Submitted:
10 June 2025
Posted:
11 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Key Immune Checkpoint Receptors and T-Cell Regulation
1.2. Immune Checkpoint Receptor Signaling Beyond T-Cells
1.3. Structural Insights into Immune Checkpoint Receptor-Ligand Interactions
1.4. Impact of Antigen Exposure Chronicity on Immune Checkpoint Receptor Function
1.5. Epigenetic and Transcriptional Regulation of Immune Checkpoint Receptor Expression
2. Expression and Pathophysiological Roles
2.1. Comparative Expression Patterns of Immune Checkpoint Receptors Across Genitourinary Cancers
2.2. Immune Checkpoint Receptor Expression, Localization, and Clinical Outcomes
2.3. Interplay of the Tumor Microenvironment with Immune Checkpoint Receptor Function
2.4. Novel and Less-Studied Immune Checkpoint Receptors in Genitourinary Malignancies
2.5. Differential Immune Checkpoint Receptor Expression in Primary Versus Metastatic Genitourinary Cancers
3. Mechanistic Insights into Immune Checkpoint Blockade in Genitourinary Tumor Immunotherapy
3.1. Molecular and Cellular Mechanisms of Immune Reinvigoration by ICIs
3.2. Dynamic Remodeling of the Tumor Microenvironment by ICI Therapy
3.3. Mechanisms of Resistance to Immune Checkpoint Blockade
3.4. Influence of the Gut Microbiome on ICI Efficacy
3.5. Off-Target Effects and Mechanisms of Immune-Related Adverse Events
4. Biomarkers to Guide Immune Checkpoint Inhibitor Therapy
4.1. Established Biomarkers: Clinical Utility and Limitations
4.2. Emerging Tissue-Based Biomarkers
4.3. Liquid Biopsy-Based Biomarkers
4.4. Radiomics and AI-Driven Analysis of Medical Imaging
5. Therapeutic Landscape and Evolving Strategies
5.1. Novel Immune Checkpoint Inhibitors and Bispecific Antibodies
5.2. Combination Strategies Involving ICIs
5.3. Durability of Response and Long-Term Survival Outcomes
5.4. ICIs in Neoadjuvant, Adjuvant, and Maintenance Settings
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| CAR | Chimeric Antigen Receptor |
| ccRCC | Clear Cell Renal Cell Carcinoma |
| CTCs | Circulating Tumor Cells |
| CTLA-4 | Cytotoxic T-Lymphocyte-Associated Protein 4 |
| ctDNA | Circulating Tumor DNA |
| CTLs | Cytotoxic T-Lymphocytes |
| DCs | Dendritic Cells |
| dMMR | Deficient Mismatch Repair |
| FMT | Fecal Microbiota Transplantation |
| GU | Genitourinary |
| HIFs | Hypoxia-Inducible Factors |
| hTERT | Human Telomerase Reverse Transcriptase |
| ICIs | Immune Checkpoint Inhibitors |
| ICRs | Immune Checkpoint Receptors |
| IF | Immunofluorescence |
| IFN- | Interferon Gamma |
| IHC | Immunohistochemistry |
| IL | Interleukin |
| irAEs | Immune-Related Adverse Events |
| ITSMs | Immunoreceptor Tyrosine-Based Switch Motifs |
| LAG-3 | Lymphocyte Activation Gene 3 |
| lncRNAs | Long Noncoding RNAs |
| MDSCs | Myeloid-Derived Suppressor Cells |
| MIBC | Muscle-Invasive Bladder Cancer |
| miRNAs | MicroRNAs |
| mCRPC | Metastatic Castration-Resistant Prostate Cancer |
| MSI | Microsatellite Instability |
| MSI-H | Microsatellite Instability-High |
| NK | Natural Killer |
| NMIBC | Non-Muscle Invasive Bladder Cancer |
| ORR | Objective Response Rate |
| OS | Overall Survival |
| PD-1 | Programmed Cell Death Protein 1 |
| PD-L1 | Programmed Death-Ligand 1 |
| PFS | Progression-Free Survival |
| pCR | Pathological Complete Response |
| pRCC | Papillary Renal Cell Carcinoma |
| PVR | Poliovirus Receptor |
| RCC | Renal Cell Carcinoma |
| SCFAs | Short-Chain Fatty Acids |
| SFX | Serial Femtosecond Crystallography |
| TCR | T-Cell Receptor |
| TGF- | Transforming Growth Factor Beta |
| TIGIT | T-Cell Immunoreceptor with Ig and ITIM Domains |
| TILs | Tumor-Infiltrating Lymphocytes |
| TIM-3 | T-Cell Immunoglobulin and Mucin Domain 3 |
| TLR | Toll-Like Receptor |
| TMB | Tumor Mutational Burden |
| TME | Tumor Microenvironment |
| TNF- | Tumor Necrosis Factor Alpha |
| VEGF | Vascular Endothelial Growth Factor |
| WIP | WASP-Interacting Protein |
References
- Naimi, A.; Mohammed, R.N.; Raji, A.; Chupradit, S.; Yumashev, A.V.; Suksatan, W.; Shalaby, M.N.; Thangavelu, L.; Kamrava, S.; Shomali, N.; et al. Tumor Immunotherapies by Immune Checkpoint Inhibitors (ICIs); the Pros and Cons. Cell Commun. Signal. 2022, 20, 44. [Google Scholar] [CrossRef]
- Li, N.; Li, Z.; Fu, L.; Yan, M.; Wang, Y.; Yu, J.; Wu, J. PD-1 Suppresses the Osteogenic and Odontogenic Differentiation of Stem Cells from Dental Apical Papilla via Targeting SHP2/NF-κB Axis. Stem Cells 2022, 40, 763–777. [Google Scholar] [CrossRef]
- Patsoukis, N.; Wang, Q.; Strauss, L.; Boussiotis, V.A. Revisiting the PD-1 Pathway. Sci. Adv. 2020, 6, eabd2712. [Google Scholar] [CrossRef]
- Yang, R.; Pei, T.; Huang, R.; Xiao, Y.; Yan, J.; Zhu, J.; Zheng, C.; Xiao, W.; Huang, C. Platycodon Grandiflorum Triggers Antitumor Immunity by Restricting PD-1 Expression of CD8+ T Cells in Local Tumor Microenvironment. Front. Pharmacol. 2022, 13, 774440. [Google Scholar] [CrossRef]
- Yu, W.; Hua, Y.; Qiu, H.; Hao, J.; Zou, K.; Li, Z.; Hu, S.; Guo, P.; Chen, M.; Sui, S.; et al. PD-L1 Promotes Tumor Growth and Progression by Activating WIP and β-Catenin Signaling Pathways and Predicts Poor Prognosis in Lung Cancer. Cell Death Dis. 2020, 11, 506. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, S.; Liu, Y.; Li, X.; Wu, J.; Sun, Y.; Liu, G. DNA Damage Response and PD-1/PD-L1 Pathway in Ovarian Cancer. DNA Repair (Amst.) 2021, 102, 103112. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, H.; Yuan, X.; Fan, X.; Zhang, C. Advances in Immune Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma. Front. Immunol. 2022, 13, 896752. [Google Scholar] [CrossRef]
- Li, W.-X.; Xu, X.-H.; Jin, L.-P. Regulation of the Innate Immune Cells during Pregnancy: An Immune Checkpoint Perspective. J. Cell. Mol. Med. 2021, 25, 10362–10375. [Google Scholar] [CrossRef]
- Kondo, Y.; Suzuki, S.; Ono, S.; Goto, M.; Miyabe, S.; Ogawa, T.; Tsuchida, H.; Ito, H.; Takahara, T.; Satou, A.; et al. In Situ PD-L1 Expression in Oral Squamous Cell Carcinoma Is Induced by Heterogeneous Mechanisms among Patients. Int. J. Mol. Sci. 2022, 23, 4077. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.K.; Strazza, M.; Mor, A. Combination Approaches to Target PD-1 Signaling in Cancer. Front. Immunol. 2022, 13, 927265. [Google Scholar] [CrossRef] [PubMed]
- Ye, H. Immune Escape Mechanism of PD-1/PD-L1 in Non-Small-Cell Lung cancer(NSCLC) and Its Related Drug Treatment. Theor. Nat. Sci. 2023, 6, 104–107. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Zheng, X.; Tao, H.; Zhang, S.; Ma, J.; Liu, Z.; Wang, J.; Qian, Y.; Cui, P.; et al. Response Efficacy of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 562315. [Google Scholar] [CrossRef]
- Bialek, J.; Yankulov, S.; Kawan, F.; Fornara, P.; Theil, G. Role of Nivolumab in the Modulation of PD-1 and PD-L1 Expression in Papillary and Clear Cell Renal Carcinoma (RCC). Biomedicines 2022, 10, 3244. [Google Scholar] [CrossRef]
- Takehara, T.; Wakamatsu, E.; Machiyama, H.; Nishi, W.; Emoto, K.; Azuma, M.; Soejima, K.; Fukunaga, K.; Yokosuka, T. PD-L2 Suppresses T Cell Signaling via Coinhibitory Microcluster Formation and SHP2 Phosphatase Recruitment. Commun. Biol. 2021, 4, 581. [Google Scholar] [CrossRef]
- Caforio, M.; de Billy, E.; De Angelis, B.; Iacovelli, S.; Quintarelli, C.; Paganelli, V.; Folgiero, V. PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches. Cancers (Basel) 2021, 13, 4040. [Google Scholar] [CrossRef]
- Han, P.; Yu, T.; Hou, Y.; Zhao, Y.; Liu, Y.; Sun, Y.; Wang, H.; Xu, P.; Li, G.; Sun, T.; et al. Low-Dose Decitabine Inhibits Cytotoxic T Lymphocytes-Mediated Platelet Destruction via Modulating PD-1 Methylation in Immune Thrombocytopenia. Front. Immunol. 2021, 12, 630693. [Google Scholar] [CrossRef]
- Kendirci, R.; Katirci, K.A.E. İmmün Toleransın Temel Düzenleyicisi: PD-1/PD-L1 Sinyal Yolağının Fizyolojik ve Patolojik Gebelikteki Rolü. Turk. J. Health Sport 2024, 5, 1–6. [Google Scholar]
- André, P.; Denis, C.; Soulas, C.; Bourbon-Caillet, C.; Lopez, J.; Arnoux, T.; Bléry, M.; Bonnafous, C.; Gauthier, L.; Morel, A.; et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor That Promotes Anti-Tumor Immunity by Unleashing Both T and NK Cells. Cell 2018, 175, 1731–1743.e13. [Google Scholar] [CrossRef]
- Sun, H.; Sun, C. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Front. Immunol. 2019, 10, 2354. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y. Unleashing Anti-Tumor Activity of Natural Killer Cells via Modulation of Immune Checkpoints Receptors and Molecules. Highlights Sci. Eng. Technol. 2022, 8, 463–471. [Google Scholar] [CrossRef]
- Park, S.; Vinod, N.; Kim, D.I.; Lim, I. Feasibility Study of Non-Invasive Evaluation of Human PD-1 Expression Using 125I-Nivolumab in a Mouse Tumor Model. Research Square 2022, rs.3.rs-1923874.
