Submitted:
12 June 2025
Posted:
17 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The WMO/GAW Observation Site, Measured Data, and Methodologies
2.1. Characteristics of the Lamezia Terme (LMT) WMO/GAW Station
2.2. Gas/Aerosol Datasets, and Employed Methodologies
3. Results
3.1. URB Category Concentrations
3.2. Variability of URB Daily Cycles
3.3. Analysis with Wind Direction and Speed
3.3. Analysis of Weekly Cycles
3.4. Multi-Year Tendencies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pöschl, U. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520-7540. [CrossRef]
- Petzold, A.; Thouret, V.; Gerbig, C.; Zahn, A.; Brenninkmeijer, C.A.M.; Gallagher, M.; Hermann, M.; Pontaud, M.; Ziereis, H.; Boulanger, D.; et al. Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus B Chem. Phys. Meteorol. 2015, 67, 28452. [CrossRef]
- Prather, M.J.; Flynn, C.M.; Zhu, X.; Steenrod, S.D.; Strode, S.A.; Fiore, A.M.; Correa, G.; Murray, L.T.; Lamarque, J.-F. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmos. Meas. Tech. 2018, 11, 2653-2668. [CrossRef]
- Gaston, C.J. Re-examining dust chemical aging and its impacts on Earth’s climate. Acc. Chem. Res. 2020, 5, 1005-1013. [CrossRef]
- Kanakidou, M.; Sfakianaki, M.; Probst, A. Impact of air pollution on terrestrial ecosystems. In: Dulac, F., Sauvage, S., Hamonou, E. (eds) Atmospheric Chemistry in the Mediterranean Region. Springer, Cham, 2022. [CrossRef]
- Li, S.; Kim, S.; Lee, H.; Takele Kenea, S.; Kim, J.E.; Chung, C.-Y.; Kim, Y.-H. Analysis of source distribution of high carbon monoxide events using airborne and surface observations in Korea. Atmos. Environ. 2022, 289, 119316. [CrossRef]
- Willis, M.D.; Lannuzel, D.; Else, B.; Angot, H.; Campbell, K.; Crabeck, O.; Delille, B.; Hayashida, H.; Lizotte, M.; Loose, B.; et al. Polar oceans and sea ice in a changing climate. Elementa Sci. Anth. 2023, 11, 00056. [CrossRef]
- Gong, C.; Tian, H.; Liao, H.; Pan, N.; Pan, S.; Ito, A.; Jain, A.K.; Kou-Giesbrecht, S.; Joos, F.; Sun, Q.; et al. Global net climate effects of anthropogenic reactive nitrogen. Nature 2024, 632, 557–563. [CrossRef]
- Liao, L. Synergy of soft and hard regulations in climate governance: The impact of state policies on local climate mitigation actions. Environ. Policy Gov. 2025, 35, 344-361. [CrossRef]
- Dörpmund, F. Motivations and challenges for carbon dioxide removal development: empirical evidence from market practitioners. Environ. Res. Lett. 2025, 20, 054066. [CrossRef]
- Feickert, K.; Mueller, C.T. Policy and design levers for minimizing embodied carbon in United States buildings: A quantitative comparison of current and proposed strategies. Build. Environ. 2025, 270, 112485. [CrossRef]
- Khalique, A.; Wang, Y.; Ahmed, K. Europe’s environmental dichotomy: The impact of regulations, climate investments, and renewable energy on carbon mitigation in the EU-22. Energy Policy 2025, 198, 114498. [CrossRef]
- Saueressig, G.; Bergamaschi, P.; Crowley, J.N.; Fischer, H.; Harris, G.W. Carbon kinetic isotope effect in the reaction of CH4 with Cl atoms. J. Geophys. Res. Atmos. 1995, 22, 1225–1228. [CrossRef]
- Ferretti, D.F.; Miller, J.B.; White, J.W.C.; Etheridge, D.M.; Lassey, K.R.; Lowe, D.C.; Macfarling Meure, C.M.; Dreier, M.F.; Trudinger, C.M.; Van Ommen, T.D.; et al. Unexpected changes to the global methane budget over the past 2000 years. Science 2005, 309, 1714–1717. [CrossRef]
- Etiope, G.; Ciotoli, G.; Schwietzke, S.; Schoell, M. Gridded maps of geological methane emissions and their isotopic signature. Earth Syst. Sci. Data 2019, 11, 1–22. [CrossRef]
- Parrish, D.D.; Allen, D.T.; Bates, T.S.; Estes, M.; Fehsenfeld, F.C.; Feingold, G.; Ferrare, R.; Hardesty, R.M.; Meagher, J.F.; Nielsen-Gammon, J.W.; et al. Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J. Geophys. Res. Atmos. 2009, 114, D00F13. [CrossRef]
- Morgan, W.T.; Allan, J.D.; Bower, K.N.; Highwood, E.J.; Liu, D.; McMeeking, G.R.; Northway, M.J.; Williams, P.I.; Krejci, R.; Coe, H. Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction. Atmos. Chem. Phys. 2010, 10, 4065–4083. [CrossRef]
