Submitted:
12 June 2025
Posted:
13 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. InVEST Model
2.3.3. Geodetector
| Description | Interaction |
| q(X1 ∩ X2) < Min(q(X1), q(X2)) | Weaken, nonlinear |
| Min(q(X1),q(X2))<q(X1 ∩ X2)<Max(q(X1), q(X2)) | Weaken, uni- |
| q(X1 ∩ X2) > Max(q(X1), q(X2)) | Enhance, bi- |
| q(X1 ∩ X2) = q(X1) + q(X2) | Independent |
| q(X1 ∩ X2) > q(X1) + q(X2) | Enhance, nonlinear |
3. Results
3.1. Evolution of Land Use Patterns
3.1.1. Spatiotemporal Characteristics of Land Use
3.1.2. Land Use Transfers Analysis
3.2. Spatiotemporal Characteristics of Carbon Storage
3.2.1. Carbon Storage Distribution Patterns
3.2.2. Characteristics of Carbon Storage Changes
3.3. Driving Factors of Carbon Storage Spatial Differentiation
3.3.1. Factor Detection Results
3.3.2. Interaction Detection Results
4. Discussion
5. Conclusions and Recommendations
Author Contributions
References
- Xu, T.; Xu, M.; Zhang, M.; Letnic, M.; Wang, J.; Wang, L. Spatial Effects of Nitrogen Deposition on Soil Organic Carbon Stocks in Patchy Degraded Saline-Alkaline Grassland. Geoderma 2023, 432, 116408. [Google Scholar] [CrossRef]
- Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Global Ecology and Conservation 2016, 5, 127–138. [CrossRef]
- Van Pham, T.; Do, T.A.T.; Tran, H.D.; Do, A.N.T. Assessing the Impact of Ecological Security and Forest Fire Susceptibility on Carbon Stocks in Bo Trach District, Quang Binh Province, Vietnam. Ecological Informatics 2023, 74, 101962. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land Use/Land Cover Change and Its Impact on Ecosystem Carbon Storage in Coastal Areas of China from 1980 to 2050. Ecological Indicators 2022, 142, 109178. [Google Scholar] [CrossRef]
- Daniel J C,Frid L,Sleeter M B, et al.State-and-transition simulation models: a framework for forecasting landscape change [J].Methods in Ecology and Evolution,2016,7(11):1413-1423.
- Djomo, A.N.; Knohl, A.; Gravenhorst, G. Estimations of Total Ecosystem Carbon Pools Distribution and Carbon Biomass Current Annual Increment of a Moist Tropical Forest. Forest Ecology and Management 2011, 261, 1448–1459. [Google Scholar] [CrossRef]
- Leifeld, J.; Bassin, S.; Fuhrer, J. Carbon Stocks in Swiss Agricultural Soils Predicted by Land-Use, Soil Characteristics, and Altitude. Agriculture, Ecosystems & Environment 2005, 105, 255–266. [Google Scholar]
- Zafar, Z.; Sajid Mehmood, M.; Shiyan, Z.; Zubair, M.; Sajjad, M.; Yaochen, Q. Fostering Deep Learning Approaches to Evaluate the Impact of Urbanization on Vegetation and Future Prospects. Ecological Indicators 2023, 146, 109788. [Google Scholar] [CrossRef]
- Kim Phat, N.; Knorr, W.; Kim, S. Appropriate Measures for Conservation of Terrestrial Carbon Stocks—Analysis of Trends of Forest Management in Southeast Asia. Forest Ecology and Management 2004, 191, 283–299. [Google Scholar] [CrossRef]
- de Koning, G.H.J.; Veldkamp, E.; López-Ulloa, M. Quantification of Carbon Sequestration in Soils Following Pasture to Forest Conversion in Northwestern Ecuador. Global Biogeochemical Cycles 2003, 17. [Google Scholar] [CrossRef]