- Kim, N.; Kim, H.S. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. Front. Immunol. 2018, 9, 2041. [Google Scholar] [CrossRef]
- Ntsethe, A.; Mkhwanazi, Z.A.; Dludla, P.V.; Nkambule, B.B. B Cell Subsets and Immune Checkpoint Expression in Patients with Chronic Lymphocytic Leukemia. Curr. Issues Mol. Biol. 2024, 46, 1731–1740. [Google Scholar] [CrossRef]
- Schroeder, J.C.; Puntigam, L.; Hofmann, L.; Jeske, S.S.; Beccard, I.J.; Doescher, J.; Laban, S.; Hoffmann, T.K.; Brunner, C.; Theodoraki, M.-N.; et al. Circulating Exosomes Inhibit B Cell Proliferation and Activity. Cancers (Basel) 2020, 12, 2110. [Google Scholar] [CrossRef]
- Dong, M.P.; Enomoto, M.; Thuy, L.T.T.; Hai, H.; Hieu, V.N.; Hoang, D.V.; Iida-Ueno, A.; Odagiri, N.; Amano-Teranishi, Y.; Hagihara, A.; et al. Clinical Significance of Circulating Soluble Immune Checkpoint Proteins in Sorafenib-Treated Patients with Advanced Hepatocellular Carcinoma. Sci. Rep. 2020, 10, 3392. [Google Scholar] [CrossRef]
- Moon, S.Y.; Han, M.; Ryu, G.; Shin, S.-A.; Lee, J.H.; Lee, C.S. Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. Int. J. Mol. Sci. 2023, 24, 15072. [Google Scholar] [CrossRef]
- Sedano, R.; Cabrera, D.; Jiménez, A.; Ma, C.; Jairath, V.; Arrese, M.; Arab, J.P. Immunotherapy for Cancer: Common Gastrointestinal, Liver, and Pancreatic Side Effects and Their Management. Am. J. Gastroenterol. 2022, 117, 1917–1932. [Google Scholar] [CrossRef]
- Feng, M.; Jiang, W.; Kim, B.Y.S.; Zhang, C.C.; Fu, Y.-X.; Weissman, I.L. Phagocytosis Checkpoints as New Targets for Cancer Immunotherapy. Nat. Rev. Cancer 2019, 19, 568–586. [Google Scholar] [CrossRef]
- Hui, E. Immune Checkpoint Inhibitors. J. Cell Biol. 2019, 218, 740–741. [Google Scholar] [CrossRef]
- Alavi, S.; Stewart, A.J.; Kefford, R.F.; Lim, S.Y.; Shklovskaya, E.; Rizos, H. Interferon Signaling Is Frequently Downregulated in Melanoma. Front. Immunol. 2018, 9, 1414. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Stanczak, M.A.; Xiao, H.; Pijnenborg, J.F.A.; Mantuano, N.R.; Malaker, S.A.; Weidenbacher, P.A.; Miller, C.L.; Tanzo, J.T.; Ahn, G.; et al. Targeted Desialylation Overcomes Glyco-Immune Checkpoints and Potentiates the Anticancer Immune Response in Vivo. ChemRxiv 2019. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhou, X.; Huang, Y.-H.; King, G.J.; Collins, B.M.; Gao, Y.; Craik, D.J.; Wang, C.K. Rational Design of Potent Peptide Inhibitors of the PD-1:PD-L1 Interaction for Cancer Immunotherapy. J. Am. Chem. Soc. 2021, 143, 18536–18547. [Google Scholar] [CrossRef]
- García-Nafría, J.; Tate, C.G. Structure Determination of GPCRs: Cryo-EM Compared with X-Ray Crystallography. Biochem. Soc. Trans. 2021, 49, 2345–2355. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, R.; Kim, J.; Mancia, F. Cryo-Electron Microscopy Analysis of Small Membrane Proteins. Curr. Opin. Struct. Biol. 2020, 64, 26–33. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Zhang, W.; Wang, J.; Xiao, D.; Ren, H.; Wang, T.; Gao, F.; Liu, Z.; Zhou, K.; et al. FLASH X-Ray Spares Intestinal Crypts from Pyroptosis Initiated by cGAS-STING Activation upon Radioimmunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2208506119. [Google Scholar] [CrossRef]
- Doukov, T.; Herschlag, D.; Yabukarski, F. Instrumentation and Experimental Procedures for Robust Collection of X-Ray Diffraction Data from Protein Crystals across Physiological Temperatures. J. Appl. Crystallogr. 2020, 53, 1493–1501. [Google Scholar] [CrossRef]
- Manna, A.; Sonker, M.; Koh, D.; Steiger, M.; Ansari, A.; Hu, H.; Quereda-Moraleda, I.; Grieco, A.; Doppler, D.; de Sanctis, D.; et al. Cyclic Olefin Copolymer-Based Fixed-Target Sample Delivery Device for Protein X-Ray Crystallography. Anal. Chem. 2024, 96, 20371–20381. [Google Scholar] [CrossRef]
- Martin-Garcia, J.M. Protein Dynamics and Time Resolved Protein Crystallography at Synchrotron Radiation Sources: Past, Present and Future. Crystals (Basel) 2021, 11, 521. [Google Scholar] [CrossRef]
- Hoshina, D.; Hotta, M. Intravenous Immunoglobulin for Pembrolizumab-Induced Bullous Pemphigoid-like Eruption: A Case Report. Dermatol. Ther. 2022, 35, e15948. [Google Scholar] [CrossRef]
- Kirkwood, H.J.; de Wijn, R.; Mills, G.; Letrun, R.; Kloos, M.; Vakili, M.; Karnevskiy, M.; Ahmed, K.; Bean, R.J.; Bielecki, J.; et al. A Multi-Million Image Serial Femtosecond Crystallography Dataset Collected at the European XFEL. Sci. Data 2022, 9, 161. [Google Scholar] [CrossRef]
- Nam, K.H. Serial X-Ray Crystallography. Crystals (Basel) 2022, 12, 99. [Google Scholar] [CrossRef]
- Arthofer, E.; Chakraborty, K.; Viney, L.; Johnson, M.J.; Webber, B.R.; Moriarity, B.S.; Lou, E.; Choudhry, M.; Klebanoff, C.A.; Henley, T. Genetic Editing of CISH Enhances T Cell Effector Programs Independently of Immune Checkpoint Cell Surface Ligand Expression. bioRxiv 2021. [Google Scholar] [CrossRef]
- Carrio, R.; Cucchetti, M.; Devonish, M.; Poisson, L.; Babiceanu, M.; Kettring, A.; Liu, Y.; Jackson, D.; Gomes, E.; Baudhuin, J.; et al. Abstract 6378: An in Vitro Human CD8 T Cell Exhaustion Model for the Functional Screening of Immune Checkpoint Inhibitors. Cancer Res. 2023, 83, 6378. [Google Scholar] [CrossRef]
- Dumolard, L.; Aspord, C.; Marche, P.N.; Macek Jilkova, Z. Immune Checkpoints on T and NK Cells in the Context of HBV Infection: Landscape, Pathophysiology and Therapeutic Exploitation. Front. Immunol. 2023, 14, 1148111. [Google Scholar] [CrossRef]
- Eslami, M.; Arjmand, N.; Mahmoudian, F.; Babaeizad, A.; Tahmasebi, H.; Fattahi, F.; Oksenych, V. Deciphering Host-Virus Interactions and Advancing Therapeutics for Chronic Viral Infection. Viruses 2025, 17, 390. [Google Scholar] [CrossRef]
- Globig, A.-M.; Zhao, S.; Roginsky, J.; Avina-Ochoa, N.; Heeg, M.; Chaudhary, O.; Hoffmann, F.A.; Chen, D.; O’Connor, C.; Emu, B.; et al. Adrenergic Receptors Regulate T Cell Differentiation in Viral Infection and Cancer. J. Immunol. 2023, 210, 59.13. [Google Scholar] [CrossRef]
- Joosse, M.E.; Nederlof, I.; Walker, L.S.K.; Samsom, J.N. Tipping the Balance: Inhibitory Checkpoints in Intestinal Homeostasis. Mucosal Immunol. 2019, 12, 21–35. [Google Scholar] [CrossRef]
- Kamali, A.N.; Bautista, J.M.; Eisenhut, M.; Hamedifar, H. Immune Checkpoints and Cancer Immunotherapies: Insights into Newly Potential Receptors and Ligands. Ther. Adv. Vaccines Immunother. 2023, 11, 25151355231192043. [Google Scholar] [CrossRef]
- Selck, C.; Jhala, G.; De George, D.; Kwong, C.-T.J.; Christensen, M.K.; Pappas, E.; Liu, X.; Ge, T.; Trivedi, P.; Kallies, A.; et al. Extra-Islet Expression of Islet Antigen Boosts T-Cell Exhaustion to Prevent Autoimmune Diabetes. bioRxiv 2023. [Google Scholar] [CrossRef]
- Selck, C.; Jhala, G.; De George, D.J.; Kwong, C.-T.J.; Christensen, M.K.; Pappas, E.G.; Liu, X.; Ge, T.; Trivedi, P.; Kallies, A.; et al. Extraislet Expression of Islet Antigen Boosts T Cell Exhaustion to Partially Prevent Autoimmune Diabetes. Proc. Natl. Acad. Sci. USA 2024, 121, e2315419121. [Google Scholar] [CrossRef]