- Steinbacher, M.; Zellweger, C.; Schwarzenbach, B.; Bugmann, S.; Buchmann, B.; Ordóñez, C.; Prévôt, A.S.H.; Hueglin, C. Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. J. Geophys. Res. Atmos. 2007, 112, D11307. [CrossRef]
- Heal, M.R.; Kirby, C.; Cape, J.N. Systematic biases in measurement of urban nitrogen dioxide using passive diffusion samplers. Environ. Monit. Assess. 2000, 62, 39–54. [CrossRef]
- Gerboles, M.; Lagler, F.; Rembges, D.; Brun, C. Assessment of uncertainty of NO2 measurements by the chemiluminescence method and discussion of the quality objective of the NO2 European Directive. J. Environ. Monit. 2003, 5, 529–540. [CrossRef]
- Xu, Z.; Wang, T.; Xue, L.K.; Louie, P.K.K.; Luk, C.W.Y.; Gao, J.; Wang, S.L.; Chai, F.H.; Wang, W.X. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China. Atmos. Environ. 2013, 76, 221–226. [CrossRef]
- Jung, J.; Lee, J.; Kim, B.; Oh, S. Seasonal variations in the NO2 artifact from chemiluminescence measurements with a molybdenum converter at a suburban site in Korea (downwind of the Asian continental outflow) during 2015–2016. Atmos. Environ. 2017, 165, 290–300. [CrossRef]
- Dickerson, R.R.; Anderson, D.C.; Ren, X. On the use of data from commercial NOx analyzers for air pollution studies. Atmos. Environ. 2019, 214, 116873. [CrossRef]
- Heal, M.R.; Laxen, D.P.H.; Marner, B.B. Biases in the Measurement of Ambient Nitrogen Dioxide (NO2) by Palmes Passive Diffusion Tube: A Review of Current Understanding. Atmosphere 2019, 10, 357. [CrossRef]
- Cristofanelli, P.; Busetto, M.; Calzolari, F.; Ammoscato, I.; Gullì, D.; Dinoi, A.; Calidonna, C.R.; Contini, D.; Sferlazzo, D.; Di Iorio, T.; Piacentino, S.; Marinoni, A.; Maione, M.; Bonasoni, P. Investigation of reactive gases and methane variability in the coastal boundary layer of the central Mediterranean basin. Elem. Sci. Anth. 2017, 5, 12. [CrossRef]
- D’Amico, F.; Lo Feudo, T.; Gullì, D.; Ammoscato, I.; De Pino, M.; Malacaria, L.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Investigation of carbon monoxide, carbon dioxide, and methane source variability at the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy) using the ratio of ozone to nitrogen oxides as a proximity indicator. Atmosphere 2025, 16, 251. [CrossRef]
- D’Amico, F.; Gullì, D.; Lo Feudo, T.; Ammoscato, I.; Avolio, E.; De Pino, M.; Cristofanelli, P.; Busetto, M.; Malacaria, L.; Parise, D.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Cyclic and multi-year characterization of surface ozone at the WMO/GAW coastal station of Lamezia Terme (Calabria, Southern Italy): implications for the local environment, cultural heritage, and human health. Environments 2024, 11, 227. [CrossRef]
- D’Amico, F.; De Benedetto, G.; Malacaria, L.; Sinopoli, S.; Dutta, A.; Lo Feudo, T.; Gullì, D.; Ammoscato, I.; De Pino, M.; Calidonna, C.R. Multimethodological approach for the evaluation of tropospheric ozone’s regional photochemical pollution at the WMO/GAW station of Lamezia Terme, Italy. AppliedChem 2025, 5, 10. [CrossRef]
- D’Amico, F.; Malacaria, L.; De Benedetto, G.; Sinopoli, S.; Lo Feudo, T.; Gullì, D.; Ammoscato, I.; Calidonna, C.R. Analysis and evaluation of sulfur dioxide and equivalent black carbon at a southern Italian WMO/GAW station using the ozone to nitrogen oxides ratio methodology as proximity indicator. Preprints 2025, 2025052284. [CrossRef]
- Khalil, M.A.K.; Rasmussen, R.A. The global cycle of carbon monoxide: Trends and mass balance. Chemosphere 1990, 20, 227–242. [CrossRef]
- Dlugokencky, E.J.; Houweling, S.; Bruhwiler, L.; Masarie, K.A.; Lang, P.M.; Miller, J.B.; Tans, P.P. Atmospheric methane levels off: Temporary pause or a new steady-state? Geophys. Res. Lett. 2003, 30, 1992. [CrossRef]
- Prinn, R.G.; Huang, J.; Weiss, R.F.; Cunnold, D.M.; Fraser, P.J.; Simmonds, P.G.; McCulloch, A.; Harth, C.; Reimann, S.; Salameh, P.; et al. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys. Res. Lett. 2005, 32, L07809. [CrossRef]
