Submitted:
05 June 2025
Posted:
06 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Study Participants
3.4. Top Biofunctions, Canonical Pathways, and Network Analysis
3. Discussion
4. Materials and Methods
4.1. Study Particepants and Blood Sample Collection.
4.2. RNA Extraction and miRNA Library Preparation
4.3. Sequencing and Data Analysis
4.4. Ingenuity Pathway Analysis (IPA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younossi, Z. M., Stepanova, M., Afendy, M., Fang, Y., Younossi, Y., Mir, H., & Srishord, M. (2019). Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2018. Clinical Gastroenterology and Hepatology, 17(11), 2239-2246. [CrossRef]
- Chalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K., ... & Sanyal, A. J. (2021). The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 67(1), 328-357. [CrossRef]
- Diehl, A. M., & Day, C. (2020). Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. New England Journal of Medicine, 383(21), 2063-2074. [CrossRef]
- Browning, J. D., Szczepaniak, L. S., Dobbins, R., Nuremberg, P., Horton, J. D., Cohen, J. C., ... & Hobbs, H. H. (2004). Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology, 40(6), 1387-1395. [CrossRef]
- Rich, N. E., Oji, S., Mufti, A. R., Browning, J. D., Parikh, N. D., & Singal, A. G. (2022). Racial and ethnic disparities in nonalcoholic fatty liver disease prevalence, severity, and outcomes in the United States: A systematic review and meta-analysis. Clinical Gastroenterology and Hepatology, 20(5), 1021-1031. [CrossRef]
- Abdelmalek, M. F., Suzuki, A., Guy, C., Unalp-Arida, A., Colvin, R., Johnson, R. J., & Diehl, A. M. (2019). Ethnic differences in the histological severity of nonalcoholic fatty liver disease. Hepatology, 50(3), 792-799. [CrossRef]
- Mondal, T., Smith, C. I., Loffredo, C. A., Quartey, R., Moses, G., Howell, C. D., Korba, B., Kwabi-Addo, B., Nunlee-Bland, G., R Rucker, L., Johnson, J., & Ghosh, S. (2023). Transcriptomics of MASLD Pathobiology in African American Patients in the Washington DC Area †. International journal of molecular sciences, 24(23), 16654. [CrossRef]
- Mondal, T., Loffredo, C. A., Simhadri, J., Nunlee-Bland, G., Korba, B., Johnson, J., Cotin, S., Moses, G., Quartey, R., Howell, C. D., Noreen, Z., Arif, M., & Ghosh, S. (2023). Insights on the pathogenesis of type 2 diabetes as revealed by signature genomic classifiers in an African American population in the Washington, DC area. Diabetes/metabolism research and reviews, 39(1), e3589. [CrossRef]
- Sookoian, S., & Pirola, C. J. (2018). Genetic predisposition in nonalcoholic fatty liver disease. Clinical and Molecular Hepatology, 24(1), 1-14. [CrossRef]
- Klett, D., Moehle, C., & García-Rodríguez, J. L. (2018). MicroRNAs in NAFLD: Progress and perspectives. Biomolecules, 8(4), 156.
- Pirola, C. J., & Sookoian, S. (2020). Noncoding RNAs in nonalcoholic fatty liver disease: Molecular insights and therapeutic implications. Nature Reviews Gastroenterology & Hepatology, 17(2), 123-138. [CrossRef]
- Estep, M., Armistead, D., Hossain, N., Goodman, Z., Baranova, A., Chandhoke, V., & Younossi, Z. M. (2010). Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics, 32(3), 487-497. [CrossRef]
- Liu, C. H., Ampuero, J., Gil-Gómez, A., Montero-Vallejo, R., Rojas, A., Muñoz-Hernández, R., ... & Romero-Gómez, M. (2021). miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Journal of Hepatology, 74(1), 76-89. [CrossRef]
- Arrese, M., Cabrera, D., Kalergis, A. M., & Feldstein, A. E. (2022). Innate immunity and inflammation in NAFLD/NASH. Digestive Diseases and Sciences, 67(3), 881-896. [CrossRef]