- Zhang, Y.; Tanno, T.; Kanellopoulou, C. Cancer Therapeutic Implications of microRNAs in the Regulation of Immune Checkpoint Blockade. ExRNA 2019, 1, 22. [Google Scholar] [CrossRef]
- Hou, D.; Castro, B.; Dapash, M.; Zolp, A.; Katz, J.; Arrieta, V.; Biermann, J.; Melms, J.; Kueckelhaus, J.; Benotmane, J.; et al. B-Cells Drive Response to PD-1 Blockade in Glioblastoma upon Neutralization of TGFβ-Mediated Immunosuppression. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Mejía-Guarnizo, L.V.; Monroy-Camacho, P.S.; Turizo-Smith, A.D.; Rodríguez-García, J.A. The Role of Immune Checkpoints in Antitumor Response: A Potential Antitumor Immunotherapy. Front. Immunol. 2023, 14, 1298571. [Google Scholar] [CrossRef]
- Raposo, C.J.; Yan, P.K.; Chen, A.Y.; Majidi, S.; Hiam-Galvez, K.J.; Satpathy, A.T. Functional Memory T Cells Are Derived from Exhausted Clones and Expanded by Checkpoint Blockade. bioRxiv 2025. [Google Scholar] [CrossRef]
- Sacchetti, B.; Botticelli, A.; Pierelli, L.; Nuti, M.; Alimandi, M. CAR-T with License to Kill Solid Tumors in Search of a Winning Strategy. Int. J. Mol. Sci. 2019, 20, 1903. [Google Scholar] [CrossRef]
- Hoffmann, F.; Fröhlich, A.; Sirokay, J.; de Vos, L.; Zarbl, R.; Dietrich, J.; Strieth, S.; Landsberg, J.; Dietrich, D. DNA Methylation of GITR, OX40, 4-1BB, CD27 , and CD40 Correlates with BAP1 Aberrancy and Prognosis in Uveal Melanoma. Melanoma Res. 2023, 33, 116–125. [Google Scholar] [CrossRef]
- Ralser, D.J.; Klümper, N.; Gevensleben, H.; Zarbl, R.; Kaiser, C.; Landsberg, J.; Hölzel, M.; Strieth, S.; Faridi, A.; Abramian, A.; et al. Molecular and Immune Correlates of PDCD1 (PD-1), PD-L1 (CD274), and PD-L2 (PDCD1LG2) DNA Methylation in Triple Negative Breast Cancer. J. Immunother. 2021, 44, 319–324. [Google Scholar] [CrossRef]
- de Vos, L.; Carrillo Cano, T.M.; Zarbl, R.; Klümper, N.; Ralser, D.J.; Franzen, A.; Herr, E.; Gabrielpillai, J.; Vogt, T.J.; Dietrich, J.; et al. CTLA4 , PD-1 , PD-L1 , PD-L2 , TIM-3 , TIGIT , and LAG3 DNA Methylation Is Associated with BAP1 -Aberrancy, Transcriptional Activity, and Overall Survival in Uveal Melanoma. J. Immunother. 2022, 45, 324–334. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, B.; Gao, J.; Li, J.; Kong, L.; Qin, L. A Hypoxia-Related Signature for Clinically Predicting Diagnosis, Prognosis and Immune Microenvironment of Hepatocellular Carcinoma Patients. J. Transl. Med. 2020, 18, 342. [Google Scholar] [CrossRef]
- Hu, J.; Yu, A.; Othmane, B.; Qiu, D.; Li, H.; Li, C.; Liu, P.; Ren, W.; Chen, M.; Gong, G.; et al. Siglec15 Shapes a Non-Inflamed Tumor Microenvironment and Predicts the Molecular Subtype in Bladder Cancer. Theranostics 2021, 11, 3089–3108. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Q.; Kang, Y.; Liu, J.; Yin, Y.; Liu, L.; Wu, H.; Li, S.; Sui, S.; Shen, M.; et al. Long Noncoding RNAs Control the Modulation of Immune Checkpoint Molecules in Cancer. Cancer Immunol. Res. 2020, 8, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Ichinohe, K.; Sugawara, A.; Kida, S.; Murase, S.; Zhang, J.; Yamada, O.; Hattori, T.; Oshima, Y.; Kikuchi, H. Development of Indole Alkaloid-Type Dual Immune Checkpoint Inhibitors against CTLA-4 and PD-L1 Based on Diversity-Enhanced Extracts. Front. Chem. 2021, 9, 766107. [Google Scholar] [CrossRef] [PubMed]
- U Gandhy, S.; Madan, R.A.; Aragon-Ching, J.B. The Immunotherapy Revolution in Genitourinary Malignancies. Immunotherapy 2020, 12, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.L.; Siefker-Radtke, A.; McConkey, D.; McGregor, B. Renal Cell and Urothelial Carcinoma: Biomarkers for New Treatments. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sangundo, M.F.; Soerohardjo, I.; Heriyanto, D.S. Cytotoxic T Lymphocyte Associated Antigen-4 (CTLA4) Expression with Renal Cell Carcinoma Subtype and Staging. Indones. J. Biomed. Clin. Sci. 2024, 56. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Shuman, L.; Kaag, M.; Raman, J.D.; Merrill, S.; DeGraff, D.J.; Warrick, J.I.; Chen, G. Evaluation of PD-L1 and Other Immune Markers in Bladder Urothelial Carcinoma Stratified by Histologic Variants and Molecular Subtypes. Sci. Rep. 2020, 10, 1439. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, W.; Xie, Y.; Wang, C.; Luo, N.; Chen, Y.; Wang, L.; Cheng, Z.; Gao, Z.; Liu, S. Siglec-9, a Putative Immune Checkpoint Marker for Cancer Progression across Multiple Cancer Types. Front. Mol. Biosci. 2022, 9, 743515. [Google Scholar] [CrossRef]
- Pavlov, A.Y.; Dzidzaria, A.G.; Gafanov, R.A.; Samusevich, V.A.; Mirzoev, E.E.; Kortyshkova, A.O.; Aivazov, M.T.; Mirzoev, F.E. Metastatic Castration-Resistant Prostate Cancer and Immune Checkpoint Inhibitors. Cancer Urol. 2024, 20, 153–163. [Google Scholar] [CrossRef]
- Bahlinger, V.; Hartmann, A.; Eckstein, M. Immunotherapy in Genitourinary Cancers: Role of Surgical Pathologist for Detection of Immunooncologic Predictive Factors. Adv. Anat. Pathol. 2023, 30, 203–210. [Google Scholar] [CrossRef]
- Peng, M. Immune Landscape of Distinct Subtypes in Urothelial Carcinoma Based on Immune Gene Profile. Front. Immunol. 2022, 13, 970885. [Google Scholar] [CrossRef]
- Ivanova, E.; Asadullina, D.; Gilyazova, G.; Rakhimov, R.; Izmailov, A.; Pavlov, V.; Khusnutdinova, E.; Gilyazova, I. Exosomal MicroRNA Levels Associated with Immune Checkpoint Inhibitor Therapy in Clear Cell Renal Cell Carcinoma. Biomedicines 2023, 11, 801. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; A, G.; Qu, C.; Chen, J. Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures. Front. Immunol. 2021, 12, 721030. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fang, Y.; Zhang, Y.; Wang, H.; Yang, Z.; Ding, D. Supramolecular Self-Assembly-Facilitated Aggregation of Tumor-Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. Adv. Mater. 2021, 33, e2008518. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xia, L.; Xia, Z.; Chen, L. Comprehensive Analysis of Innate Immunophenotyping Based on Immune Score Predicting Immune Alterations and Prognosis in Breast Cancer Patients. Genes (Basel) 2021, 13, 88. [Google Scholar] [CrossRef]
- Tao, Y.; Yuan, D.; Shi, Y.; Cao, Y.; Liu, M. Integrative Analysis the Characterization of LAMBs in Predicting the Prognosis and the Immunotherapy Response of Cancers. Research Square 2022. [Google Scholar] [CrossRef]
- Trebeschi, S.; Drago, S.G.; Birkbak, N.J.; Kurilova, I.; Cǎlin, A.M.; Delli Pizzi, A.; Lalezari, F.; Lambregts, D.M.J.; Rohaan, M.W.; Parmar, C.; et al. Predicting Response to Cancer Immunotherapy Using Noninvasive Radiomic Biomarkers. Ann. Oncol. 2019, 30, 998–1004. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Q.; Wang, Z.; Zhang, H.; Zeng, H.; Huang, Q.; Chen, Y.; Jiang, W.; Lin, Z.; Qu, Y.; et al. Intratumoral TIGIT+ CD8+ T-Cell Infiltration Determines Poor Prognosis and Immune Evasion in Patients with Muscle-Invasive Bladder Cancer. J. Immunother. Cancer 2020, 8, e000978. [Google Scholar] [CrossRef]