- Gonzalez, P.; Battles, J.J.; Collins, B.M.; Robards, T.; Saah, D.S. Aboveground Live Carbon Stock Changes of California Wildland Ecosystems, 2001–2010. Forest Ecology and Management 2015, 348, 68–77. [Google Scholar] [CrossRef]
- Ota, H.O.; Mohan, K.C.; Udume, B.U.; Olim, D.M.; Okolo, C.C. Assessment of Land Use Management and Its Effect on Soil Quality and Carbon Stock in Ebonyi State, Southeast Nigeria. Journal of Environmental Management 2024, 358, 120889. [Google Scholar] [CrossRef]
- Chiti, T.; Benilli, N.; Mastrolonardo, G.; Certini, G. The Potential for an Old-Growth Forest to Store Carbon in the Topsoil: A Case Study at Sasso Fratino, Italy. J. For. Res. 2023, 35, 10. [Google Scholar] [CrossRef]
- Zafar, Z.; Zubair, M.; Zha, Y.; Mehmood, M.S.; Rehman, A.; Fahd, S.; Nadeem, A.A. Predictive Modeling of Regional Carbon Storage Dynamics in Response to Land Use/Land Cover Changes: An InVEST-Based Analysis. Ecological Informatics 2024, 82, 102701. [Google Scholar] [CrossRef]
- Ma, W.; Hou, S.; Su, W.; Mao, T.; Wang, X.; Liang, T. Estimation of Carbon Stock and Economic Value of Sanjiangyuan National Park, China. Ecological Indicators 2024, 169, 112856. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of Land Use and Cover Change (LUCC) on Terrestrial Carbon Stocks in China between 2000 and 2018. Resources, Conservation and Recycling 2022, 182, 106333. [Google Scholar] [CrossRef]
- Recent and Projected Impacts of Land Use and Land Cover Changes on Carbon Stocks and Biodiversity in East Kalimantan, Indonesia. Ecological Indicators 2019, 103, 563–575. [CrossRef]
- Future Land-Use Change and Its Impact on Terrestrial Ecosystem Carbon Pool Evolution along the Silk Road under SDG Scenarios. Science Bulletin 2023, 68, 740–749. [CrossRef] [PubMed]
- Gao, J.; Wang, L. Embedding Spatiotemporal Changes in Carbon Storage into Urban Agglomeration Ecosystem Management — A Case Study of the Yangtze River Delta, China. Journal of Cleaner Production 2019, 237, 117764. [Google Scholar] [CrossRef]
- Li, C.; Xu, H.; Du, P.; Tang, F. Predicting Land Cover Changes and Carbon Stock Fluctuations in Fuzhou, China: A Deep Learning and InVEST Approach. Ecological Indicators 2024, 167, 112658. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying Effects of Land Use Cover Changes and Climate Change on Terrestrial Ecosystems and Carbon Stocks in Mexico. Global Environmental Change 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Sattolo, T.M.S.; Mariano, E.; Boschiero, B.N.; Otto, R. Soil Carbon and Nitrogen Dynamics as Affected by Land Use Change and Successive Nitrogen Fertilization of Sugarcane. Agriculture, Ecosystems & Environment 2017, 247, 63–74. [Google Scholar]
- Franco, A.L.C.; Cherubin, M.R.; Pavinato, P.S.; Cerri, C.E.P.; Six, J.; Davies, C.A.; Cerri, C.C. Soil Carbon, Nitrogen and Phosphorus Changes under Sugarcane Expansion in Brazil. Science of The Total Environment 2015, 515–516, 30–38. [Google Scholar] [CrossRef]
- Moitinho R M,Ferraudo S A,Panosso R A, et al.Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological attributes [J].Catena,2021,196.