- Sur TK, Mondal T, Noreen Z, Johnson J, Nunlee-Bland G, Loffredo CA, Korba BE, Chandra V, Jana SS, Kwabi-Addo B, Sarkar S. Developing Non-Invasive Molecular Markers for Early Risk Assessment of Alzheimer’s Disease. Biomarkers in Neuropsychiatry. 2025 Jan 28:100120. [CrossRef]
- Mondal T, Noreen Z, Loffredo CA, Johnson J, Bhatti A, Nunlee-Bland G, Quartey R, Howell CD, Moses G, Nnanabu T, Cotin ST, Clark M, Chandra V, Jana SS, Kwabi-Addo B, Korba BE, Shahzad S, Bhatti MF, Ghosh S. Transcriptomic Analysis of Alzheimer’s Disease Pathways in a Pakistani Population. J Alzheimers Dis Rep. 2024 Mar 19;8(1):479-493. [CrossRef] [PubMed] [PubMed Central]
- Tanmoy Mondal, J Johnson, TK Sur, CA. Loffredo, ST Cotin, J Sahota, BE Korba, G Nunlee-Blnad, S Ghosh. 2025. Metabolic Dysfunction and Alzheimer’s Disease Risks in African Americans. Alzheimer’s & Dementia. e086476. 20(S2). [CrossRef]
- Vulf, M., Shunkina, D., Komar, A., Bograya, M., Zatolokin, P., Kirienkova, E., Gazatova, N., Kozlov, I., & Litvinova, L. (2021). Analysis of miRNAs Profiles in Serum of Patients With Steatosis and Steatohepatitis. Frontiers in cell and developmental biology, 9, 736677. [CrossRef]
- Leti F, Malenica I, Doshi M, et al. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis. Transl Res. 2015;166(3):304-314. [CrossRef]
- Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48(6):1810-1820. [CrossRef]
- Mehta, R., Otgonsuren, M., Younoszai, Z., Allawi, H., Raybuck, B., & Younossi, Z. (2016). Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease. BMJ open gastroenterology, 3(1), e000096. [CrossRef]
- Mohammed A, Shaker OG, Khalil MAF, Abu-El-Azayem AK, Samy A, Fathy SA, AbdElguaad MMK, Mahmoud FAM, Erfan R. Circulating miR-206, miR-181b, and miR-21 as promising biomarkers in hypothyroidism and their relationship to related hyperlipidemia and hepatic steatosis. Front Mol Biosci. 2024 Feb 2;11:1307512. [CrossRef] [PubMed] [PubMed Central]
- Chen, X., Tan, Q. Q., Tan, X. R., Li, S. J., & Zhang, X. X. (2021). Circ_0057558 promotes nonalcoholic fatty liver disease by regulating ROCK1/AMPK signaling through targeting miR-206. Cell death & disease, 12(9), 809. [CrossRef]
- Xiang, J., Deng, Y. Y., Liu, H. X., & Pu, Y. (2022). LncRNA MALAT1 Promotes PPARα/CD36-Mediated Hepatic Lipogenesis in Nonalcoholic Fatty Liver Disease by Modulating miR-206/ARNT Axis. Frontiers in bioengineering and biotechnology, 10, 858558. [CrossRef]
- Zhou J, Wang H, Sun Q, et al. miR-224-5p-enriched exosomes promote tumorigenesis by directly targeting androgen receptor in non-small cell lung cancer. Mol Ther Nucleic Acids. 2021;23:1217-1228. Published 2021 Feb 3. [CrossRef]
- Saini, A., Rutledge, B., Damughatla, A. R., Rasheed, M., Naylor, P., & Mutchnick, M. (2024). Manifestation and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease in a Predominately African American Population at a Multi-Specialty Healthcare Organization. Healthcare (Basel, Switzerland), 12(15), 1478. [CrossRef]
- Li YJ, Baumert BO, Stratakis N, Goodrich JA, Wu HT, He JX, Zhao YQ, Aung MT, Wang HX, Eckel SP, Walker DI, Valvi D, La Merrill MA, Ryder JR, Inge TH, Jenkins T, Sisley S, Kohli R, Xanthakos SA, Baccarelli AA, McConnell R, Conti DV, Chatzi L. Circulating microRNA expression and nonalcoholic fatty liver disease in adolescents with severe obesity. World J Gastroenterol. 2024 Jan 28;30(4):332-345. [CrossRef] [PubMed] [PubMed Central]
- Stolzenburg LR, Harris A. Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell Tissue Res. 2018;371(2):325-338. [CrossRef]