- Zapała, Ł.; Kunc, M.; Sharma, S.; Pęksa, R.; Popęda, M.; Biernat, W.; Radziszewski, P. Immune Checkpoint Receptor VISTA on Immune Cells Is Associated with Expression of T-Cell Exhaustion Marker TOX and Worse Prognosis in Renal Cell Carcinoma with Venous Tumor Thrombus. J. Cancer Res. Clin. Oncol. 2023, 149, 4131–4139. [Google Scholar] [CrossRef]
- Smok-Kalwat, J.; Mertowska, P.; Mertowski, S.; Smolak, K.; Kozińska, A.; Koszałka, F.; Kwaśniewski, W.; Grywalska, E.; Góźdź, S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int. J. Mol. Sci. 2023, 24, 1506. [Google Scholar] [CrossRef]
- Elia, A.R.; Caputo, S.; Bellone, M. Immune Checkpoint-Mediated Interactions between Cancer and Immune Cells in Prostate Adenocarcinoma and Melanoma. Front. Immunol. 2018, 9, 1786. [Google Scholar] [CrossRef]
- Moldoveanu, D.; Ramsay, L.; Lajoie, M.; Anderson-Trocme, L.; Lingrand, M.; Berry, D.; Perus, L.J.M.; Wei, Y.; Moraes, C.; Alkallas, R.; et al. Spatially Mapping the Immune Landscape of Melanoma Using Imaging Mass Cytometry. Sci. Immunol. 2022, 7, eabi5072. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wasielewski, L.J.; Yang, J.C.; Cai, D.; Evans, C.P.; Murphy, W.J.; Liu, C. The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines 2022, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.L.; Lee, I.K.; Choi, J.; Kim, S.-H.; Oh, S.J. Acetate Decreases PVR/CD155 Expression via PI3K/AKT Pathway in Cancer Cells. BMB Rep. 2021, 54, 431–436. [Google Scholar] [CrossRef]
- Rezouki, I.; Zohair, B.; Ssi, S.A.; Karkouri, M.; Razzouki, I.; Elkarroumi, M.; Badou, A. High VISTA Expression Is Linked to a Potent Epithelial-Mesenchymal Transition and Is Positively Correlated with PD1 in Breast Cancer. Front. Oncol. 2023, 13, 1154631. [Google Scholar] [CrossRef]
- Valentini, A.M.; Di Pinto, F.; Coletta, S.; Guerra, V.; Armentano, R.; Caruso, M.L. Tumor Microenvironment Immune Types in Gastric Cancer Are Associated with Mismatch Repair However, Not HER2 Status. Oncol. Lett. 2019, 18, 1775–1785. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Kimbrough, E.O.; Lou, Y. Next Generation of Immune Checkpoint Inhibitors and beyond. J. Hematol. Oncol. 2021, 14, 45. [Google Scholar] [CrossRef]
- Xie, G.; Cheng, T.; Lin, J.; Zhang, L.; Zheng, J.; Liu, Y.; Xie, G.; Wang, B.; Yuan, Y. Local Angiotensin II Contributes to Tumor Resistance to Checkpoint Immunotherapy. J. Immunother. Cancer 2018, 6, 88. [Google Scholar] [CrossRef]
- Carrozza, F.; Santoni, M.; Piva, F.; Cheng, L.; Lopez-Beltran, A.; Scarpelli, M.; Montironi, R.; Battelli, N.; Tamberi, S. Emerging Immunotherapeutic Strategies Targeting Telomerases in Genitourinary Tumors. Crit. Rev. Oncol. Hematol. 2018, 131, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.C.; Gray, M.A.; Wisnovsky, S.; Ibarlucea-Benitez, I.; Riley, N.M.; Ribi, M.K.; Lustig, M.; Errington, W.J.; Bruncsics, B.; Sarkar, C.A.; et al. Antibody-Lectin Chimeras for Glyco-Immune Checkpoint Blockade. bioRxiv 2022. [Google Scholar] [CrossRef]
- Liu, Y. ’e; Wang, Y.; Yang, Y.; Weng, L.; Wu, Q.; Zhang, J.; Zhao, P.; Fang, L.; Shi, Y.; Wang, P. Emerging Phagocytosis Checkpoints in Cancer Immunotherapy. Signal Transduct. Target. Ther. 2023, 8, 104. [Google Scholar] [CrossRef]
- Tripathi, A.; Johnston, S.E.; Zhao, Y.D.; Hassan, O.; Thompson, L.F.; Lalani, A.-K.A.; Wei, X.X.; Giannakis, M.; Signoretti, S.; Choueiri, T.K.; et al. CD73 Expression in Primary and Metastatic Renal Cell Carcinoma (RCC). J. Clin. Oncol. 2018, 36, 643. [Google Scholar] [CrossRef]
- Jang, A.; Adler, D.M.; Rauterkus, G.P.; Bilen, M.A.; Barata, P.C. Immunotherapies in Genitourinary Oncology: Where Are We Now? Where Are We Going? Cancers (Basel) 2021, 13, 5065. [Google Scholar] [CrossRef] [PubMed]
- Chhibber, A.; Braun, K.V.N.; Han, C.; Chang, H.; Roberts, M.; Li, B. Abstract PD6-05: Characterization of the Immune Landscape of Primary vs Metastatic Breast Cancer in a Real-World Data Cohort. Cancer Res. 2022, 82, PD6–05. [Google Scholar] [CrossRef]
- Lanka, S.M.; Zorko, N.A.; Antonarakis, E.S.; Barata, P.C. Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and beyond. Curr. Oncol. 2023, 30, 4246–4256. [Google Scholar] [CrossRef]
- Restle, D.; Dux, J.; Li, X.; Byun, A.J.; Choe, J.K.; Li, Y.; Vaghjiani, R.G.; Thomas, C.; Misawa, K.; Tan, K.S.; et al. Organ-Specific Heterogeneity in Tumor-Infiltrating Immune Cells and Cancer Antigen Expression in Primary and Autologous Metastatic Lung Adenocarcinoma. J. Immunother. Cancer 2023, 11, e006609. [Google Scholar] [CrossRef]
- Pineda, J.M.B.; Bradley, R.K. DUX4 Is a Common Driver of Immune Evasion and Immunotherapy Failure in Metastatic Cancers. eLife 2024, 12, e89017. [Google Scholar] [CrossRef] [PubMed]
- Zak, J.; Pratumchai, I.; Marro, B.S.; Marquardt, K.L.; Zavareh, R.B.; Lairson, L.L.; Oldstone, M.B.A.; Varner, J.A.; Bachanova, V.; Teijaro, J.R. Myeloid Reprogramming by JAK Inhibition Enhances Checkpoint Blockade Therapy. bioRxiv 2022. [Google Scholar] [CrossRef]
- Jiang, S.; Deng, X.; Luo, M.; Zhou, L.; Chai, J.; Tian, C.; Yan, Y.; Luo, Z. Pan-Cancer Analysis Identified OAS1 as a Potential Prognostic Biomarker for Multiple Tumor Types. Front. Oncol. 2023, 13, 1207081. [Google Scholar] [CrossRef]
- Lee, J.; Im, K.-I.; Gil, S.; Na, H.; Min, G.-J.; Kim, N.; Cho, S.-G. TLR5 Agonist in Combination with Anti-PD-1 Treatment Enhances Anti-Tumor Effect through M1/M2 Macrophage Polarization Shift and CD8+ T Cell Priming. Cancer Immunol. Immunother. 2024, 73, 102. [Google Scholar] [CrossRef]
- Wu, L.; Bai, S.; Huang, J.; Cui, G.; Li, Q.; Wang, J.; Du, X.; Fu, W.; Li, C.; Wei, W.; et al. Nigericin Boosts Anti-Tumor Immune Response via Inducing Pyroptosis in Triple-Negative Breast Cancer. Cancers (Basel) 2023, 15, 3221. [Google Scholar] [CrossRef]
- Peng, L.; Fang, H.; Yang, X.; Zeng, X. Analysis of Combination Therapy of Immune Checkpoint Inhibitors in Osteosarcoma. Front. Chem. 2022, 10, 847621. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Hu, J.; Fu, L.; Huang, G.; Deng, D.; Zhang, M.; Wang, Y.; Shu, G.; Jing, L.; Li, H.; et al. Bladder Cancer Intrinsic LRFN2 Drives Anticancer Immunotherapy Resistance by Attenuating CD8+ T Cell Infiltration and Functional Transition. J. Immunother. Cancer 2023, 11, e007230. [Google Scholar] [CrossRef] [PubMed]
- Boudin, L.; de Nonneville, A.; Finetti, P.; Mescam, L.; Le Cesne, A.; Italiano, A.; Blay, J.-Y.; Birnbaum, D.; Mamessier, E.; Bertucci, F. CSPG4 Expression in Soft Tissue Sarcomas Is Associated with Poor Prognosis and Low Cytotoxic Immune Response. J. Transl. Med. 2022, 20, 464. [Google Scholar] [CrossRef]
- Motzer, R.J.; Robbins, P.B.; Powles, T.; Albiges, L.; Haanen, J.B.; Larkin, J.; Mu, X.J.; Ching, K.A.; Uemura, M.; Pal, S.K.; et al. Avelumab plus Axitinib versus Sunitinib in Advanced Renal Cell Carcinoma: Biomarker Analysis of the Phase 3 JAVELIN Renal 101 Trial. Nat. Med. 2020, 26, 1733–1741. [Google Scholar] [CrossRef]