- Ma, J.; Xu, J.; He, P.; Chen, B. Carbon Uptake of the Sugarcane Agroecosystem Is Profoundly Impacted by Climate Variations Due to Seasonality and Topography. Field Crops Research 2022, 289, 108729. [Google Scholar] [CrossRef]
- Adhikari, D.; Singh, P.P.; Tiwary, R.; Barik, S.K. Forest Carbon Stock-Based Bioeconomy: Mixed Models Improve Accuracy of Tree Biomass Estimates. Biomass and Bioenergy 2024, 183, 107142. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Ito, A.; Takahashi, K. Careful Selection of Forest Types in Afforestation Can Increase Carbon Sequestration by 25% without Compromising Sustainability. Commun Earth Environ 2024, 5, 1–10. [Google Scholar] [CrossRef]
- Guga, S.; Xu, J.; Riao, D.; Li, kaiwei; Han, A.; Zhang, J. Combining MaxEnt Model and Landscape Pattern Theory for Analyzing Interdecadal Variation of Sugarcane Climate Suitability in Guangxi, China. Ecological Indicators 2021, 131, 108152. [CrossRef]
- Bordonal, R. de O.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N. Sustainability of Sugarcane Production in Brazil. A Review. Agron. Sustain. Dev. 2018, 38, 13.
- Zhu, H.Y., Wu, L., & Peng, Z.P. (2016). Analysis of the Construction for Sugarcane Base in Guangxi. Macroeconomic Management 2016,05:80-83.
- Lu, X.G., Fan, Y.G., Qiu, L.H., et al. The Current State of Sugarcane Base under Construction and Its Suggestions on Development in Guangxi. Tropical Agricultural Science & Technology 2019,42(02):51-54.
- Pérez-Hugalde, C.; Romero-Calcerrada, R.; Delgado-Pérez, P.; Novillo, C.J. Understanding Land Cover Change in a Special Protection Area in Central Spain through the Enhanced Land Cover Transition Matrix and a Related New Approach. Journal of Environmental Management 2011, 92, 1128–1137. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-Use Changes Lead to a Decrease in Carbon Storage in Arid Region, China. Ecological Indicators 2021, 127, 107770. [Google Scholar] [CrossRef]
- Bai Y,Tang X,Xue F, et al.Spatiotemporal variation and dynamic simulation of carbon stock based on PLUS and InVEST models in the Li River Basin, China [J].Scientific Reports,2025,15(1):6060-6060.
- Qin, M.; Zhao, Y.; Liu, Y.; Jiang, H.; Li, H.; Zhu, Z. Multi-Scenario Simulation for 2060 and Driving Factors of the Eco-Spatial Carbon Sink in the Beibu Gulf Urban Agglomeration, China. Chin. Geogr. Sci. 2023, 33, 85–101. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil Carbon Pools and World Life Zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to Disentangle the Contributions of Natural and Anthropogenic Factors to NDVI Variations in the Middle Reaches of the Heihe River Basin. Ecological Indicators 2020, 117, 106545. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetectors: Principles and Prospects. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Song, Y.; Wang ,Jinfeng; Ge ,Yong; and Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience & Remote Sensing 2020, 57, 593–610.
