Maps
2.4. NUE, Environmental and Economic Assessment
2.5. Statistical Analysis
3. Results
3.1. N Fertilizer Applied and Yield Related Components
3.2. N Efficiency and Financial Assessment
3.3. Environmental Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| UAV | Unmanned aerial vehicle |
| VR-N | Variable-rate nitrogen |
| UR-N | Uniform rate nitrogen |
| NDVI | Normalized difference vegetation index |
| SSNM | Site-specific N management |
| NUE | N use efficiency |
| NPE | N production efficiency |
| WRB | World reference base soil classification system |
| DSM | Digital Surface Model |
| CF | Carbon footprint |
| GPC | Grain protein content |
| TBY | Total above-ground biomass |
| TGW | 1,000 grains weight |
| GY | Grain yield |
| HI | Harvest index |
| NGY | N grain yield |
| AE | Agronomic efficiency |
| PE | Physiological efficiency () |
| RE | Recovery efficiency |
| PFP | Partial factor productivity of applied N |
| VI | Vegetation index |
References
- Martínez-Moreno, F.; Ammar, K.; Solís, I. Global Changes in Cultivated Area and Breeding Activities of Durum Wheat from 1800 to Date: A Historical Review. Agronomy 2022, 12, 1135. [Google Scholar] [CrossRef]
- Grosse-Heilmann, M.; Cristiano, E.; Deidda, R.; Viola, F. Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resour. Environ. Sustain. 2024, 17, 100170. [Google Scholar] [CrossRef]
- Broccanello, C.; Bellin, D.; Dalcorso, G.; Furini, A.; Taranto, F. Genetic approaches to exploit landraces for improvement of triticum turgidum ssp. Durum in the age of climate change. Front Plant Sci. 2023, 14, 1101271. [Google Scholar] [CrossRef]
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum Wheat Breeding in the Mediterranean Region: Current Status and Future Prospects. Agronomy 2020, 10, 432. [Google Scholar] [CrossRef]
- EUROSTAT 2020. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 15 November 2024).
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, Ε.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precision Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Gobbo, S.; Morari, F.; Ferrise, R.; De Antoni Migliorati, M.; Furlan, L. , Sartori, L. Evaluation of different crop model-based approaches for variable rate nitrogen fertilization in winter wheat. Precision Agric. 2022, 23, 1922–1948. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50-year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. In Proceedings of the National Academy of Sciences, United States of America, 13 June 2017. [Google Scholar] [CrossRef]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security: a review. Agron. Sustain Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K. W.; Thomason,W. E; Lukina E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef]
- Basso, B.; Fiorentino, C.; Cammarano, D; Schulthess, U. Variable rate nitrogen fertilizer response in wheat using remote sensing. Precision Agric. 2016, 17, 168–182. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef]
- Van Loon, J.; Speratti, A.B.; Gabarra, L.; Govaerts, B. Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit. Agriculture 2018, 8, 48. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G.; Durand, J.; Louarn, G. 2015. Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In: Sadras, V.O., Calderini, D.F. (Eds.), Crop Physiology: Applications for Genetic Improvement and Agronomy. Elsevier, pp. 161–205.
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. . Agriculture sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Ravier, C.; Jeuffroy, M.H.; Gate, P.; Cohan, J.P.; Meynard, J.M. (2018). Combining user involvement with innovative design to develop a radical new method for managing N fertilization. Nutr Cycl Agroecosyst 2018, 110, 117–134. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Schepers, J.S.; Evangelou, E.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Tsadilas, C.; Tserlikakis, N.; Tsadila, E. Variable-rate application of high spatial resolution can improve cotton N-use efficiency and profitability. Precision Agric. 2019, 21, 695–712. [Google Scholar] [CrossRef]
- Evangelou, E.; Stamatiadis, S.; Schepers, J.; Glambedakis, A.; Glambedakis, M.; Derkas, N.; Tsadilas, C.; Nikoli, T. Evaluation of sensor-based field-scale spatial application of granular N to maize. Precision Agric. 2020, 21, 1008–1026. [Google Scholar] [CrossRef]
- Hausherr Lüder, R.-M.; Qin, R.; Richner, W.; Stamp, P.; Streit, B.; Herrera, J.M.; Noulas, C. Small-Scale Variation in Nitrogen Use Efficiency Parameters in Winter Wheat as Affected by N Fertilization and Tillage Intensity. Sustainability 2020, 12, 3621. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Development 2016, 87, 16–29. [Google Scholar] [CrossRef]
- Ricciardi, V.; Ramankutty, N.; Mehrabi, Z.; Jarvis, L.; Chookolingo, B. (2018). How much of the world’s food do smallholders produce? Glob. Food Secur 2018, 17, 64–72. [Google Scholar] [CrossRef]
- EUROSTAT 2018. Εurostat news release 105/2018 28.06.2018. Available online: https://ec.europa.eu/eurostat/documents/2995521/9028470/5-28062018-AP-EN.pdf/8d97f49b-81c0-4f87-bdde-03fe8c3b8ec2. (accessed on 29 November 2024).