- Saddawi-Konefka, R.; O’Farrell, A.; Faraji, F.; Clubb, L.; Allevato, M.M.; Anang, N.-A.A.S.; Jensen, S.M.; Wang, Z.; Wu, V.H.; Yung, B.S.; et al. Lymphatic-Preserving Treatment Sequencing with Immune Checkpoint Inhibition Unleashes cDC1-Dependent Antitumor Immunity in HNSCC. bioRxiv 2022. [Google Scholar] [CrossRef]
- Nishida, N. Role of Oncogenic Pathways on the Cancer Immunosuppressive Microenvironment and Its Clinical Implications in Hepatocellular Carcinoma. Cancers (Basel) 2021, 13, 3666. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.; Peng, K.W.; Russell, S.J.; Diaz, R.M. Oncolytic Viruses: Priming Time for Cancer Immunotherapy. BioDrugs 2019, 33, 485–501. [Google Scholar] [CrossRef]
- Keenan, T.E.; Guerriero, J.L.; Barroso-Sousa, R.; Li, T.; O’Meara, T.; Giobbie-Hurder, A.; Tayob, N.; Hu, J.; Severgnini, M.; Agudo, J.; et al. Molecular Correlates of Response to Eribulin and Pembrolizumab in Hormone Receptor-Positive Metastatic Breast Cancer. Nat. Commun. 2021, 12, 5563. [Google Scholar] [CrossRef]
- Fang, S.; Cheng, X.; Shen, T.; Dong, J.; Li, Y.; Li, Z.; Tian, L.; Zhang, Y.; Pan, X.; Yin, Z.; et al. CXCL8 up-Regulated LSECtin through AKT Signal and Correlates with the Immune Microenvironment Modulation in Colon Cancer. Cancers (Basel) 2022, 14, 5300. [Google Scholar] [CrossRef]
- Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef]
- Yumoto, S.; Horiguchi, H.; Kadomatsu, T.; Horino, T.; Sato, M.; Terada, K.; Miyata, K.; Moroishi, T.; Baba, H.; Oike, Y. Host ANGPTL2 Establishes an Immunosuppressive Tumor Microenvironment and Resistance to Immune Checkpoint Therapy. Cancer Sci. 2024, 115, 3846–3858. [Google Scholar] [CrossRef] [PubMed]
- Lakshmipathi, J.; Santha, S.; Li, M.; Qian, Y.; Roy, S.F.; Luheshi, N.; Politi, K.; Bosenberg, M.; Eyles, J.; Muthusamy, V. Intratumoral IL12 mRNA Administration Activates Innate and Adaptive Pathways in Checkpoint Inhibitor Resistant Tumors Resulting in Complete Responses. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Qi, C.; Bai, Y.; Zhao, F.; Chen, H.; Li, Z.; Wang, X.; Chen, M.; Gong, J.; et al. Combination of AKT1 and CDH1 Mutations Predicts Primary Resistance to Immunotherapy in dMMR/MSI-H Gastrointestinal Cancer. J. Immunother. Cancer 2022, 10, e004703. [Google Scholar] [CrossRef]
- Kawashima, S.; Inozume, T.; Kawazu, M.; Ueno, T.; Nagasaki, J.; Tanji, E.; Honobe, A.; Ohnuma, T.; Kawamura, T.; Umeda, Y.; et al. TIGIT/CD155 Axis Mediates Resistance to Immunotherapy in Patients with Melanoma with the Inflamed Tumor Microenvironment. J. Immunother. Cancer 2021, 9, e003134. [Google Scholar] [CrossRef]
- Kwon, M.; An, M.; Klempner, S.J.; Lee, H.; Kim, K.-M.; Sa, J.K.; Cho, H.J.; Hong, J.Y.; Lee, T.; Min, Y.W.; et al. Determinants of Response and Intrinsic Resistance to PD-1 Blockade in Microsatellite Instability-High Gastric Cancer. Cancer Discov. 2021, 11, 2168–2185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Damsky, W.; Weizman, O.-E.; McGeary, M.K.; Hartmann, K.P.; Rosen, C.E.; Fischer, S.; Jackson, R.; Flavell, R.A.; Wang, J.; et al. IL-18BP Is a Secreted Immune Checkpoint and Barrier to IL-18 Immunotherapy. Nature 2020, 583, 609–614. [Google Scholar] [CrossRef]
- Dixon, K.O.; Schorer, M.; Nevin, J.; Etminan, Y.; Amoozgar, Z.; Kondo, T.; Kurtulus, S.; Kassam, N.; Sobel, R.A.; Fukumura, D.; et al. Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity. J. Immunol. 2018, 200, 3000–3007. [Google Scholar] [CrossRef]
- Johansen, A.Z.; Carretta, M.; Thorseth, M.-L.; Khan, S.; Fjæstad, K.Y.; Brøchner, C.B.; Linder, H.; Ankjærgaard, C.; Donia, M.; Chen, I.; et al. Chitooligosaccharides Improve the Efficacy of Checkpoint Inhibitors in a Mouse Model of Lung Cancer. Pharmaceutics 2022, 14, 1046. [Google Scholar] [CrossRef]
- Rayford, A.; Gärtner, F.; Ramnefjell, M.P.; Lorens, J.B.; Micklem, D.R.; Aanerud, M.; Engelsen, A.S.T. AXL Expression Reflects Tumor-Immune Cell Dynamics Impacting Outcome in Non-Small Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitor Monotherapy. Front. Immunol. 2024, 15, 1444007. [Google Scholar] [CrossRef]
- Rugo, H.S.; Delord, J.-P.; Im, S.-A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Le Tourneau, C.; van Brummelen, E.M.J.; Varga, A.; et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-Positive/human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer. Clin. Cancer Res. 2018, 24, 2804–2811. [Google Scholar] [CrossRef]
- Tang, L.; Wang, D.; Hu, T.; Lin, X.; Wu, S. Current Applications of Tumor Local Ablation (TLA) Combined with Immune Checkpoint Inhibitors in Breast Cancer Treatment. Cancer Drug Resist. 2024, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Guo, G.; Han, J.; Yu, J. Gut Microbiome in Modulating Immune Checkpoint Inhibitors. EBioMedicine 2022, 82, 104163. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Nagatomo, R.; Doi, K.; Shimizu, J.; Baba, K.; Saito, T.; Matsumoto, S.; Inoue, K.; Muto, M. Association of Short-Chain Fatty Acids in the Gut Microbiome with Clinical Response to Treatment with Nivolumab or Pembrolizumab in Patients with Solid Cancer Tumors. JAMA Netw. Open 2020, 3, e202895. [Google Scholar] [CrossRef]
- He, Y.; Huang, J.; Li, Q.; Xia, W.; Zhang, C.; Liu, Z.; Xiao, J.; Yi, Z.; Deng, H.; Xiao, Z.; et al. Gut Microbiota and Tumor Immune Escape: A New Perspective for Improving Tumor Immunotherapy. Cancers (Basel) 2022, 14, 5317. [Google Scholar] [CrossRef]
- Szallasi, Z.; Prosz, A.; Sztupinszki, Z.; Moldvay, J. Are Tumor-Associated Carbohydrates the Missing Link between the Gut Microbiome and Response to Immune Checkpoint Inhibitor Treatment in Cancer? Oncoimmunology 2024, 13, 2324493. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, F.Y.; Gills, J.J.; Sears, C.L. Impact of the Microbiome on Checkpoint Inhibitor Treatment in Patients with Non-Small Cell Lung Cancer and Melanoma. EBioMedicine 2019, 48, 642–647. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, J. Exploring the Regulatory Mechanism of Intestinal Flora Based on PD-1 Receptor/ligand Targeted Cancer Immunotherapy. Front. Immunol. 2024, 15, 1359029. [Google Scholar] [CrossRef] [PubMed]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal Microbiota Transplant Promotes Response in Immunotherapy-Refractory Melanoma Patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Chang, L.-S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr. Rev. 2019, 40, 17–65. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Johnson, D.B. Immune-Related Adverse Events and Anti-Tumor Efficacy of Immune Checkpoint Inhibitors. J. Immunother. Cancer 2019, 7, 306. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, T.; Morimoto, M.; Kobayashi, S.; Ueno, M.; Uojima, H.; Hidaka, H.; Kusano, C.; Chuma, M.; Numata, K.; Tsuruya, K.; et al. Association between Immune-Related Adverse Events and Survival in Patients with Hepatocellular Carcinoma Treated with Atezolizumab plus Bevacizumab. Oncologist 2023, 28, e526–e533. [Google Scholar] [CrossRef]