- Qiu, H.; Hu, B.; Zhang, Z. Impacts of Land Use Change on Ecosystem Service Value Based on SDGs Report--Taking Guangxi as an Example. Ecological Indicators 2021, 133, 108366. [Google Scholar] [CrossRef]
- Peng, Y.; Cheng, W.; Xu, X.; Song, H. Analysis and Prediction of the Spatiotemporal Characteristics of Land-Use Ecological Risk and Carbon Storage in Wuhan Metropolitan Area. Ecological Indicators 2024, 158, 111432. [Google Scholar] [CrossRef]
- An Integrated Approach to Exploring Soil Fertility from the Perspective of Rice (Oryza Sativa L. ) Yields. Soil and Tillage Research 2019, 194, 104322. [Google Scholar]
- Zheng, H.; Zheng, H. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Coastal Area of Shandong Province. Ecological Indicators 2023, 153, 110474. [Google Scholar] [CrossRef]
- Gogoi, A.; Ahirwal, J.; Sahoo, U.K. Evaluation of Ecosystem Carbon Storage in Major Forest Types of Eastern Himalaya: Implications for Carbon Sink Management. Journal of Environmental Management 2022, 302, 113972. [Google Scholar] [CrossRef]
- Gao, J.; Zou, C.; Zhang, K.; Xu, M.; Wang, Y. The Establishment of Chinese Ecological Conservation Redline and Insights into Improving International Protected Areas. Journal of Environmental Management 2020, 264, 110505. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Z.; Li, R.; Shi, Z. Long-Term Impact of China’s Returning Farmland to Forest Program on Rural Economic Development. Sustainability 2020, 12, 1492. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Chen, Z.; Tu, S. Research on the Response of Ecosystem Service Function to Landscape Pattern Changes Caused by Land Use Transition: A Case Study of the Guangxi Zhuang Autonomous Region, China. Land 2022, 11, 752. [Google Scholar] [CrossRef]
- Wang G,Liao M,Jiang J.Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China [J].Sustainability,2020,12(7):2627.
- Zhang, M.; Li, G.; He, T.; Zhai, G.; Guo, A.; Chen, H.; Wu, C. Reveal the Severe Spatial and Temporal Patterns of Abandoned Cropland in China over the Past 30 Years. Science of The Total Environment 2023, 857, 159591. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L. Sources and Sinks of Carbon from Land-Use Change in China. Global Biogeochemical Cycles 2003, 17. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.; Zhao, D. Effects of Land Use and Cover Change on Terrestrial Carbon Stocks in Urbanized Areas: A Study from Changzhou, China. Journal of Cleaner Production 2015, 103, 651–657. [Google Scholar] [CrossRef]
- Song, Z. Economic Growth and Carbon Emissions: Estimation of a Panel Threshold Model for the Transition Process in China. Journal of Cleaner Production 2021, 278, 123773. [Google Scholar] [CrossRef]
- Molotoks, A.; Stehfest, E.; Doelman, J.; Albanito, F.; Fitton, N.; Dawson, T.P.; Smith, P. Global Projections of Future Cropland Expansion to 2050 and Direct Impacts on Biodiversity and Carbon Storage. Global Change Biology 2018, 24, 5895–5908. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Identification and Scenario Prediction of Degree of Wetland Damage in Guangxi Based on the CA-Markov Model. Ecological Indicators 2021, 127, 107764. [Google Scholar] [CrossRef]