- Prather, M.J. Lifetimes and time scales in atmospheric chemistry. Philos. Trans. R. Soc. A. 2007, 365, 1705–1726. [CrossRef]
- Archer, D.; Brovkin, V. The millennial lifetime of fossil fuel CO2. Clim. Change 2008, 90, 283–297. [CrossRef]
- Prather, M.J.; Holmes, C.D.; Hsu, J. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 2012, 39, L09803. [CrossRef]
- Stevens, R.K.; Dzubay, T.G.; Lewis, C.W.; Shaw, R.W., Jr. Source apportionment methods applied to the determination of the origin of ambient aerosols that affect visibility in forested areas. Atmos. Environ. 1984, 18, 261–272. [CrossRef]
- Shah, J.J.; Kneip, T.J.; Daisey, J.M. Source apportionment of carbonaceous aerosol in New York City by multiple linear regression. J. Air Pollut. Control Assoc. 1985, 35, 541–544. [CrossRef]
- Khalil, M.A.K.; Rasmussen, R.A. Carbon monoxide in an urban environment: Application of a receptor model for source apportionment. J. Air Pollut. Control Assoc. 1988, 38, 901–906. [CrossRef]
- Wolff, G.T.; Korsog, P.E. Atmospheric concentrations and regional source apportionments of sulfate, nitrate and sulfur dioxide in the Berkshire mountains in western Massachusetts. Atmos. Environ. 1989, 23, 55–65. [CrossRef]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global atmospheric methane: Budget, changes and dangers. Philos. Trans. R. Soc. A 2011, 369, 2058–2072. [CrossRef]
- Nisbet, E.G.; Dlugokencky, E.J.; Manning, M.R.; Lowry, D.; Fisher, R.E.; France, J.L.; Michel, S.E.; Miller, J.B.; White, J.W.C.; Vaughn, B.; et al. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob. Biogeochem. Cycles 2016, 30, 1356–1370. [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [CrossRef]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [CrossRef]
- Thunis, P.; Clappier, A.; Pirovano, G.; Riffault, V.; Gilardoni, S. Source Apportionment to Support Air Quality Management Practices, A Fitness-for-Purpose Guide (V 4.0); Publications Office of the European Union: Luxembourg, 2022. [CrossRef]
- Zazzeri, G.; Graven, H.; Xu, X.; Saboya, E.; Blyth, L.; Manning, A.J.; Chawner, H.; Wu, D.; Hammer, S. Radiocarbon Measurements Reveal Underestimated Fossil CH4 and CO2 Emissions in London. Geophys. Res. Lett. 2023, 50, e2023GL103834. [CrossRef]
- Ducruet, C.; Polo Martin, B.; Sene, M.A.; Lo Prete, M.; Sun, L.; Itoh, H.; Pigné, Y. Ports and their influence on local air pollution and public health: A global analysis. Sci. Total Environ. 2024, 915, 170099. [CrossRef]
- Siciliano, T.; De Donno, A.; Serio, F.; Genga, A. Source Apportionment of PM10 as a Tool for Environmental Sustainability in Three School Districts of Lecce (Apulia). Sustainability 2024, 16, 1978. [CrossRef]
- Komhyr, W.D.; Harris, T.B.; Waterman, L.S.; Chin, J.F.S.; Thoninh, K.W. Atmospheric carbon dioxide at Mauna Loa Observatory: 1. NOAA global monitoring for climatic change measurements with a nondispersive infrared analyzer, 1974–1985. J. Geophys. Res.—Atmos. 1989, 94, 8533–8547. [CrossRef]
- Thoning, K.W.; Tans, P.P.; Komhyr, W.D. Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res.—Atmos. 1989, 94, 8549–8565. [CrossRef]
- Keeling, C.D.; Whorf, T.P.; Wahlen, M.; van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 1995, 375, 666–670. [CrossRef]
- Harris, D.C. Charles David Keeling and the story of atmospheric CO2 measurements. Anal. Chem. 2010, 82, 19, 7865–7870. [CrossRef]
- Etheridge, D.M.; Steele, L.P.; Francey, R.J.; Langenfelds, R.L. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. Atmos. 1998, 103, 15979–15993. [CrossRef]
- Blunden, J.; Boyer, T.; Bartow-Gillies, E. State of the Climate in 2022. B. Am. Meteorol. Soc. 2023, 104, 1–501. [CrossRef]
- Klimont, Z.; Smith, S.J.; Cofala, J. The last decade of global anthropogenic sulfur dioxide: 2000–11 emissions. Environ. Res. Lett. 2013, 8, 014003. [CrossRef]
- Sheng, J.-X.; Weisenstein, D.K.; Luo, B.-P.; Rozanov, E.; Stenke, A.; Anet, J.; Bingemer, H.; Peter, T. Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation. J. Geophys. Res.-Atmos. 2015, 120, 256–276. [CrossRef]