- Johnson K, Leary PJ, Govaere O, Barter MJ, Charlton SH, Cockell SJ, Tiniakos D, Zatorska M, Bedossa P, Brosnan MJ, Cobbold JF, Ekstedt M, Aithal GP, Clément K, Schattenberg JM, Boursier J, Ratziu V, Bugianesi E, Anstee QM, Daly AK; LITMUS Consortium Investigators§; LITMUS Consortium Investigators. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Rep. 2021 Nov 25;4(2):100409. [CrossRef] [PubMed] [PubMed Central]
- Zhang X, Mens MMJ, Abozaid YJ, Bos D, Darwish Murad S, de Knegt RJ, Ikram MA, Pan Q, Ghanbari M. Circulatory microRNAs as potential biomarkers for fatty liver disease: the Rotterdam study. Aliment Pharmacol Ther. 2021 Feb;53(3):432-442. [CrossRef] [PubMed] [PubMed Central]
- Hochberg, J. T., Sohal, A., Handa, P., Maliken, B. D., Kim, T. K., Wang, K., Gochanour, E., Li, Y., Rose, J. B., Nelson, J. E., Lindor, K. D., LaRusso, N. F., & Kowdley, K. V. (2023). Serum miRNA profiles are altered in patients with primary sclerosing cholangitis receiving high-dose ursodeoxycholic acid. JHEP reports : innovation in hepatology, 5(6), 100729. [CrossRef]
- Behrooz, M., Hajjarzadeh, S., Kahroba, H., Ostadrahimi, A., & Bastami, M. (2023). Expression pattern of miR-193a, miR122, miR155, miR-15a, and miR146a in peripheral blood mononuclear cells of children with obesity and their relation to some metabolic and inflammatory biomarkers. BMC pediatrics, 23(1), 95. [CrossRef]
- Estep, M., Armistead, D., Hossain, N., Elarainy, H., Goodman, Z., Baranova, A., Chandhoke, V., & Younossi, Z. M. (2010). Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Alimentary pharmacology & therapeutics, 32(3), 487–497. [CrossRef]
- Zhang, X., Zhang, D., Bu, X., Zhang, X., & Cui, L. (2022). Identification of a novel miRNA-based recurrence and prognosis prediction biomarker for hepatocellular carcinoma. BMC bioinformatics, 23(1), 479. [CrossRef]
- Li H, Liu T, Yang Y, et al. Interplays of liver fibrosis-associated microRNAs: Molecular mechanisms and implications in diagnosis and therapy. Genes Dis. 2022;10(4):1457-1469. Published 2022 Sep 5. [CrossRef]
- Chen, X., Tao, X., Wang, M., Cannon, R. D., Chen, B., Yu, X., Qi, H., Saffery, R., Baker, P. N., Zhou, X., Han, T. L., & Zhang, H. (2024). Circulating extracellular vesicle-derived miR-1299 disrupts hepatic glucose homeostasis by targeting the STAT3/FAM3A axis in gestational diabetes mellitus. Journal of nanobiotechnology, 22(1), 509. [CrossRef]
- Yuan, Z., Meng, J., Shen, X., Wang, M., Yu, Y., Shi, L., Li, Y. L., Hassan, H. M., Li, H., He, Z. X., & Qin, T. (2024). Formononetin Mitigates Liver Fibrosis via Promoting Hepatic Stellate Cell Senescence and Inhibiting EZH2/YAP Axis. Journal of agricultural and food chemistry, Advance online publication. [CrossRef]
- Wang Z, Yang X, Gui S, et al. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Front Pharmacol. 2021;12:779606. Published 2021 Nov 24. [CrossRef]
- Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297. [CrossRef]
- O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. Published 2018 Aug 3. [CrossRef]
- Wu, G., Zhang, Y., Liang, B., Yin, L., Gao, M., Zhang, H., Xu, Y., Han, X., Qi, Y., Liu, F., & Xu, L. (2024). miR-218-5p promotes hepatic lipogenesis through targeting Elovl5 in non-alcoholic fatty liver disease. Biochemical pharmacology, 226, 116411. [CrossRef]
- Yanni, J., D’Souza, A., Wang, Y., Li, N., Hansen, B. J., Zakharkin, S. O., Smith, M., Hayward, C., Whitson, B. A., Mohler, P. J., Janssen, P. M. L., Zeef, L., Choudhury, M., Zi, M., Cai, X., Logantha, S. J. R. J., Nakao, S., Atkinson, A., Petkova, M., Doris, U., … Boyett, M. R. (2020). Silencing miR-370-3p rescues funny current and sinus node function in heart failure. Scientific reports, 10(1), 11279. [CrossRef]
- Allahverdi, A., Arefian, E., Soleimani, M., Ai, J., Nahanmoghaddam, N., Yousefi-Ahmadipour, A., & Ebrahimi-Barough, S. (2020). MicroRNA-4731-5p delivered by AD-mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. Journal of cellular physiology, 235(11), 8167–8175. [CrossRef]
- Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-Regulating microRNAs and Cancer. Front Oncol. 2017;7:65. Published 2017 Apr 18. [CrossRef]
- Tang W, Rao Y, Pi L, Li J. A review on the role of MiR-193a-5p in oncogenesis and tumor progression. Front Oncol. 2025;15:1543215. Published 2025 Mar 14. [CrossRef]
- Zhang, F. B., Du, Y., Tian, Y., Ji, Z. G., & Yang, P. Q. (2019). MiR-1299 functions as a tumor suppressor to inhibit the proliferation and metastasis of prostate cancer by targeting NEK2. European review for medical and pharmacological sciences, 23(2), 530–538. [CrossRef]
- Lafferty, M. J., Aygün, N., Patel, N. K., Krupa, O., Liang, D., Wolter, J. M., Geschwind, D. H., de la Torre-Ubieta, L., & Stein, J. L. (2023). MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size. eLife, 12, e79488. [CrossRef]
- Kong B, Zhao S, Kang X, Wang B. MicroRNA-133a-3p inhibits cell proliferation, migration and invasion in colorectal cancer by targeting AQP1 [retracted in: Oncol Lett. 2024 Nov 20;29(2):66. https://doi.org/10.3892/ol.2024.14812.]. Oncol Lett. 2021;22(3):649. [CrossRef]
- Cheng, F., Yang, M. M., & Yang, R. H. (2019). MiRNA-365a-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation via targeting RUNX2. European review for medical and pharmacological sciences, 23(18), 7766–7774. [CrossRef]
- Hu Y, Dingerdissen H, Gupta S, et al. Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis. Comput Biol Med. 2018;103:183-197. [CrossRef]
- Dai Q, Shi R, Zhang G, et al. miR-539-5p targets BMP2 to regulate Treg activation in B-cell acute lymphoblastic leukemia through TGF-β/Smads/MAPK. Exp Biol Med (Maywood). 2024;249:10111. Published 2024 Feb 13. [CrossRef]
- Qian, X., Wang, Y., Hu, W., Xu, X., Gao, L., Meng, Y., & Yan, J. (2022). MiR-369-5p inhibits the proliferation and migration of hepatocellular carcinoma cells by down-regulating HOXA13 expression. Tissue & cell, 74, 101721. [CrossRef]
- Zhang, N., Wei, X., & Xu, L. (2013). miR-150 promotes the proliferation of lung cancer cells by targeting P53. FEBS letters, 587(15), 2346–2351. [CrossRef]
- Ma, J., Mannoor, K., Gao, L., Tan, A., Guarnera, M. A., Zhan, M., Shetty, A., Stass, S. A., Xing, L., & Jiang, F. (2014). Characterization of microRNA transcriptome in lung cancer by next-generation deep sequencing. Molecular oncology, 8(7), 1208–1219. [CrossRef]
- Alvarado-Flores F, Kaneko-Tarui T, Beyer W, et al. Placental miR-3940-3p Is Associated With Maternal Insulin Resistance in Late Pregnancy. J Clin Endocrinol Metab. 2021;106(12):3526-3535. [CrossRef]
- Xue S, Liu K, Zhao L, et al. The role of miR-369-3p in proliferation and differentiation of preadipocytes in Aohan fine-wool sheep. Arch Anim Breed. 2023;66(1):93-102. Published 2023 Feb 27. [CrossRef]
- Mushtaq, I., Hsieh, T. H., Chen, Y. C., Kao, Y. H., & Chen, Y. J. (2024). MicroRNA-452-5p regulates fibrogenesis via targeting TGF-β/SMAD4 axis in SCN5A-knockdown human cardiac fibroblasts. iScience, 27(6), 110084. [CrossRef]
- Ferraldeschi M, Romano S, Giglio S, et al. Circulating hsa-miR-323b-3p in Huntington’s Disease: A Pilot Study. Front Neurol. 2021;12:657973. Published 2021 May 5. [CrossRef]
- Sun S, Wang X, Xu X, et al. MiR-433-3p suppresses cell growth and enhances chemosensitivity by targeting CREB in human glioma. Oncotarget. 2017;8(3):5057-5068. [CrossRef]
- Meng L, Du Y, Deng B, Duan Y. miR-379-5p regulates the proliferation, cell cycle, and cisplatin resistance of oral squamous cell carcinoma cells by targeting ROR1. Am J Transl Res. 2023;15(3):1626-1639. Published 2023 Mar 15.