- Montgomery, K.; Henry, J.B.; Vann, M.C.; Whipker, B.E.; Huseth, A.S.; Mitasova, H. Measures of Canopy Structure from Low-Cost UAS for Monitoring Crop Nutrient Status. Drones 2020, 4, 36. [Google Scholar] [CrossRef]
- Argento, F.; Merz, Q.; Perich, G.; Anken, T.; Walter, A.; Liebisch, F. A comparison of proximal and remote optical sensor platforms for N status estimation in winter wheat, Comput. Electron. Agric. 2025, 232, 110110. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens 2017, 39, 5345–5376. [Google Scholar] [CrossRef]
- Bergera, K.; Machwitzc, M.; Kyckod, M.; Kefauvere, S.C.; Van Wittenberghea, S.; Damm, A.; Rascher, U.; Herrmann, I.; Sobejano Paz, V.; Fahrner, S.; Pieruschka, R.; Prikaziuk, E.; Buchaillot, M.L.; Halabuk, A.; Celesti, M.; Koren, G.; Gormus, E.T.; Rossini, M.; Foerster, M.; Siegmann, B.; Abdelbaki, A.; Tagliabue, G.; Hank, T.; Darvishzadeh, R.; Aasen, H.; Garcia, M.; Pôças, I.; Bandopadhyay, S.; Sulis, M.; Tomelleri, E.; Rozenstein, O.; Filchev, L.; Stancile, G.; Schlerf, M. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens. Environ 2022, 280, 113198. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Krienke, B.; Cao, Q.; Zhu, Y.; Cao, W.; Liu, X. In-season variable rate nitrogen recommendation for wheat precision production supported by fixed-wing UAV imagery. Precision Agric. 2022, 23, 830–853. [Google Scholar] [CrossRef]
- Franzen, D.; Kitchen, N.; Holland, K.; Schepers, J.; Raun, W. Algorithms for In-Season Nutrient Management in Cereals. Agron. J. 2016, 108, 1775–1781. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Derivation of a Variable Rate Nitrogen Application Model for In-Season Fertilization of Corn. Agron J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Tsadilas, C.; Samaras, V.; Eskridge, K.; Schepers, J.S. Nitrogen uptake and N-use efficiency of Mediterranean cotton under varied deficit irrigation and N fertilization Eur. J. Agron. 2016, 73, 144–151. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Schepers, J.S.; Evangelou, E.; Tsadilas, C.; Glampedakis, A.; Glampedakis, M.; Derkas, N.; Spyropoulos, N.; Dalezios, N.R.; Eskridge, K. Variable-rate nitrogen fertilization of winter wheat under high spatial resolution. Precision Agric. 2018, 19, 570–587. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- WRB (World Reference Base for Soil Resources). World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; International Union of Soil Sciences; FAO: Rome, Italy, 2015. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis: Part. 1–Physical and Mineralogical Methods; Soil Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties; American Society Agronomy: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Allison, L.E.; Moodie, C.D. Carbonates. In Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties; American Society Agronomy: Madison, WI, USA, 1965; pp. 1389–1396. [Google Scholar]
- Olsen, S.R.; Dean, L.A. Phosphorus. In Methods of Soil Chemical Analysis: Part 2—Chemical and Microbiological Properties; American Society Agronomy: Madison, WI, USA, 1965; pp. 1035–1049. [Google Scholar]
- Bower, C.A.; Wilcox, L.V. Soluble salts. In Methods of Soil Chemical Analysis: Part 2—Chemical and Microbiological Properties; American Society Agronomy: Madison, WI, USA, 1965; pp. 933–951. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties; American Society Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Thomas, G. , WI, USA, 1982; pp. 159–164.cations. In Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties; American Society Agronomy: Madison, WI, USA, 1982; pp. 159–164. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Wear, J. I. (1965). Boron. In Methods of Soil Chemical Analysis (C. A. Black et al., eds.), Part 2, Agronomy 9, ASA, Inc., Madison, Wis., pp. 1059–1063.