- Fukusaki, Y.; Umehara, M.; Kousa, Y.; Inomata, Y.; Nakai, S. Investigation of Air Pollutants Related to the Vehicular Exhaust Emissions in the Kathmandu Valley, Nepal. Atmosphere 2021, 12, 1322. [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle Emissions and Urban Air Quality: 60 Years of Progress. Atmosphere 2022, 13, 650. [CrossRef]
- Bhugwant, C.; Siéja, B.; Bessafi, M.; Staudacher, T.; Ecormier, J. Atmospheric sulfur dioxide measurements during the 2005 and 2007 eruptions of the Piton de La Fournaise volcano: Implications for human health and environmental changes. J. Volcanol. Geotherm. Res. 2009, 184, 208–224. [CrossRef]
- Mills, M.J.; Schmidt, A.; Easter, R.; Solomon, S.; Kinnison, D.E.; Ghan, S.J.; Neely, R.R., III; Marsh, D.R.; Conley, A.; Bardeen, C.G.; et al. Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). J. Geophys. Res.–Atmos. 2016, 121, 2332–2348. [CrossRef]
- Filippi, J.-B.; Durand, J.; Tulet, P.; Bielli, S. Multiscale Modeling of Convection and Pollutant Transport Associated with Volcanic Eruption and Lava Flow: Application to the April 2007 Eruption of the Piton de la Fournaise (Reunion Island). Atmosphere 2021, 12, 507. [CrossRef]
- Guo, S.; Bluth, G.J.S.; Rose, W.I.; Watson, I.M.; Prata, A.J. Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem. Geophys. Geosyst. 2004, 5, Q04001. [CrossRef]
- Mishra, M.K.; Hoffmann, L.; Thapliyal, P.K. Investigations on the Global Spread of the Hunga Tonga-Hunga Ha’apai Volcanic Eruption Using Space-Based Observations and Lagrangian Transport Simulations. Atmosphere 2022, 13, 2055. [CrossRef]
- Sun, Q.; Lu, T.; Li, D.; Xu, J. The Impact of the Hunga Tonga–Hunga Ha’apai Volcanic Eruption on the Stratospheric Environment. Atmosphere 2024, 15, 483. [CrossRef]
- Buchholz, R.R.; Worden, H.M.; Park, M.; Francis, G.; Deeter, M.N.; Edwards, D.P.; Emmons, L.K.; Gaubert, B.; Gille, J.; Martínez-Alonso, S.; et al. Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sens. Environ. 2021, 256, 112275. [CrossRef]
- Zheng, B.; Chevallier, F.; Ciais, P.; Yin, Y.; Deeter, M.N.; Worden, H.M.; Wang, Y.; Zhang, Q.; He, K. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett. 2018, 13, 044007. [CrossRef]
- Gialesakis, N.; Kalivitis, N.; Kouvarakis, G.; Ramonet, M.; Lopez, M.; Yver-Kwok, C.; Narbaud, C.; Daskalakis, N.; Mermigkas, M.; Mihalopoulos, N.; Kanakidou, M. A twenty year record of greenhouse gases in the Eastern Mediterranean atmosphere. Sci. Total Environ. 2023, 864, 161003. [CrossRef]
- Edwards, D.P.; Emmons, L.K.; Hauglustaine, D.A.; Chu, D.A.; Gille, J.C.; Kaufman, Y.J.; Pétron, G.; Yurganov, L.N.; Giglio, L.; Deeter, M.N.; et al. Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. J. Geophys. Res. Atmos. 2004, 109, 17. [CrossRef]
- Chameides, W.L.; Bergin, M. Soot takes center stage. Science 2002, 297, 2214–2215. [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [CrossRef]
- D’Amico, F.; Lo Feudo, T.; Gullì, D.; Ammoscato, I.; De Pino, M.; Malacaria, L.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Integrated surface and tropospheric column analysis of sulfur dioxide variability at the Lamezia Terme WMO/GAW regional station in Calabria, Southern Italy. Environments 2025, 12, 27. [CrossRef]
- Alvarez, W. A former continuation of the Alps. Geol. Soc. Am. Bull. 1976, 87, 891–896. [CrossRef]
- Amodio-Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, P.; Paglionico, A.; Perrone, V.; et al. L’Arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1–60.
- Scandone, P. Structure and evolution of the Calabrian Arc. Earth Evol. Sci. 1982, 3, 172–180.
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [CrossRef]
- Longhitano, S.G. The record of tidal cycles in mixed silici–bioclastic deposits: Examples from small Plio–Pleistocene peripheral basins of the microtidal Central Mediterranean Sea. Sedimentology 2010, 58, 691–719. [CrossRef]
- Chiarella, D.; Longhitano, S.G.; Muto, F. Sedimentary features of the lower Pleistocene mixed siliciclastic-bioclastic tidal deposits of the Catanzaro Strait (Calabrian Arc, south Italy). Rend. Online Della Soc. Geol. Ital. 2012, 21, 919–920.