- Josson S, Gururajan M, Hu P, et al. miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res. 2014;20(17):4636-4646. [CrossRef]
- Wang, J., Tan, J., Qi, Q., Yang, L., Wang, Y., Zhang, C., Hu, L., Chen, H., & Fang, X. (2018). miR-487b-3p Suppresses the Proliferation and Differentiation of Myoblasts by Targeting IRS1 in Skeletal Muscle Myogenesis. International journal of biological sciences, 14(7), 760–774. [CrossRef]
- Wang Q, Yu X, Dou L, et al. miR-154-5p Functions as an Important Regulator of Angiotensin II-Mediated Heart Remodeling. Oxid Med Cell Longev. 2019;2019:8768164. Published 2019 Sep 12. [CrossRef]
- Liang, J., Bao, D., Ye, Z., Cao, B., Jin, G., Lu, Z., & Chen, J. (2023). miR-3195 suppresses the malignant progression of osteosarcoma cells via targeting SOX4. Journal of orthopaedic surgery and research, 18(1), 809. [CrossRef]
- Wang S, Song X, Wang K, et al. Plasma exosomal miR-320d, miR-4479, and miR-6763-5p as diagnostic biomarkers in epithelial ovarian cancer. Front Oncol. 2022;12:986343. Published 2022 Dec 14. [CrossRef]
- Xin H, Wang C, Liu Z. miR-196a-5p promotes metastasis of colorectal cancer via targeting IκBα. BMC Cancer. 2019;19(1):30. Published 2019 Jan 8. [CrossRef]
- Jia, F., Zhang, L., Jiang, Z., Tan, G., & Wang, Z. (2023). FZD1/KLF10-hsa-miR-4762-5p/miR-224-3p-circular RNAs axis as prognostic biomarkers and therapeutic targets for glioblastoma: a comprehensive report. BMC medical genomics, 16(1), 21. [CrossRef]
- Li, Z., Lu, J., Zeng, G., Pang, J., Zheng, X., Feng, J., & Zhang, J. (2019). MiR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV (CAMK4). Cell death & disease, 10(11), 789. [CrossRef]
- Khalilian S, Hosseini Imani SZ, Ghafouri-Fard S. Emerging roles and mechanisms of miR-206 in human disorders: a comprehensive review. Cancer Cell Int. 2022;22(1):412. Published 2022 Dec 17. [CrossRef]
- Shi, Y., Wang, S., Liu, D., Wang, Z., Zhu, Y., Li, J., Xu, K., Li, F., Wen, H., & Yang, R. (2024). Exosomal miR-4645-5p from hypoxic bone marrow mesenchymal stem cells facilitates diabetic wound healing by restoring keratinocyte autophagy. Burns & trauma, 12, tkad058. [CrossRef]
- Chen, E. B., Zhou, Z. J., Xiao, K., Zhu, G. Q., Yang, Y., Wang, B., Zhou, S. L., Chen, Q., Yin, D., Wang, Z., Shi, Y. H., Gao, D. M., Chen, J., Zhao, Y., Wu, W. Z., Fan, J., Zhou, J., & Dai, Z. (2019). The miR-561-5p/CX3CL1 Signaling Axis Regulates Pulmonary Metastasis in Hepatocellular Carcinoma Involving CX3CR1+ Natural Killer Cells Infiltration. Theranostics, 9(16), 4779–4794. [CrossRef]
- Nakano, T., Chen, C. L., Chen, I. H., Tseng, H. P., Chiang, K. C., Lai, C. Y., Hsu, L. W., Goto, S., Lin, C. C., & Cheng, Y. F. (2023). Overexpression of miR-4669 Enhances Tumor Aggressiveness and Generates an Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Its Clinical Value as a Predictive Biomarker. International journal of molecular sciences, 24(9), 7908. [CrossRef]
- Sathipati SY, Tsai MJ, Aimalla N, et al. An evolutionary learning-based method for identifying a circulating miRNA signature for breast cancer diagnosis prediction. NAR Genom Bioinform. 2024;6(1):lqae022. Published 2024 Feb 24. [CrossRef]
- Ghafouri-Fard S, Najafi S, Hussen BM, Ganjo AR, Taheri M, Samadian M. DLX6-AS1: A Long Non-coding RNA With Oncogenic Features. Front Cell Dev Biol. 2022;10:746443. Published 2022 Feb 25. [CrossRef]
- Schröder, S., Fuchs, U., Gisa, V., Pena, T., Krüger, D. M., Hempel, N., Burkhardt, S., Salinas, G., Schütz, A. L., Delalle, I., Sananbenesi, F., & Fischer, A. (2024). PRDM16-DT is a novel lncRNA that regulates astrocyte function in Alzheimer’s disease. Acta neuropathologica, 148(1), 32. [CrossRef]
- Zhao, Q., Cumming, H., Cerruti, L., Cunningham, J. M., & Jane, S. M. (2004). Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase, HDAC1. The Journal of biological chemistry, 279(40), 41477–41486. [CrossRef]