- Nie, Q.; Wu, G.; Li, L.; Man, W.; Ma, J.; Bao, Z.; Luo, L.; Li, H. Exploring Scaling Differences and Spatial Heterogeneity in Drivers of Carbon Storage Changes: A Comprehensive Geographic Analysis Framework. Ecological Indicators 2024, 165, 112193. [Google Scholar] [CrossRef]
- Pan, L.; Shi, D.; Jiang, G.; Xu, Y. Impacts of Different Management Measures on Soil Nutrients and Stoichiometric Characteristics for Sloping Farmland under Erosive Environments in the Three Gorges Reservoir Area, China. Soil and Tillage Research 2024, 244, 106173. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Li, F.; Gao, W.; Guo, F.; Li, Z.; Yang, Z. Regional Mangrove Vegetation Carbon Stocks Predicted Integrating UAV-LiDAR and Satellite Data. Journal of Environmental Management 2024, 368, 122101. [Google Scholar] [CrossRef] [PubMed]







| Data Type | Data Name | Year(s) | Data Source |
| Land use data | Land use status | 2011, 2014, 2018, 2022 | Remote Sensing Information Processing Institute (http://irsip.whu.edu.cn/) |
| Natural factors | Average slope | 2022 | Resource and Environment Data Center, CAS (http://www.resdc.cn/) |
| Forest coverage rate | 2011, 2014, 2018, 2022 | ||
| DEM | 2022 | Geospatial Data Cloud (http://www.gscloud.cn/) | |
| NDVI | 2011, 2014, 2018, 2022 | ||
| Annual sunshine hours | 2011, 2014, 2018, 2020 | China Meteorological Data Network (http://data.cma.cn/) | |
| Mean annual temperature | 2011, 2014, 2018, 2022 | ||
| Annual precipitation | |||
| Socioeconomic factors | Sugarcane planting area | Guangxi Bureau of Statistics/Statistical Yearbook (http://tjj.gxzf.gov.cn/) | |
| Sugarcane yield | |||
| Population | |||
| Primary industry GDP | |||
| General public budget expenditure | |||
| Number of industrial enterprises above designated size | |||
| Land urbanization rate | |||
| Road network density | 2013, 2014, 2018, 2022 | National Geographic Information Resource Directory Service System (http://www.webmap.cn/) | |
| Nighttime light index | 2011, 2014, 2018, 2022 | Resource and Environment Data Center, CAS (http://www.resdc.cn/) | |
| Distance to adjacent cities | 2022 |
| LULC_name | C_above | C_below | C_soil |
| Cultivated land | 13.57 | 2.65 | 47.4 |
| Forest | 58.3 | 14.58 | 96 |
| Grass | 3.01 | 13.53 | 60 |
| Water | 2.8 | 2.4 | 0 |
| Barren | 3.4 | 0 | 31.4 |
| Construction land | 11.45 | 0.93 | 31.4 |
| Land use types | 2011 | 2014 | 2018 | 2022 | ||||
| Area/km2 | Percent/% | Area/km2 | Percent/% | Area/km2 | Percent/% | Area/km2 | Percent/% | |
| Cultivated land | 37138.581 | 30.483 | 36329.046 | 29.818 | 35394.517 | 29.051 | 35731.644 | 29.328 |
| Forest | 81982.671 | 67.290 | 82648.001 | 67.836 | 83518.456 | 68.551 | 83272.032 | 68.349 |
| Grass | 80.771 | 0.066 | 83.938 | 0.069 | 64.929 | 0.053 | 45.320 | 0.037 |
| Water | 1532.788 | 1.258 | 1541.544 | 1.265 | 1436.712 | 1.179 | 1216.842 | 0.999 |
| Barren | 0.599 | 0.0005 | 0.561 | 0.0005 | 1.038 | 0.0009 | 2.186 | 0.0018 |
| Construction land | 1098.976 | 0.902 | 1231.296 | 1.011 | 1418.735 | 1.164 | 1566.362 | 1.286 |
| Land use types | 2011→2014 | 2014→2018 | 2018→2022 | 2011→2022 | ||||
| Area change/km2 | Dynamic/% | Area change/km2 | Dynamic/% | Area change/km2 | Dynamic/% | Area change/km2 | Dynamic/% | |
| Cultivated land | -809.535 | -2.180 | -934.529 | -2.572 | 337.127 | 0.952 | -1406.937 | -3.788 |