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T.; Weber, E.; Zwerger, P. The BBCH system to coding the phenological growth stages of plants–history and publications. Journal für Kulturpflanze 2009, 61, 41–52. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Determination of Total Nitrogen in Plant Material1. Agron. J. 1973, 65, 109–112. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic Forms. In Methods of Soil Analysis, Part 2, 2nd ed.; Agronomy 9; ASA and SSSA: Madison, WI, USA, 1982; p. 643. [Google Scholar]
- Holland, K.H.; Schepers, J.S. (2011). Active-crop sensor calibration using the virtual reference concept. In: Stafford, J.V. (ed.) Precision Agriculture ’11 Proceedings of the 8th European Conference on Precision Agriculture. (pp. 469–479). Czech Centre for Science and Society, Prague, Czech Republic.
- Shu, X.; Wang, Y.; Wang, Y.; Ma, Y.; Men, M.; Zheng, Y.; Xue, C.; Peg, Z.; Noulas, C. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci Rep 2021, 11, 4396. [Google Scholar] [CrossRef]
- Hillier, J.; Walter, C.; Malin, D.; Garcia-Suarez, T.; Mila-i-Canals, L.; Smith, P. A farm-focused calculator for emissions from crop and livestock production. Environ. Model. Softw. 2011, 26, 1070–1078. [Google Scholar] [CrossRef]
- Wang, X. , Y., Dong, R., Guan, Y., & Mulla, D. J. (2019). Evaluating the potential benefits of field specific nitrogen management of spring maize in Northeast China. In Precision agriculture’ 19. Proceedings of the 12th European Conference on Precision Agriculture.; Wageningen Academic Publishers: Wageningen, The Netherlands; pp. 877–882.
- Stahle, L. , Wold S. Analysis of variance (ANOVA). Chemometrics and Intelligent Laboratory Systems 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. , Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Gonzalez, F.; Mcfadyen, A.; Puig, E. 2018. Advances in unmanned aerial systems and payload technologies for precision agriculture. In: Advances in Agricultural Machinery and Technologies. ed.; Chen, G. CRC Press, 2018, pp. 133–155. [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2018, 24, 152–164. [Google Scholar] [CrossRef]
- Reger, M.; Bauerdick, J.; Bernhardt, H. Drones in agriculture: current and future legal status in Germany, the EU, the USA and Japan. Landtechnik 2018, 73, 62–79. [Google Scholar] [CrossRef]
- Holland, K. H.; Schepers, J. S. Use of a virtual-reference concept to interpret active crop canopy sensor data. Precision Agric. 2013, 14, 71–85. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Rong, L.; Duan, X.; Zhang, R.; Li, Y. Effect of soil erosion depth on crop yield based on topsoil removal method: a meta-analysis. Agron. Sustain. Dev. 2021, 41, 1–13. [Google Scholar] [CrossRef]
- Delgado, J.A.; Khosla, R.; Bausch, W.C.; Westfall, D. G.; Inman, D.J. (2005). Nitrogen fertilizer management based on site-specific management zones reduces potential for nitrate leaching. J. Soil Water Conserv. 2005, 60, 402–410. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, A.; Huang, W.; Liu, K.; Liu, L.; Wang, J. Evaluation of variable-rate nitrogen recommendation of winter wheat based on SPAD chlorophyll meter measurement. N. Z. J. Agric. Res. 2007, 50, 735–741. [Google Scholar] [CrossRef]
- Bohman, BJ; Rosen CJ; Mulla, DJ. Impact of variable rate nitrogen and reduced irrigation management on nitrate leaching for potato. J. Environ. Qual. 2020, 49, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Directive 91/676/EEC. Report on the Status of Nitrate Pollution in the Greek Territory (Reference Period 2016 – 2019) (in Greek).
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency, Agric. Ecosyst. Environ. 2014, 189, 136–144. [CrossRef]
- Moll, RH.; Kamprath, EJ. ; Jackson, WA Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A. K.; Muench, D. G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Hawkesford, J.M. Genetic variation in traits for nitrogen use efficiency in wheat. J. Exp. Botany. 2017, 10, 2627–2632. [Google Scholar] [CrossRef]
- Crop Science Society of America, Glossary of Crop Science Terms, 1992, Madison.
- Huggins, D.R.; Pan, W.L. Nitrogen efficiency component analysis: an evaluation of cropping system differences in productivity. Agron J. 1993, 85, 898–905. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency–measurement and management. In: Fertilizer best management practices general principles, strategy for their adoption and voluntary initiatives vs regulations. International Fertilizer Industry Association, Paris, 2007, pp. 1–28.