- Xian, J. Y., Wu, W., Chen, X., Bao, H. J., Zhang, S., Sheng, X. J., & Chen, S. (2024). SNORD99 promotes endometrial cancer development by inhibiting GSDMD-mediated pyroptosis through 2’-O-methylation modification. Journal of cellular and molecular medicine, 28(12), e18500. [CrossRef]
- Shang, X., Song, X., Wang, K., Yu, M., Ding, S., Dong, X., Xie, L., & Song, X. (2021). SNORD63 and SNORD96A as the non-invasive diagnostic biomarkers for clear cell renal cell carcinoma. Cancer cell international, 21(1), 56. [CrossRef]
- Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol. 2019;9:587. Published 2019 Jul 9. [CrossRef]
- Jiang, J., Hu, H., Chen, Q., Zhang, Y., Chen, W., Huang, Q., Chen, X., Li, J., & Zhong, M. (2021). Long non-coding RNA SNHG29 regulates cell senescence via p53/p21 signaling in spontaneous preterm birth. Placenta, 103, 64–71. [CrossRef]
- Li, Z., Zhang, J., Liu, X., Li, S., Wang, Q., Di Chen, Hu, Z., Yu, T., Ding, J., Li, J., Yao, M., Fan, J., Huang, S., Gao, Q., Zhao, Y., & He, X. (2018). The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nature communications, 9(1), 1572. [CrossRef]
- Yang, Y., Ren, M., Song, C., Li, D., Soomro, S. H., Xiong, Y., Zhang, H., & Fu, H. (2017). LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget, 8(48), 84123–84139. [CrossRef]
- Lin, X., Ding, J. M., Zheng, X. Z., & Chen, J. G. (2023). Immunity-related long noncoding RNA WDFY3-AS2 inhibited cell proliferation and metastasis through Wnt/β-catenin signaling in oral squamous cell carcinoma. Archives of oral biology, 147, 105625. [CrossRef]
- John, S., Bhowmick, K., Park, A., Huang, H., Yang, X., & Mishra, L. (2025). Recent advances in targeting obesity, with a focus on TGF-β signaling and vagus nerve innervation. Bioelectronic medicine, 11(1), 10. [CrossRef]




| Control (n=4) | MASLD (n=4) | P-value | |
| Age (years) | 61±4.83 | 53±5.94 | 0.08 |
| Male/Female | 2/2 | 2/2 | - |
| BMI (kg/m2) | 25.22±1.53 | 27.8±4.25 | 0.29 |
| Hba1c (%) | 5.26±0.37 | 5.65±0.07 | 0.27 |
| LDL (Optimal range <100 mg/dL) | - | 137.34±26.65 | - |
| HDL (Optimal range 40-70 mg/dL) | - | 50.34±18.82 | - |
| Triglyceride (Optimal range <150 mg/dL) | - | 124±85.08 | - |
| FibroScan* | - | Patient 1- F0; Patient 2- F2-F3; Patient 3- F0-F1; Patient 4- F0-F1 | - |
| Steatosis Stage** | Patient 1- S3; Patient 2- S3; Patient 3- S1; Patient 4- S3 | - |
| miRNA | Fold Change | P-Value | Biological Functions |
| hsa-miR-218-5p | -5.82 | 0.0003 | Regulates placental development, airway inflammation, and hepatic lipogenesis; targets TGFβ2, SMAD2, TLR4, Elovl5. [41] |
| hsa-miR-370-3p | -3.88 | 0.0005 | Regulates VSMC phenotype, glioblastoma suppression, and sinus node dysfunction in heart failure. [42] |
| hsa-miR-4731-5p | -3.57 | 0.0125 | Tumor suppressor in glioblastoma, melanoma, and NSCLC; impacts viability, EMT, and apoptosis. [43] |
| hsa-miR-1343-5p | -3.48 | 0.0020 | Reduces TGF-β signaling and fibrosis via exosomal delivery; therapeutic potential in lung disease. [28] |
| hsa-miR-224-5p | -2.88 | 0.0001 | Promotes EMT in hepatocellular carcinoma, regulates autophagy in breast cancer, and modulates cardiovascular inflammation. [44] |
| hsa-miR-193a-5p | -2.80 | 0.0031 | Tumor suppressor; inhibits proliferation and metastasis in ovarian and prostate cancers. [45] |
| hsa-miR-1299 | -2.78 | 0.0055 | Tumor suppressor; inhibits NEK2 in prostate cancer, also regulates RHOT1 and PDL1 in other cancers. [46] |
| hsa-miR-4707-3p | -2.69 | 0.0021 | Modulates cell fate in human neocortex development. [47] |
| hsa-miR-133a-3p | -2.67 | 0.0247 | Tumor suppressor in colorectal cancer; inhibits angiogenesis. [48] |
| hsa-miR-365a-3p | -2.59 | 0.0236 | Promotes lung cancer via PI3K/AKT; affects osteogenesis by targeting RUNX2. [49] |