- Longhitano, S.G.; Chiarella, D.; Muto, F. Three-dimensional to two-dimensional cross-strata transition in the lower Pleistocene Catanzaro tidal strait transgressive succession (southern Italy). Sedimentology 2014, 61, 2136–2171. [CrossRef]
- Brogan, G.E.; Cluff, L.S.; Taylor, C.L. Seismicity and uplift of southern Italy. Tectonophysics 1975, 29, 323–330. [CrossRef]
- Monaco, C.; Bianca, M.; Catalano, S.; De Guidi, G.; Gresta, S.; Langher, H.; Tortorici, L. The geological map of the urban area of Catania (Sicily): Morphotectonic and seismotectonic implications. Mem. Soc. Geol. Ital. 2001, 5, 425–438.
- Lambeck, K.; Antonioli, F.; Purcell, A.; Silenzi, S. Sea-level change along the Italian coast for the past 10,000 yr. Quat. Sci. Rev. 2004, 23, 1567–1598. [CrossRef]
- Miyauchi, T.; Dai Pra, G.; Sylos Labini, S. Geochronology of Pleistocene marine terraces and regional tectonics in Tyrrhenian coast of South Calabria, Italy. Il Quaternario 1994, 7, 17–34.
- Pirazzoli, P.A.; Mastronuzzi, G.; Saliège, J.F.; Sansò, P. Late Holocene emergence in Calabria, Italy. Mar. Geol. 1997, 141, 61–70. [CrossRef]
- Monaco, C.; Tortorici, L. Active faulting in the Calabrian arc and eastern Sicily. J. Geodyn. 2000, 29, 407–424. [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. The Italian earthquake catalogue CPTI15. Bull. Earthq. Eng. 2020, 18, 2953–2984. [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo parametrico dei terremoti italiani (CPTI15), v. 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available online: https://emidius.mi.ingv.it/CPTI15-DBMI15 (accessed on 20 May 2025).
- Calidonna, C.R.; Dutta, A.; D’Amico, F.; Malacaria, L.; Sinopoli, S.; De Benedetto, G.; Gullì, D.; Ammoscato, I.; De Pino, M.; Lo Feudo, T. Ten-Year Analysis of Mediterranean Coastal Wind Profiles Using Remote Sensing and In Situ Measurements. Wind 2025, 5, 9. [CrossRef]
- Federico, S.; Pasqualoni, L.; De Leo, L.; Bellecci, C. A study of the breeze circulation during summer and fall 2008 in Calabria, Italy. Atmos. Res. 2010, 97(1-2), pgs. 1-13. [CrossRef]
- Federico, S.; Pasqualoni, L.; Sempreviva, A.M.; De Leo, L.; Avolio, E.; Calidonna, C.R.; Bellecci, C. The seasonal characteristics of the breeze circulation at a coastal Mediterranean site in South Italy. Adv. Sci. Res. 2010, 4, pgs. 47–56. [CrossRef]
- Gullì, D.; Avolio, E.; Calidonna, C.R.; Lo Feudo, T.; Torcasio, R.C.; Sempreviva, A.M. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site. In European Geosciences Union General Assembly 2017, EGU – Division Energy, Resources & Environment, ERE. Energy Procedia 2017, 125, pgs. 214-220. [CrossRef]
- Avolio, E.; Federico, S.; Miglietta, M.M.; Lo Feudo, T.; Calidonna, C.R.; Sempreviva, A.M. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmos. Res. 2017, 192, 58-71. [CrossRef]
- Malacaria, L.; Sinopoli, S.; Lo Feudo, T.; De Benedetto, G.; D’Amico, F.; Ammoscato, I.; Cristofanelli, P.; De Pino, M.; Gullì, D.; Calidonna, C.R. Methodology for selecting near-surface CH4, CO, and CO2 observations reflecting atmospheric background conditions at the WMO/GAW station in Lamezia Terme, Italy. Atmos. Poll. Res. 2025, 16, 102515. [CrossRef]
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; De Benedetto, G.; Calidonna, C.R. Integrated analysis of methane cycles and trends at the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy). Atmosphere 2024, 15(8), 946. [CrossRef]