- Hommes, J.W.; Verheijden, R.J.; Suijkerbuijk, K.P.M.; Hamann, D. Biomarkers of Checkpoint Inhibitor Induced Immune-Related Adverse Events-A Comprehensive Review. Front. Oncol. 2020, 10, 585311. [Google Scholar] [CrossRef] [PubMed]
- Marie, M.A.; McCallen, J.D.; Hamedi, Z.S.; Naqash, A.R.; Hoffman, A.; Atwell, D.; Amara, S.; Muzaffar, M.; Walker, P.R.; Yang, L.V. Case Report: Peripheral Blood T Cells and Inflammatory Molecules in Lung Cancer Patients with Immune Checkpoint Inhibitor-Induced Thyroid Dysfunction: Case Studies and Literature Review. Front. Oncol. 2022, 12, 1023545. [Google Scholar] [CrossRef]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef]
- Müller, B.; Bärenwaldt, A.; Herzig, P.; Zippelius, A.; Maul, L.V.; Hess, V.; König, D.; Läubli, H. Changes of Peripheral T Cell Subsets in Melanoma Patients with Immune-Related Adverse Events. Front. Immunol. 2023, 14, 1125111. [Google Scholar] [CrossRef]
- McCormick, B.J.; Zieman, D.; West-Santos, C.; Phillips, M.B. Immune Checkpoint Inhibitor Lichenoid Eruption due to Pembrolizumab. BMJ Case Rep. 2023, 16, e254692. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Saito, Y.; Okamoto, K.; Furugen, A.; Narumi, K.; Takekuma, Y.; Sakakibara-Konishi, J.; Shimizu, Y.; Kinoshita, I.; Sugawara, M.; et al. Association between Multisystem Immune-Related Adverse Events and Progression-Free Survivals in PD-1/PD-L1 Inhibitor Monotherapy. In Vivo 2024, 38, 2886–2896. [Google Scholar] [CrossRef]
- Zhu, J.; Armstrong, A.J.; Friedlander, T.W.; Kim, W.; Pal, S.K.; George, D.J.; Zhang, T. Biomarkers of Immunotherapy in Urothelial and Renal Cell Carcinoma: PD-L1, Tumor Mutational Burden, and beyond. J. Immunother. Cancer 2018, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Sigurjonsdottir, G.; De Marchi, T.; Ehinger, A.; Hartman, J.; Bosch, A.; Staaf, J.; Killander, F.; Niméus, E. Comparison of SP142 and 22C3 PD-L1 Assays in a Population-Based Cohort of Triple-Negative Breast Cancer Patients in the Context of Their Clinically Established Scoring Algorithms. Breast Cancer Res. 2023, 25, 123. [Google Scholar] [CrossRef]
- Rotman, J.; den Otter, L.A.S.; Bleeker, M.C.G.; Samuels, S.S.; Heeren, A.M.; Roemer, M.G.M.; Kenter, G.G.; Zijlmans, H.J.M.A.A.; van Trommel, N.E.; de Gruijl, T.D.; et al. PD-L1 and PD-L2 Expression in Cervical Cancer: Regulation and Biomarker Potential. Front. Immunol. 2020, 11, 596825. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, L.; Wang, X.; Chen, X.; Cao, P.; Yang, Z.; Wen, Q. Liquid Biopsy Biomarkers to Guide Immunotherapy in Breast Cancer. Front. Immunol. 2023, 14, 1303491. [Google Scholar] [CrossRef] [PubMed]
- Ferrata, M.; Schad, A.; Zimmer, S.; Musholt, T.J.; Bahr, K.; Kuenzel, J.; Becker, S.; Springer, E.; Roth, W.; Weber, M.M.; et al. PD-L1 Expression and Immune Cell Infiltration in Gastroenteropancreatic (GEP) and Non-GEP Neuroendocrine Neoplasms with High Proliferative Activity. Front. Oncol. 2019, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.D.; Murugesan, K.; Kuang, Z.; Montesion, M.; Ross, J.S.; Albacker, L.A.; Huang, R.S.P.; Lin, D.I.; Demirci, U.; Creeden, J. Pan-Cancer Landscape of CD274 (PD-L1) Rearrangements in 283,050 Patient Samples, Its Correlation with PD-L1 Protein Expression, and Immunotherapy Response. J. Immunother. Cancer 2021, 9, e003550. [Google Scholar] [CrossRef]
- Sammons, S.; Elliott, A.; Barroso-Sousa, R.; Chumsri, S.; Tan, A.R.; Sledge, G.W. , Jr; Tolaney, S.M.; Torres, E.T.R. Concurrent Predictors of an Immune Responsive Tumor Microenvironment within Tumor Mutational Burden-High Breast Cancer. Front. Oncol. 2023, 13, 1235902. [Google Scholar] [CrossRef]
- Wang, S.; He, Z.; Wang, X.; Li, H.; Liu, X.-S. Antigen Presentation and Tumor Immunogenicity in Cancer Immunotherapy Response Prediction. eLife 2019, 8, e49020. [Google Scholar] [CrossRef]
- Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; et al. Signatures of T Cell Dysfunction and Exclusion Predict Cancer Immunotherapy Response. Nat. Med. 2018, 24, 1550–1558. [Google Scholar] [CrossRef]
- Kim, J.; Yong, S.H.; Jang, G.; Kim, Y.; Park, R.; Koh, H.-H.; Kim, S.; Oh, C.-M.; Lee, S.H. Spatial Profiling of Non-Small Cell Lung Cancer Provides Insights into Tumorigenesis and Immunotherapy Response. Commun. Biol. 2024, 7, 930. [Google Scholar] [CrossRef]
- Vos, J.L.; Traets, J.J.; Qiao, X.; Seignette, I.M.; Peters, D.; Wouters, M.W.; Hooijberg, E.; Broeks, A.; van der Wal, J.E.; Karakullukcu, M.B.; et al. Diversity of the Immune Microenvironment and Response to Checkpoint Inhibitor Immunotherapy in Mucosal Melanoma. JCI Insight 2024, 9, e179982. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Li, M.; Jiang, Z.; Liu, Z.; Wang, X. Correlate the TP53 Mutation and the HRAS Mutation with Immune Signatures in Head and Neck Squamous Cell Cancer. Comput. Struct. Biotechnol. J. 2019, 17, 1020–1030. [Google Scholar] [CrossRef] [PubMed]
- Poddubskaya, E.; Suntsova, M.; Lyadova, M.; Luppov, D.; Guryanova, A.; Lyadov, V.; Garazha, A.; Sorokin, M.; Semenova, A.; Shatalov, V.; et al. Biomarkers of Success of Anti-PD-(L)1 Immunotherapy for Non-Small Cell Lung Cancer Derived from RNA- and Whole-Exome Sequencing: Results of a Prospective Observational Study on a Cohort of 85 Patients. Front. Immunol. 2024, 15, 1493877. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, F.; Boudin, L.; Finetti, P.; Van Berckelaer, C.; Van Dam, P.; Dirix, L.; Viens, P.; Gonçalves, A.; Ueno, N.T.; Van Laere, S.; et al. Immune Landscape of Inflammatory Breast Cancer Suggests Vulnerability to Immune Checkpoint Inhibitors. Oncoimmunology 2021, 10, 1929724. [Google Scholar] [CrossRef]
- Saux, O.L.; Sabatier, R.; Treilleux, I.; Renaud, L.-I.; Brachet, P.-E.; Martinez, A.; Frénel, J.-S.; Abdeddaim, C.; Berthet, J.; Barrin, S.; et al. Immune Landscape and TAM Density in Endometrial Cancer: Implications for Immune Checkpoint Inhibitors Efficacy. Research Square 2024. [Google Scholar] [CrossRef]
- Zhou, J.; Donaubauer, A.-J.; Frey, B.; Becker, I.; Rutzner, S.; Eckstein, M.; Sun, R.; Ma, H.; Schubert, P.; Schweizer, C.; et al. Prospective Development and Validation of a Liquid Immune Profile-Based Signature (LIPS) to Predict Response of Metastatic Cancer Patients to Immune Checkpoint Inhibitors. medRxiv 2020. [Google Scholar] [CrossRef]
- Gao, M.; Wu, X.; Jiao, X.; Hu, Y.; Wang, Y.; Zhuo, N.; Dong, F.; Wang, Y.; Wang, F.; Cao, Y.; et al. Prognostic and Predictive Value of Angiogenesis-Associated Serum Proteins for Immunotherapy in Esophageal Cancer. J. Immunother. Cancer 2024, 12, e006616. [Google Scholar] [CrossRef]