| Forest | 665.329 | 0.812 | 870.455 | 1.053 | -246.424 | -0.295 | 1289.361 | 1.573 |
| Grass | 3.166 | 3.920 | -19.009 | -22.646 | -19.609 | -30.201 | -35.452 | -43.892 |
| Water | 8.756 | 0.571 | -104.832 | -6.800 | -219.870 | -15.304 | -315.946 | -20.612 |
| Barren | -0.038 | -6.316 | 0.477 | 85.072 | 1.148 | 110.668 | 1.588 | 265.263 |
| Construction land | 132.321 | 12.040 | 187.439 | 15.223 | 147.627 | 10.406 | 467.386 | 42.529 |
| Land use types | Cultivated land | Forest | Grass | Water | Barren | Construction land | Total |
| Cultivated land | 33836.438 | 3089.237 | 20.660 | 68.477 | 0.000 | 123.770 | 37138.581 |
| Forest | 2417.180 | 79546.946 | 13.461 | 0.000 | 0.000 | 5.085 | 81982.671 |
| Grass | 20.522 | 4.449 | 48.755 | 1.997 | 0.095 | 4.954 | 80.771 |
| Water | 54.877 | 7.370 | 0.920 | 1464.638 | 0.110 | 4.874 | 1532.788 |
| Barren | 0.031 | 0.000 | 0.142 | 0.001 | 0.356 | 0.069 | 0.599 |
| Construction land | 0.000 | 0.000 | 0.000 | 6.431 | 0.000 | 1092.544 | 1098.976 |
| Total | 36329.046 | 82648.001 | 83.938 | 1541.544 | 0.561 | 1231.296 | 121834.386 |
| Land use types | Cultivated land | Forest | Grass | Water | Barren | Construction land | Total |
| Cultivated land | 32599.504 | 3505.519 | 20.101 | 31.734 | 0.036 | 172.153 | 36329.046 |
| Forest | 2649.155 | 79989.571 | 2.083 | 0.155 | 0.001 | 7.037 | 82648.001 |
| Grass | 20.743 | 13.019 | 41.493 | 1.337 | 0.644 | 6.701 | 83.938 |
| Water | 125.034 | 10.346 | 1.102 | 1398.217 | 0.038 | 6.808 | 1541.544 |
| Barren | 0.045 | 0.000 | 0.151 | 0.003 | 0.320 | 0.042 | 0.561 |
| Construction land | 0.036 | 0.000 | 0.000 | 5.267 | 0.000 | 1225.994 | 1231.296 |
| Total | 35394.517 | 83518.456 | 64.929 | 1436.712 | 1.038 | 1418.735 | 121834.386 |
| Land use types | Cultivated land | Forest | Grass | Water | Barren | Construction land | Total |
| Cultivated land | 31920.381 | 3288.267 | 12.456 | 28.718 | 0.068 | 144.627 | 35394.517 |
| Forest | 3544.106 | 79962.305 | 2.745 | 0.616 | 0.000 | 8.684 | 83518.456 |
| Grass | 23.869 | 5.747 | 29.592 | 0.644 | 0.946 | 4.130 | 64.929 |
| Water | 243.119 | 15.710 | 0.321 | 1169.828 | 0.526 | 7.209 | 1436.712 |
| Barren | 0.100 | 0.000 | 0.205 | 0.004 | 0.647 | 0.082 | 1.038 |
| Construction land | 0.070 | 0.003 | 0.000 | 17.033 | 0.000 | 1401.629 | 1418.735 |
| Total | 35731.644 | 83272.032 | 45.320 | 1216.842 | 2.186 | 1566.362 | 121834.386 |
| Land use types | 2011 | 2014 | 2018 | 2022 | ||||
| Carbon Stock | Percent/% | Carbon Stock | Percent/% | Carbon Stock | Percent/% | Carbon Stock | Percent/% | |
| Cultivated land | 23627.563 | 14.522 | 23112.537 | 14.147 | 22517.990 | 13.705 | 22732.470 | 13.849 |
| Forest | 138452.341 | 85.095 | 139575.950 | 85.434 | 141045.974 | 85.841 | 140629.813 | 85.673 |
| Grass | 61.822 | 0.038 | 64.246 | 0.039 | 49.696 | 0.030 | 34.688 | 0.021 |
| Water | 79.705 | 0.049 | 80.160 | 0.049 | 74.709 | 0.045 | 63.276 | 0.039 |
| Barren | 0.208 | 0.00013 | 0.195 | 0.00012 | 0.361 | 0.00022 | 0.761 | 0.00046 |
| Construction land | 481.132 | 0.296 | 539.062 | 0.330 | 621.122 | 0.378 | 685.753 | 0.418 |
| Total | 162702.772 | 100 | 163372.150 | 100 | 164309.852 | 100 | 164146.761 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).