- Calidonna, C.R.; Avolio, E.; Gullì, D.; Ammoscato, I.; De Pino, M.; Donateo, A.; Lo Feudo, T. Five years of dust episodes at the Southern Italy GAW regional coastal Mediterranean observatory: multisensors and modeling analysis. Atmosphere 2020, 11, 456. [CrossRef]
- Das, K. Deep Learning Techniques for Predicting Wildfires in Calabria Italy Using Environmental Parameters. In New Trends in Database and Information Systems. ADBIS 2024. Communications in Computer and Information Science; Springer: Cham, Switzerland, 2024; Volume 2186. [CrossRef]
- Malacaria, L.; Parise, D.; Lo Feudo, T.; Avolio, E.; Ammoscato, I.; Gullì, D.; Sinopoli, S.; Cristofanelli, P.; De Pino, M.; D’Amico, F.; et al. Multiparameter detection of summer open fire emissions: the case study of GAW regional observatory of Lamezia Terme (Southern Italy). Fire 2024, 7, 198. [CrossRef]
- D’Amico, F.; De Benedetto, G.; Malacaria, L.; Sinopoli, S.; Calidonna, C.R.; Gullì, D.; Ammoscato, I.; Lo Feudo, T. Tropospheric and surface measurements of combustion tracers during the 2021 Mediterranean wildfire crisis: insights from the WMO/GAW site of Lamezia Terme in Calabria, Southern Italy. Gases 2025, 5, 5. [CrossRef]
- Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C.W.; Crosson, E.R.; Van Pelt, A.D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B.C.; Gottlieb, E.W.; Chow, V.Y.; Santoni, G.W.; Wofsy, S.C. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 2010, 3, 375–386. [CrossRef]
- Yver Kwok, C.; Laurent, O.; Guemri, A.; Philippon, C.; Wastine, B.; Rella, C.W.; Vuillemin, C.; Truong, F.; Delmotte, M.; Kazan, V.; Darding, M.; Lebègue, B.; Kaiser, C.; Xueref-Rémy, I.; Ramonet, M. Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO. Atmos. Meas. Tech. 2015, 8, 3867–3892. [CrossRef]
- Satar, E.; Berhanu, T.A.; Brunner, D.; Henne, S.; Leuenberger, M. Continuous CO2/CH4/CO measurements (2012–2014) at Beromünster tall tower station in Switzerland. Biogeosciences 2016, 13, 2623–2635. [CrossRef]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [CrossRef]
- Petzold, A.; Kramer, H.; Schönlinner, M. Continuous Measurement of Atmospheric Black Carbon Using a Multi-angle Absorption Photometer. Environ. Sci. Pollut. Res. 2002, 4, 78–82.
- Petzold, A.; Schloesser, H.; Sheridan, P.J.; Arnott, P.; Ogren, J.A.; Virkkula, A. Evaluation of multiangle absorption photometry for measuring aerosol light absorption. Aerosol Sci. Technol. 2005, 39, 40–51. [CrossRef]
- Donateo, A.; Lo Feudo, T.; Marinoni, A.; Calidonna, C.R.; Contini, D.; Bonasoni, P. Long-term observations of aerosol optical properties at three GAW regional sites in the Central Mediterranean. Atmos. Res. 2020, 241, 104976. [CrossRef]
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; et al. Trends in CO, CO2, CH4, BC, and NOx during the first 2020 COVID-19 lockdown: source insights from the WMO/GAW station of Lamezia Terme (Calabria, Southern Italy). Sustainability 2024, 16, 8229. [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. An. Math. Statist. 1947, 18, 50–60. [CrossRef]
- Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statist. Surv. 2010, 4, 1–39. [CrossRef]
- Bonferroni, C.E. Il calcolo delle assicurazioni su gruppi di teste. In: Studi in Onore del Professore Salvatore Ortu Carboni. Rome: Italy, pp. 13-60, 1935.
- Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del Regio Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3-62, 1936.
- Otto, J.; Kahle, D. ggdensity: Interpretable Bivariate Density Visualization with ‘ggplot2’. R Package Version 1.0.0.900. Avail-able online: https://github.com/jamesotto852/ggdensity (accessed on 10 May 2025).