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; Li, X.; Bao, Y.; Shou, J.; He, Y. (2020). Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the south of China. Agric. For. Meteorol. 2020, 10, 8096. [Google Scholar] [CrossRef]
- Kazlauskas, M.; Bručiene, I.; Jasinskas, A.; Šarauskis, E. Comparative Analysis of Energy and GHG Emissions Using Fixed and Variable Fertilization Rates. Agronomy 2021, 11, 138. [Google Scholar] [CrossRef]
- Fabbri, C.; Napoli, M.; Verdi, L.; Mancini, M.; Orlandini, S.; Dalla Marta, A. A Sustainability Assessment of the Greenseeker N Management Tool: A Lysimetric Experiment on Barley. Sustainability 2020, 12, 7303. [Google Scholar] [CrossRef]
- Gao, Y.; Cabrera Serrenho, A. ; Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food 2023, 4, 170–178. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmnann, J. , Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential, Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Basso, B.; Dumont, B.; Cammarano, D.; Pezzuolo, A.; Marinello, F.; Sartori, L. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci. Total Environ. 2016, 536, 730–740. [Google Scholar] [CrossRef]
- Sela, S.; Woodbury, P.B.; Marjerison, R.; Van Es, H.M. Towards applying N balance as a sustainability indicator for the US Corn Belt: realistic achievable targets, spatio-temporal variability and policy implications. Environ. Res. Lett. 2019, 14, 064015. [Google Scholar] [CrossRef]


| Field A | Field B | |
|---|---|---|
| Location-Region | Agrokipio | Ano Vasilika |
| Soil Classification 1 | Cambisols | Calcisols |
| Sand (%) | 36.6 ± 1.59 | 28.5 ± 1.20 |
| Silt (%) | 36.4 ± 1.02 | 48.6 ± 1.73 |
| Clay (%) | 27.0 ± 1.13 | 22.9 ± 1.30 |
| Soil Texture | Clay Loam (CL) | Clay (C) |
| pH, (1:1) | 8.0 ± 0.05 | 8.2 ± 0.02 |
| EC 2 | 0.62 ± 0.03 | 0.45 ± 0.02 |
| SOM 3 (%) | 1.4 ± 0.11 | 1.5 ± 0.11 |
| CaCO3 % | 11.8 ± 2.18 | 27.1 ± 1.83 |
| POlsen mg kg-1 | 9.9 ± 1.83 | 4.1 ± 0.42 |
| TSN 4 (%) | 0.10 ± 0.01 | 0.11 ± 0.01 |
| K+ cmol kg-1 | 0.4 ± 0.03 | 0.6 ± 0.06 |
| Mg+2 cmol kg-1 | 5.7 ± 0.18 | 6.2 ± 0.20 |
| Cu 5 | 0.9 ± 0.05 | 0.9 ± 0.03 |
| Fe 5 | 4.1 ± 0.31 | 3.6 ± 0.13 |
| Mn 5 | 8.8 ± 0.88 | 3.0 ± 0.11 |
| Zn 5 | 0.7 ± 0.04 | 0.6 ± 0.08 |
| B mg kg-1 | 0.4 ± 0.04 | 0.4 ± 0.03 |
| Field | N treatment | Napp | ΤΒY | GY | ΤGW | Grains m2 | HI | GPC | NGY |
|---|---|---|---|---|---|---|---|---|---|
| A | VR-N | 170 | 15.4 | 5.49 | 56.3 | 11511 | 34.6 | 11.9 | 10.1 |
| UR-N | 343 | 16.1 | 6.35 | 51.7 | 13361 | 39.3 | 13.8 | 13.9 | |
| B | VR-N | 280 | 13.9 | 5.42b | 43.6b | 13518 | 38.9 | 12.4 | 10.8 |
| UR-N | 343 | 15.5 | 6.56a | 49.5a | 14548 | 45.0 | 11.6 | 12.2 |
| Field | N treatment | Napp | NPE | MR | PY | PN | ΔGVR-N | ΔMR |
|---|---|---|---|---|---|---|---|---|
| A | VR-N | 170 | 32.3a | 2436.7 * | 0.40 | 0.775 | 7.2 | 163.8 |
| UR-N | 343 | 18.5b | 2272.9 | |||||
| B | VR-N | 280 | 19.3 | 1825.8b | 0.37 | 0.848 | No gain | No gain |
| UR-N | 343 | 19.1 | 2136.7a |
| Field | N treatment | CF (kg CO2 ha−1) | CF (kg CO2 tn−1) | Soil NO3-N |
|---|---|---|---|---|
| A | VR-N | 1859.3b | 362.5 | 16.8b |
| UR-N | 2389.7a | 383.0 | 26.3a | |
| B | VR-N | 2198.2b | 407.0 | 14.6 |
| UR-N | 2348.0a | 360.1 | 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