- Moeckel, C.; Bakhl, K.; Georgakopoulos-Soares, I.; Zaravinos, A. The Efficacy of Tumor Mutation Burden as a Biomarker of Response to Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2023, 24, 6710. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Wu, Z.; Zeng, F.; Song, B.; Zhang, Y.; Li, J.; Lui, S.; Wu, M. Tumor Mutational Burden Predicting the Efficacy of Immune Checkpoint Inhibitors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 751407. [Google Scholar] [CrossRef]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular Profiling for Precision Cancer Therapies. Genome Med. 2020, 12, 8. [Google Scholar] [CrossRef]
- Mondelo-Macía, P.; García-González, J.; León-Mateos, L.; Anido, U.; Aguín, S.; Abdulkader, I.; Sánchez-Ares, M.; Abalo, A.; Rodríguez-Casanova, A.; Díaz-Lagares, Á.; et al. Clinical Potential of Circulating Free DNA and Circulating Tumour Cells in Patients with Metastatic Non-Small-Cell Lung Cancer Treated with Pembrolizumab. Mol. Oncol. 2021, 15, 2923–2940. [Google Scholar] [CrossRef] [PubMed]
- Vacante, M.; Ciuni, R.; Basile, F.; Biondi, A. The Liquid Biopsy in the Management of Colorectal Cancer: An Overview. Biomedicines 2020, 8, 308. [Google Scholar] [CrossRef]
- Fejza, A.; Carobolante, G.; Poletto, E.; Camicia, L.; Schinello, G.; Di Siena, E.; Ricci, G.; Mongiat, M.; Andreuzzi, E. The Entanglement of Extracellular Matrix Molecules and Immune Checkpoint Inhibitors in Cancer: A Systematic Review of the Literature. Front. Immunol. 2023, 14, 1270981. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, J. Current and Future Perspectives of Cell-Free DNA in Liquid Biopsy. Curr. Issues Mol. Biol. 2022, 44, 2695–2709. [Google Scholar] [CrossRef] [PubMed]
- Main, S.C.; Cescon, D.W.; Bratman, S.V. Liquid Biopsies to Predict CDK4/6 Inhibitor Efficacy and Resistance in Breast Cancer. Cancer Drug Resist. 2022, 5, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Ao, H.; Xin, Z.; Jian, Z. Liquid Biopsy to Identify Biomarkers for Immunotherapy in Hepatocellular Carcinoma. Biomark. Res. 2021, 9, 91. [Google Scholar] [CrossRef]
- Huang, J.; Huang, D.; Ruan, X.; Zhan, Y.; Chun, S.T.-T.; Ng, A.T.-L.; Na, R. Clinical Translational Research of Liquid Biopsy Applications in Prostate Cancer and Other Urological Cancers. Camb. Prism. Precis. Med. 2023, 1, e33. [Google Scholar] [CrossRef]
- He, K.; Baniasad, M.; Kwon, H.; Caval, T.; Xu, G.; Lebrilla, C.; Hommes, D.W.; Bertozzi, C. Decoding the Glycoproteome: A New Frontier for Biomarker Discovery in Cancer. J. Hematol. Oncol. 2024, 17, 12. [Google Scholar] [CrossRef]
- Ou, X.; Chen, P.; Liu, B.-F. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal. Chem. 2025, 97, 8625–8640. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Su, X.; Wang, P.; Lin, W. The Value of Circulating Circular RNA in Cancer Diagnosis, Monitoring, Prognosis, and Guiding Treatment. Front. Oncol. 2021, 11, 736546. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, H.-T.; Wang, S.; Huang, S.-L.; Zheng, Y.; Wang, C.-Q.; Hu, B.-Y.; Qin, W.; Zou, T.-T.; Fu, Y.; et al. Isolation and Characterization of Exosomes for Cancer Research. J. Hematol. Oncol. 2020, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Colen, R.R.; Rolfo, C.; Ak, M.; Ayoub, M.; Ahmed, S.; Elshafeey, N.; Mamindla, P.; Zinn, P.O.; Ng, C.; Vikram, R.; et al. Radiomics Analysis for Predicting Pembrolizumab Response in Patients with Advanced Rare Cancers. J. Immunother. Cancer 2021, 9, e001752. [Google Scholar] [CrossRef] [PubMed]
- Deantonio, L.; Garo, M.L.; Paone, G.; Valli, M.C.; Cappio, S.; La Regina, D.; Cefali, M.; Palmarocchi, M.C.; Vannelli, A.; De Dosso, S. 18F-FDG PET Radiomics as Predictor of Treatment Response in Oesophageal Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 861638. [Google Scholar] [CrossRef]
- Wesdorp, N.J.; Hellingman, T.; Jansma, E.P.; van Waesberghe, J.-H.T.M.; Boellaard, R.; Punt, C.J.A.; Huiskens, J.; Kazemier, G. Advanced Analytics and Artificial Intelligence in Gastrointestinal Cancer: A Systematic Review of Radiomics Predicting Response to Treatment. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1785–1794. [Google Scholar] [CrossRef]
- Jones, M.A.; Islam, W.; Faiz, R.; Chen, X.; Zheng, B. Applying Artificial Intelligence Technology to Assist with Breast Cancer Diagnosis and Prognosis Prediction. Front. Oncol. 2022, 12, 980793. [Google Scholar] [CrossRef]
- Koh, S.M.; Hong Kei, I.L.; Nguyen, T.M. Radiomics-Based Lung Nodule Classification with Stacking Ensembles. medRxiv 2025. [Google Scholar] [CrossRef]
- Pesapane, F.; Rotili, A.; Botta, F.; Raimondi, S.; Bianchini, L.; Corso, F.; Ferrari, F.; Penco, S.; Nicosia, L.; Bozzini, A.; et al. Radiomics of MRI for the Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients: A Single Referral Centre Analysis. Cancers (Basel) 2021, 13, 4271. [Google Scholar] [CrossRef]
- Rocca, A.; Brunese, M.C.; Santone, A.; Avella, P.; Bianco, P.; Scacchi, A.; Scaglione, M.; Bellifemine, F.; Danzi, R.; Varriano, G.; et al. Early Diagnosis of Liver Metastases from Colorectal Cancer through CT Radiomics and Formal Methods: A Pilot Study. J. Clin. Med. 2021, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Orzan, F.; Iancu, Ş.D.; Dioşan, L.; Bálint, Z. Textural Analysis and Artificial Intelligence as Decision Support Tools in the Diagnosis of Multiple Sclerosis - a Systematic Review. Front. Neurosci. 2024, 18, 1457420. [Google Scholar] [CrossRef]
- Mireștean, C.C.; Iancu, R.I.; Iancu, D.P.T. Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept. J. Clin. Med. 2023, 12, 2413. [Google Scholar] [CrossRef]
- Qin, Y.; Zhu, L.-H.; Zhao, W.; Wang, J.-J.; Wang, H. Review of Radiomics- and Dosiomics-Based Predicting Models for Rectal Cancer. Front. Oncol. 2022, 12, 913683. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging-“How-to” Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Arezzo, F.; Loizzi, V.; La Forgia, D.; Moschetta, M.; Tagliafico, A.S.; Cataldo, V.; Kawosha, A.A.; Venerito, V.; Cazzato, G.; Ingravallo, G.; et al. Radiomics Analysis in Ovarian Cancer: A Narrative Review. Appl. Sci. (Basel) 2021, 11, 7833. [Google Scholar] [CrossRef]
- Bouchareb, Y.; Moradi Khaniabadi, P.; Al Kindi, F.; Al Dhuhli, H.; Shiri, I.; Zaidi, H.; Rahmim, A. Artificial Intelligence-Driven Assessment of Radiological Images for COVID-19. Comput. Biol. Med. 2021, 136, 104665. [Google Scholar] [CrossRef]
- Qin, Y.; Deng, Y.; Jiang, H.; Hu, N.; Song, B. Artificial Intelligence in the Imaging of Gastric Cancer: Current Applications and Future Direction. Front. Oncol. 2021, 11, 631686. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Q.; Chen, X.-M.; Si, G.-F.; Yuan, X.-M. Progress of Lymphocyte Activation Gene 3 and Programmed Cell Death Protein 1 Antibodies for Cancer Treatment: A Review. Biomol. Biomed. 2024, 24, 764–774. [Google Scholar] [CrossRef]
- Roy, D.; Gilmour, C.; Patnaik, S.; Wang, L.L. Combinatorial Blockade for Cancer Immunotherapy: Targeting Emerging Immune Checkpoint Receptors. Front. Immunol. 2023, 14, 1264327. [Google Scholar] [CrossRef]