- D’Amico, F.; Ammoscato, I.; Gullì, D.; Avolio, E.; Lo Feudo, T.; De Pino, M.; Cristofanelli, P.; Malacaria, L.; Parise, D.; Sinopoli, S.; et al. Anthropic-induced variability of greenhouse gasses and aerosols at the WMO/GAW coastal site of Lamezia Terme (Calabria, Southern Italy): towards a new method to assess the weekly distribution of gathered data. Sustainability 2024, 16, 8175. [CrossRef]
- Vita, F.; Schiavo, B.; Inguaggiato, C.; Cabassi, J.; Venturi, S.; Tassi, F.; Inguaggiato, S. Output of Volcanic SO2 Gases and Their Dispersion in the Atmosphere: The Case of Vulcano Island, Aeolian Archipelago, Italy. Atmosphere 2025, 16, 651. [CrossRef]

















| Year | Hours | URB | LOC |
|---|---|---|---|
| 2015 | 8760 | 5.7% | 39.33% |
| 2016 | 8784 | 3.32% | 25.63% |
| 2017 | 8760 | 4.70% | 30.35% |
| 2018 | 8760 | 6.64% | 35.30% |
| 2019 | 8760 | 5.97% | 33.59% |
| 2020 | 8784 | 4.42% | 30.80% |
| 2021 | 8760 | 2.57% | 24.80% |
| 2022 | 8760 | 4.31% | 26.56% |
| 2023 | 8760 | 3.66% | 23.59% |
| Total | 701281 | 4.59%2 | 30.01%2 |
| Year | Hours | COx, CH4 | Meteo | CMTO | CProx | CMTOProx |
|---|---|---|---|---|---|---|
| 2015 | 8760 | 94.73% | 95.90% | 92.10% | 87.85% | 86.97% |
| 2016 | 8784 | 94.95% | 96.34% | 92.24% | 89.89% | 88.21% |
| 2017 | 8760 | 99.57% | 93.8% | 93.37% | 95.27% | 90.67% |
| 2018 | 8760 | 93.78% | 77.05% | 74.68% | 92.11% | 73.34% |
| 2019 | 8760 | 97.60% | 98.59% | 97.57% | 93.28% | 93.26% |
| 2020 | 8784 | 93.77% | 99.98% | 93.76% | 89.10% | 89.09% |
| 2021 | 8760 | 97.78% | 99.74% | 97.53% | 77.35% | 77.34% |
| 2022 | 8760 | 83.89% | 89.85% | 75.46% | 59.15% | 58.04% |
| 2023 | 8760 | 66.76% | 96.3% | 65.49% | 58.44% | 57.18% |
| Total | 701281 | 91.43%2 | 93.95%2 | 86.91%2 | 82.49%2 | 79.34%2 |
| Year | Hours | SO2 | Meteo | SMTO | SProx | SMTOProx |
|---|---|---|---|---|---|---|
| 2016 | 8784 | 63.30% | 96.34% | 62.04% | 61.28% | 60.04% |
| 2017 | 8760 | 87.76% | 93.8% | 83.86% | 86.11% | 82.23% |
| 2018 | 8760 | 97.54% | 77.05% | 75.18% | 97.04% | 74.69% |
| 2019 | 8760 | 80.67% | 98.59% | 80.65% | 77.65% | 77.63% |
| 2020 | 8784 | 34.52% | 99.98% | 34.52% | 33.03% | 33.03% |
| 2021 | 8760 | 39.08% | 99.74% | 39.07% | 35.45% | 35.44% |
| 2022 | 8760 | 65.06% | 89.85% | 63.75% | 62.48% | 61.44% |
| 2023 | 8760 | 48.59% | 96.3% | 47.37% | 48.07% | 46.86% |
| Total | 701281 | 64.56%2 | 93.95%2 | 60.80%2 | 62.63%2 | 58.92%2 |
| Year | Hours | eBC | Meteo | BMTO | BProx | BMTOProx |
|---|---|---|---|---|---|---|
| 2016 | 8784 | 93.75% | 96.34% | 93.06% | 89.70% | 89.20% |
| 2017 | 8760 | 95.27% | 93.8% | 90.45% | 92.24% | 87.93% |
| 2018 | 8760 | 95.61% | 77.05% | 73.61% | 94.44% | 72.5% |
| 2019 | 8760 | 96.48% | 98.59% | 96.46% | 92.26% | 92.23% |
| 2020 | 8784 | 96.61% | 99.98% | 96.60% | 91.75% | 91.74% |
| 2021 | 8760 | 98.42% | 99.74% | 98.25% | 77.39% | 77.38% |
| 2022 | 8760 | 97.43% | 89.85% | 88% | 67.37% | 65.98% |
| 2023 | 8760 | 69.13% | 96.3% | 68.81% | 60.51% | 60.19% |
| Total | 701281 | 92.83%2 | 93.95%2 | 88.15%2 | 83.20%2 | 79.64%2 |
| Category | CO (ppb) | CO2 (ppm) | CH4 (ppb) | ||||||
| All | Nor. East | West | All | Nor. East | West | All | Nor. East | West | |
| URB | 212.85 ± 98.80 |
216.04 ± 100.66 |
164.10 ± 61.20 |
487.72 ± 516.99 |