| hsa-miR-4664-5p | -2.59 | 0.0223 | Detected in breast cancer; potential cancer biomarker. [50] |
| hsa-miR-539-5p | -2.51 | 0.0039 | Inhibits pancreatic cancer proliferation; regulates Tregs in leukemia. [51] |
| hsa-miR-369-5p | -2.37 | 0.0175 | Inhibits hepatocellular carcinoma by targeting HOXA13. [52] |
| hsa-miR-150-3p | -2.12 | 0.0275 | Antitumor in lung cancer; enhances neuronal proliferation. [53] |
| hsa-miR-1185-1-3p | -2.05 | 0.0267 | Biomarker for weight loss response; associated with lung cancer. [54] |
| hsa-miR-3940-3p | -2.01 | 0.0026 | Promotes granulosa cell proliferation; linked to insulin resistance in pregnancy. [55] |
| hsa-miR-369-3p | -1.90 | 0.0373 | Anti-inflammatory; inhibits preadipocyte proliferation and differentiation. [56] |
| hsa-miR-452-5p | -1.89 | 0.0297 | Regulates fibrosis and promotes cancer progression. [57] |
| hsa-miR-323b-3p | -1.86 | 0.0363 | Upregulated in Huntington’s disease; involved in neurodegeneration. [58] |
| hsa-miR-433-3p | -1.82 | 0.0236 | Suppresses glioma growth; enhances chemotherapy sensitivity. [59] |
| hsa-miR-379-5p | -1.81 | 0.0209 | Plays a role in regulating cellular processes, particularly in cancer development and progression. [60] |
| hsa-miR-409-5p | -1.71 | 0.0480 | Promotes tumor growth, EMT, and bone metastasis in prostate cancer. [61] |
| hsa-miR-487b-3p | -1.69 | 0.0112 | Negative regulator of skeletal myogenesis; suppresses C2C12 myoblast proliferation. [62] |
| hsa-miR-154-5p | -1.65 | 0.0451 | Triggers cardiac oxidative stress and inflammation; tumor suppressor in glioblastoma. [63] |
| hsa-miR-3195 | 1.60 | 0.0125 | Suppresses osteosarcoma progression by targeting SOX4; linked to prostate cancer. [64] |
| hsa-miR-6758-5p | 1.65 | 0.0165 | Specific function remains unknown. |
| hsa-miR-4479 | 1.7 | 0.0198 | Potential biomarker in cancer; roles in immunosuppression and metastasis. [65] |
| hsa-miR-196a-5p | 1.7 | 0.0437 | Oncogene; promotes invasion, metastasis, and proliferation in many cancers. [66] |
| hsa-miR-4762-5p | 2.0 | 0.0034 | Detected in breast cancer tissues; role in tumorigenesis is under study. [67] |
| hsa-miR-129-5p | 2.35 | 0.0147 | Tumor suppressor; inhibits proliferation in hepatocellular carcinoma. [68] |
| hsa-miR-206 | 2.56 | 0.0353 | Involved in cancers, neurodegenerative, and cardiovascular diseases; tumor suppressor. [69] |
| hsa-miR-4645-5p | 3.02 | 0.0309 | Facilitates diabetic wound healing by restoring keratinocyte autophagy. [70] |
| hsa-miR-561-3p | 3.80 | 0.0122 | Modulates CX3CL1 signaling in hepatocellular carcinoma; suppresses metastasis. [71] |
| hsa-miR-4669 | 3.85 | <0.0001 | Enhances tumor aggressiveness; creates immunosuppressive environment in liver cancer. [72] |
| hsa-miR-5698 | 5.29 | <0.0001 | Identified as breast cancer biomarker; functions not well characterized. [73] |
| Other ncRNA | Fold Change | P-Value | Biological Functions |
| Homo_sapiens_tRNA-Leu-AAG-1 | -8.03 | 0.043 | Encodes a tRNA specific for leucine with the AAG anticodon, essential for protein synthesis. |
| ENSG00000282021 | -6.29 | 0.004 | Specific function remains unknown. |
| ENSG00000285756 | -5.95 | 0.006 | Specific function remains unknown. |
| DLX6-AS1 | -5.76 | 0.009 | Long non-coding RNA implicated in promoting tumor cell proliferation, migration, invasion, and epithelial-mesenchymal transition in various cancers. [74] |
| FMNL1-DT | -5.44 | 0.034 | Specific function remains unknown. |
| APOBEC3B-AS1 | -5.42 | 0.003 | Specific function remains unknown. |
| RN7SL426P | -5.23 | 0.012 | Specific function remains unknown. |
| ENSG00000254639 | -5.23 | 0.020 | Specific function remains unknown. |
| RSF1-IT1 | -5.20 | 0.020 | Specific function remains unknown. |
| ENSG00000273064 | -5.07 | 0.036 | Specific function remains unknown. |