- Hays, P. Personalized Medicine in Oncology: Small Molecule Inhibitors, Biologics and Immunotherapies. Open Access Gov. 2025, 46, 120–121. [Google Scholar] [CrossRef]
- Jo, W.; Won, T.; Daoud, A.; Čiháková, D. Immune Checkpoint Inhibitors Associated Cardiovascular Immune-Related Adverse Events. Front. Immunol. 2024, 15, 1340373. [Google Scholar] [CrossRef]
- Yin, N.; Li, X.; Zhang, X.; Xue, S.; Cao, Y.; Niedermann, G.; Lu, Y.; Xue, J. Development of Pharmacological Immunoregulatory Anti-Cancer Therapeutics: Current Mechanistic Studies and Clinical Opportunities. Signal Transduct. Target. Ther. 2024, 9, 126. [Google Scholar]
- Dey, S.; Devender, M.; Tiwari, S.; Khokhar, M.; Pandey, R.K. Revolutionizing Cancer Therapy: A Comprehensive Review of Immune Checkpoint Inhibitors. Preprints 2024, 2024120505. [Google Scholar]
- Compagno, S.; Casadio, C.; Galvani, L.; Rosellini, M.; Marchetti, A.; Tassinari, E.; Piazza, P.; Mottaran, A.; Santoni, M.; Schiavina, R.; et al. Novel Immune Checkpoint Inhibitor Targets in Advanced or Metastatic Renal Cell Carcinoma: State of the Art and Future Perspectives. J. Clin. Med. 2024, 13, 5738. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z. Immunotherapy Breakthrough: Immune Checkpoint Inhibitors in Cancer Treatment. Highlights Sci. Eng. Technol. 2024, 123, 523–526. [Google Scholar] [CrossRef]
- Pfail, J.; Drobner, J.; Doppalapudi, K.; Saraiya, B.; Packiam, V.; Ghodoussipour, S. The Role of Tumor and Host Microbiome on Immunotherapy Response in Urologic Cancers. J. Cancer Immunol. (Wilmington) 2024, 6, 1–13. [Google Scholar] [CrossRef]
- Mei, J.; Tang, Y.-H.; Wei, W.; Shi, M.; Zheng, L.; Li, S.-H.; Guo, R.-P. Hepatic Arterial Infusion Chemotherapy Combined with PD-1 Inhibitors plus Lenvatinib versus PD-1 Inhibitors plus Lenvatinib for Advanced Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 618206. [Google Scholar] [CrossRef]
- Zhang, Y.; Kadasah, S.; Xie, J.; Gu, D. Head and Neck Squamous Cell Carcinoma: NT5E Could Be a Prognostic Biomarker. Appl. Bionics Biomech. 2022, 2022, 3051907. [Google Scholar] [CrossRef]
- Zhuang, J.; Qin, B.; Yu, Y.; Kou, Z.; Sun, C.; Meng, F.; Zhang, Y.; Li, L. Case Report: Response with Chemotherapy and Olaparib in a Patient with Advanced Cervical Adenocarcinoma. Research Square 2023. [Google Scholar] [CrossRef]
- de Almeida, D.V.P.; Fong, L.; Rettig, M.B.; Autio, K.A. Immune Checkpoint Blockade for Prostate Cancer: Niche Role or next Breakthrough? Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 1–18. [Google Scholar] [CrossRef]
- Wang, D.; Huang, C.; Wang, D.; Chang, D. Tislelizumab plus Chemotherapy in Metastatic Extramammary Paget Disease after Surgery: A Case Report. Front. Oncol. 2024, 14, 1402490. [Google Scholar] [CrossRef]
- Yang, M.; Cui, M.; Sun, Y.; Liu, S.; Jiang, W. Mechanisms, Combination Therapy, and Biomarkers in Cancer Immunotherapy Resistance. Cell Commun. Signal. 2024, 22, 338. [Google Scholar] [CrossRef]
- Morita, Y.; Saijo, A.; Nokihara, H.; Mitsuhashi, A.; Yoneda, H.; Otsuka, K.; Ogino, H.; Bando, Y.; Nishioka, Y. Radiation Therapy Induces an Abscopal Effect and Upregulates Programmed Death-Ligand 1 Expression in a Patient with Non-Small Cell Lung Cancer. Thorac. Cancer 2022, 13, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Aso, S.; Sato, M.; Aoyagi, Y.; Matsumoto, H.; Nasu, K. Pembrolizumab and Radiotherapy for Platinum-Refractory Recurrent Uterine Carcinosarcoma with an Abscopal Effect: A Case Report. Anticancer Res. 2020, 40, 4131–4135. [Google Scholar] [CrossRef]
- Yuan, J.; Khilnani, A.; Brody, J.; Andtbacka, R.H.I.; Hu-Lieskovan, S.; Luke, J.J.; Diab, A.; Marabelle, A.; Snyder, A.; Cao, Z.A.; et al. Current Strategies for Intratumoural Immunotherapy - Beyond Immune Checkpoint Inhibition. Eur. J. Cancer 2021, 157, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Sánchez, G.S.; Fabian, K.P.; Hodge, J.W. A Landscape of Checkpoint Blockade Resistance in Cancer: Underlying Mechanisms and Current Strategies to Overcome Resistance. Cancer Biol. Ther. 2024, 25, 2308097. [Google Scholar] [CrossRef]
- Qian, F.-F.; Han, B.-H. Mechanisms of Resistance to Immune Checkpoint Inhibitors and Strategies to Reverse Drug Resistance in Lung Cancer. Chin. Med. J. (Engl.) 2020, 133, 2444–2455. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.-T.; Berman, D.M.; Wolchok, J.D. Pooled Analysis of Long-Term Survival Data from Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.; Weber, J.S.; et al. Five-Year Survival Outcomes for Patients with Advanced Melanoma Treated with Pembrolizumab in KEYNOTE-001. Ann. Oncol. 2019, 30, 582–588. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Joseph, A.; Simonaggio, A.; Stoclin, A.; Vieillard-Baron, A.; Geri, G.; Oudard, S.; Michot, J.-M.; Lambotte, O.; Azoulay, E.; Lemiale, V. Immune-Related Adverse Events: A Retrospective Look into the Future of Oncology in the Intensive Care Unit. Ann. Intensive Care 2020, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Nze, C.; Msaouel, P.; Derbala, M.H.; Stephen, B.; Abonofal, A.; Meric-Bernstam, F.; Tannir, N.M.; Naing, A. A Phase II Clinical Trial of Pembrolizumab Efficacy and Safety in Advanced Renal Medullary Carcinoma. Cancers (Basel) 2023, 15, 3806. [Google Scholar] [CrossRef] [PubMed]
- Reid, P.; Sandigursky, S.; Song, J.; Lopez-Olivo, M.A.; Safa, H.; Cytryn, S.; Efuni, E.; Buni, M.; Pavlick, A.; Krogsgaard, M.; et al. Safety and Effectiveness of Combination versus Monotherapy with Immune Checkpoint Inhibitors in Patients with Preexisting Autoimmune Diseases. Oncoimmunology 2023, 12, 2261264. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Alexander, G.; Chu, J.H.; Markopoulos, A.; Maloul, G.; Ayub, M.T.; Fidler, M.J.; Okwuosa, T.M. Immune Checkpoint Inhibitors and Cardiotoxicity: A Comparative Meta-Analysis of Observational Studies and Randomized Controlled Trials. J. Am. Heart Assoc. 2024, 13, e032620. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, P.; Tao, H.; Zhang, S.; Ma, J.; Liu, Z.; Wang, J.; Qian, Y.; Chen, S.; Huang, Z.; et al. The Synergistic Effect of PARP Inhibitors and Immune Checkpoint Inhibitors. Clin. Med. Insights Oncol. 2021, 15, 1179554921996288. [Google Scholar] [CrossRef]
- Yibirin, M.; Hosry, J.; Yepez Guevara, E.; Granwehr, B.P.; Jiang, Y.; Mustafayev, K.; Angelidakis, G.; Torres, H.A. High Sustained Virologic Response Rate after 8 Weeks of Direct-Acting Antivirals in Cancer Patients with Chronic Hepatitis C Virus. Eur. J. Gastroenterol. Hepatol. 2022, 34, 1098–1101. [Google Scholar] [CrossRef]
- Yibirin, M.; Mustafayev, K.; Hosry, J.; Pundhir, P.; Klingen, J.; Yepez Guevara, E.; Granwehr, B.P.; Kaseb, A.; Naing, A.; Patel, S.; et al. Immune Checkpoint Inhibitors Suppress Hepatitis C Virus Replication in Infected Patients with Solid Tumors. Am. J. Gastroenterol. 2023, 118, 1609–1617. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).