474.28 ± 351.07 |
434.56 ± 19.71 |
2234.73 ± 231.80 |
2249.76 ± 237.06 |
2104.03 ± 155.84 |
| LOC | 164.69 ± 59.98 |
166.32 ± 60.50 |
153.03 ± 52.11 |
443.20 ± 123.73 |
445.54 ± 107.30 |
425.61 ± 139.46 |
2104.10 ± 175.34 |
2125.98 ± 186.55 |
1994.59 ± 112.39 |
| N–SRC | 127.13 ± 29.17 |
134.07 ± 31.86 |
122.73 ± 25.50 |
417.19 ± 54.21 |
420.53 ± 57.38 |
414.67 ± 65.35 |
1961.64 ± 67.87 |
1976.75 ± 81.63 |
1945.38 ± 39.59 |
| R–SRC | 109.45 ± 19.15 |
116.30 ± 15.12 |
108.43 ± 18.72 |
411.86 ± 8.60 |
416.20 ± 9.47 |
411.26 ± 8.45 |
1941.55 ± 43.14 |
1963.69 ± 44.13 |
1939.52 ± 41.45 |
| BKG | 104.04 ± 21.07 |
109.13 ± 11.09 |
102.75 ± 21.45 |
409.13 ± 7.83 |
415.60 ± 9.54 |
409.03 ± 7.70 |
1931.12 ± 42.32 |
1954.34 ± 48.25 |
1932.09 ± 40.98 |
| Category | SO2 (ppb) | eBC (µg/m3) | ||||
| All | Nor. East | West | All | Nor. East | West | |
| URB | 0.14 ± 0.22 |
0.13 ± 0.19 |
0.22 ± 0.23 |
1.44 ± 0.96 |
1.44 ± 1.02 |
0.95 ± 0.72 |
| LOC | 0.14 ± 0.28 |
0.12 ± 0.25 |
0.23 ± 0.41 |
0.79 ± 0.51 |
0.80 ± 0.52 |
0.68 ± 0.47 |
| N–SRC | 0.21 ± 0.36 |
0.17 ± 0.32 |
0.24 ± 0.38 |
0.37 ± 0.34 |
0.41 ± 0.25 |
0.33 ± 0.29 |
| R–SRC | 0.22 ± 0.40 |
0.11 ± 0.30 |
0.24 ± 0.42 |
0.27 ± 0.62 |
0.24 ± 0.12 |
0.26 ± 0.58 |
| BKG | 0.18 ± 0.31 |
0.05 ± 0.09 |
0.20 ± 0.33 |
0.26 ± 0.79 |
0.20 ± 0.08 |
0.27 ± 0.84 |
| Parameter | URB | LOC | ||||
| All | Nor. East | West | All | Nor. East | West | |
| CO | 0.958 | 0.332 | < 0.001 | 0.476 | 0.947 | 0.568 |
| CO2 | 0.581 | 0.952 | < 0.001 | < 0.001 | < 0.001 | 0.127 |
| CH4 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | 0.735 |
| SO2 | < 0.001 | < 0.001 | 0.398 | < 0.001 | 0.080 | 0.076 |
| eBC | < 0.001 | 0.022 | < 0.001 | 0.882 | 0.519 | 0.083 |
| Parameter | URB | LOC | ||||
| All | Nor. East | West | All | Nor. East | West | |
| CO | 0.226 | 0.900 | 0.795 | < 0.001 | < 0.001 | 0.062 |
| CO2 | 0.514 | 0.376 | 0.254 | 0.008 | 0.003 | < 0.001 |
| CH4 | < 0.001 | < 0.001 | 0.436 | < 0.001 | < 0.001 | 0.008 |
| SO2 | < 0.001 | 0.009 | 0.031 | 0.126 | 0.022 | 0.841 |
| eBC | 0.270 | 0.094 | 0.882 | < 0.001 | < 0.001 | 0.5269 |
| Parameter | URB | LOC | ||||
| All | Nor. East | West | All | Nor. East | West | |
| CO | 0.424 | 0.921 | N/A | 0.274 | 0.526 | 0.175 |
| CO2 | < 0.001 | 0.001 | N/A | 0.167 | 0.750 | 0.412 |
| CH4 | 0.265 | 0.970 | N/A | 0.111 | 0.532 | 0.063 |
| SO2 | 0.020 | 0.098 | N/A | 0.887 | 0.028 | 0.949 |
| eBC | 0.435 | 0.065 | 0.121 | 0.850 | 0.229 | 0.216 |
| Parameter | URB | LOC | ||||
| All | Nor. East | West | All | Nor. East | West | |
| CO | 0.083 | 0.048 | 0.693 | 0.388 | 0.832 | 0.531 |
| CO2 | 0.828 | 0.732 | 0.693 | 0.011 | 0.003 | 0.789 |
| CH4 | 0.524 | 0.467 | 0.236 | 0.108 | 0.258 | 0.421 |
| SO2 | 0.802 | 0.641 | 1 | < 0.001 | 0.014 | 0.006 |
| eBC | 0.763 | 0.395 | 0.855 | 0.024 | 0.318 | 0.090 |
| Parameter | URB | LOC | ||||
| All | Nor. East | West | All | Nor. East | West | |
| CO | < 0.001 | 0.081 | < 0.001 | < 0.001 | 0.011 | 0.145 |
| CO2 | 0.097 | 0.106 | < 0.001 | < 0.001 | < 0.001 | 0.669 |
| CH4 | 0.763 | 0.149 | < 0.001 | < 0.001 | < 0.001 | 0.403 |
| SO2 | 0.072 | < 0.001 | 0.098 | 0.003 | 0.185 | 0.033 |
| eBC | < 0.001 | < 0.001 | < 0.001 | 0.103 | 0.710 | 0.874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