| PRDM16-DT | -5.03 | 0.031 | Long non-coding RNA involved in regulating astrocyte function and implicated in colorectal cancer metastasis and drug resistance. [75] |
| RNU6-70P | -5.02 | 0.025 | Specific function remains unknown. |
| Homo_sapiens_tRNA-Gly-GCC-5 | -4.41 | 0.005 | Encodes a tRNA specific for glycine with the GCC anticodon, essential for protein synthesis. |
| U8 | -3.75 | 0.019 | Specific function remains unknown. |
| NFE4 | -3.11 | 0.014 | Transcription factor involved in regulating fetal γ-globin gene expression. Acetylation of NFE4 prevents its ubiquitination and modulates its interaction with histone deacetylase HDAC1, influencing gene activation. [76] |
| Homo_sapiens_tRNA-Met-CAT-6 | -1.95 | 0.037 | Encodes transfer RNA for methionine with anticodon CAT, essential for initiating protein synthesis. |
| Homo_sapiens_tRNA-Asp-GTC-2 | -1.86 | 0.002 | Encodes transfer RNA for aspartic acid with anticodon GTC, facilitating incorporation of aspartic acid during protein synthesis. |
| SNORD99 | 1.69 | 0.007 | Small nucleolar RNA involved in 2’-O-methylation of ribosomal RNA. Overexpression promotes endometrial cancer development by inhibiting GSDMD-mediated pyroptosis. [77] |
| SNORD96A | 1.71 | 0.005 | Small nucleolar RNA implicated in ribosomal RNA modification. Elevated levels in plasma serve as a non-invasive diagnostic biomarker for clear cell renal cell carcinoma (ccRCC). [78] |
| SNORD48 | 1.71 | 0.030 | Small nucleolar RNA involved in post-transcriptional modification of other small nuclear RNAs. Associated with prostate and hematologic cancers. [79] |
| ENSG00000280434 | 1.97 | 0.004 | Specific function remains unknown. |
| SNHG29 | 2.40 | 0.000 | Long non-coding RNA that regulates cell senescence via p53/p21 signaling and promotes glioblastoma progression through the miR-223-3p/CTNND1 axis. [80] |
| LINC01138 | 2.74 | 0.012 | Long intergenic non-coding RNA that acts as an oncogenic driver by interacting with PRMT5, enhancing its stability, and promoting tumorigenicity in hepatocellular carcinoma. [81] |
| ENSG00000253374 | 3.86 | 0.033 | Specific function remains unknown. |
| RN7SL33P | 4.58 | 0.021 | Specific function remains unknown. |
| LINC00461 | 4.96 | 0.000 | Long non-coding RNA important for glioma progression, affecting cell proliferation, migration, and invasion via MAPK/ERK and PI3K/AKT signaling pathways. [82] |
| ENSG00000286834 | 5.09 | 0.012 | Specific function remains unknown. |
| WDFY3-AS2 | 5.28 | 0.022 | Long non-coding RNA that acts as a tumor suppressor by inhibiting cell proliferation and metastasis through the Wnt/β-catenin signaling pathway in oral squamous cell carcinoma. [83] |
| miRNA ID | Fold Change at p-Value <0.05 | Role in MASLD |
| miR-206 | 2.22±0.19 | miR-206 regulates lipid metabolism and fibrosis in MASLD by downregulating FGF21 and modulating the MAPK pathway. |
| miR-1343-5p | -3.98±2.50 | miR-1343-5p contributes to MASLD by modulating the PI3K/Akt pathway, promoting hepatic lipid accumulation and inflammation. |
| miR-224-5p | -2.65±0.52 | miR-224-5p exacerbates MASLD by activating the TGF-β/Smad pathway, promoting liver fibrosis and inflammation. |
| miR-1299 | -3.59±1.71 | miR-1299 plays a role in MASLD by inhibiting the Wnt/β-catenin pathway, thereby reducing hepatic fibrosis and lipid accumulation. |
| miR-193a-5p | -1.79±0.26 | miR-193a-5p contributes to MASLD by deactivating the JNK/c-Jun pathway, which reduces inflammation and hepatic injury. |
| miR-185-3p | -2.59±1.06 | miR-185-3p mitigates MASLD by inhibiting the NF-κB pathway, reducing inflammation and liver damage. |
| miR-3960 | -1.64±0.95 | miR-3960 contributes to MASLD by activating the SIRT1/AMPK pathway, promoting lipid metabolism and reducing hepatic steatosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
