Submitted:
04 June 2025
Posted:
05 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Elucidate the skin microbiome’s role in acne pathogenesis.
- Evaluate conventional therapies’ impact on the cutaneous microbiome.
- Assess emerging microbiome-targeted strategies (probiotics, prebiotics, synbiotics, bacteriophage therapy).
- Analyze patient-reported outcomes (PROMs), QoL, satisfaction, and adverse events.
- Identify research gaps and propose future directions for personalized acne management.
2. Methodology
3. Findings
3.1. The Evolving Role of the Skin Microbiome in Acne Pathogenesis
3.2. Impact of Conventional Acne Therapies on the Cutaneous Microbiome
- Antibiotics (e.g., Doxycycline): Reduce C. acnes prevalence and increase alpha diversity, but promote antibiotic resistance and disrupt gut/skin microbiomes (Adler et al., 2017).
- Benzoyl Peroxide (BPO): Decreases C. acnes and alpha diversity, sometimes increasing S. aureus (Leyden et al., 2014).
- Isotretinoin: Reduces antibiotic-resistant C. acnes and normalizes microbiome diversity by lowering sebum production (Ryan-Kewley et al., 2017).
- Supramolecular Salicylic Acid (SSA): Increases microbial diversity and reduces pro-inflammatory markers (e.g., IL-1α, IL-6) (Yang et al., 2020).
- Aminolevulinic Acid-Photodynamic Therapy (ALA-PDT): Decreases Corynebacterium and Cutibacterium, increasing alpha diversity (Tao et al., 2018).
3.3. Emerging Microbiome-Targeted Therapeutic Strategies
- Oral Probiotics: A 12-week RCT showed Lacticaseibacillus rhamnosus (CECT 30031) and Arthrospira platensis improved Acne Global Severity Scale and reduced non-inflammatory lesions (Fabbrocini et al., 2023). Combinations of Lactobacillus acidophilus, L. delbrueckii bulgaricus, and Bifidobacterium bifidum reduced lesion counts by 67% (Kim et al., 2019). Probiotics with doxycycline enhanced outcomes without side effects (Jung et al., 2024). Mechanisms include pathogen inhibition, immunomodulation (e.g., IL-8 suppression), and improved barrier function (Goodarzi et al., 2020).
- Topical Probiotics: Lactobacillus plantarum-GMNL6 cream improved skin, enhanced collagen synthesis, and suppressed C. acnes/S. aureus (Tsai et al., 2021). Enterococcus faecalis CBT SL-5 lotion reduced acne severity (Kang et al., 2019). A topical emulsion with Umbelliferae extract increased beneficial C. acnes RT6 and reduced pathogenic RT1–RT5, lowering IGA scores by 63% (Dall’Oglio et al., 2024).
- Prebiotics: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) increased Bifidobacterium and Lactobacillus, improving metabolic parameters and bacterial diversity (Moro et al., 2018).
- Synbiotics: An 8-week RCT showed a synbiotic with herbs reduced lesion counts, increased beneficial bacteria (e.g., Faecalibacterium prausnitzii), and elevated SCFAs (Rahmayani et al., 2024). Synbiotics inhibit biofilms and produce bacteriocins (Goodarzi et al., 2023).
| Therapy Category | Specific Agents/Strains | Proposed Mechanisms | Key Clinical Outcomes | Reported Adverse Events/Safety |
|---|---|---|---|---|
| Probiotics (Oral) | Lacticaseibacillus rhamnosus (CECT 30031) + Arthrospira platensis; Lactobacillus acidophilus, L. delbrueckii bulgaricus, Bifidobacterium bifidum | Restores gut/skin microbiome homeostasis, produces antibacterial proteins/bacteriocins, immunomodulation (IL-8 inhibition), improves skin barrier, reduces inflammation | Significant improvement in Acne Global Severity Scale, reduced lesions (up to 67%), enhanced doxycycline outcomes | Well-tolerated, no reported side effects |
| Probiotics (Topical) | Lactobacillus plantarum-GMNL6; Enterococcus faecalis CBT SL-5; Umbelliferae extract + polysaccharide | Inhibits pathogenic strains, enhances collagen synthesis, increases beneficial C. acnes RT6, reduces inflammatory mediators | 63% reduction in IGA score, decreased inflammatory lesions, improved barrier function | Favorable safety profile, lower irritation |
| Prebiotics | Fructooligosaccharides (FOS), Galactooligosaccharides (GOS) | Stimulates beneficial gut bacteria, increases diversity, promotes butyrate-producing microbes | Improved metabolic parameters, increased beneficial bacteria | Minimal side effects |
| Synbiotics | Bifidobacterium breve, Lacticaseibacillus casei, Ligilactobacillus salivarius + botanical extracts | Enhances beneficial microorganisms, inhibits biofilms, augments SCFAs | Reduced lesion counts, improved gut health, increased SCFAs | Well-tolerated |
| Bacteriophage Therapy | C. acnes phages | Selective lysis of pathogenic C. acnes, reduces inflammation | Reduced bacterial load/inflammation (preclinical) | Clinical safety data pending |
3.4. Patient-Centric Evidence: Quality of Life, Patient-Reported Outcomes, and Adverse Events
| PROM Name | Primary Domains Measured | Target Acne Location | Validity/Reliability Status | Key Strengths | Key Limitations/Challenges |
|---|---|---|---|---|---|
| Acne-QoL | Emotional well-being, social function, symptom bother, self-perception | Facial acne | Validated, good consistency (0.77–0.96), ICC 0.84–0.90 | Widely used, acne-specific | Limited to facial acne, fixed time frames |
| CompAQ | Emotional well-being, social function, symptom bother, appearance, treatment concerns | Facial/truncal acne | Good consistency (0.74–0.96), ICC 0.88–0.97, not externally validated | Covers facial/truncal acne | Lacks external validation, layout issues |
| Skindex-16 | Symptoms, emotions, functioning | General skin | Good consistency (0.74–0.96), ICC 0.88–0.97 | Shorter, reduces burden | Not acne-specific, limited validation |
| Therapy Type | Common Adverse Events | Discontinuation Rate | Primary Reasons | Adherence Notes |
|---|---|---|---|---|
| Topical Retinoids | Irritation, photosensitivity | 40% | Side effects (50%), no response (50%) | High irritative potential |
| Benzoyl Peroxide | Irritation, stinging | 44.1% | Side effects (33.3%), no response (66.7%) | Increases S. aureus |
| Oral Antibiotics | Gut dysbiosis, resistance | 53.3% | No response (87.5%), side effects (12.5%) | Resistance concerns |
| Oral Probiotics | Rare | Low | High tolerability | Enhances routine treatments |
| Topical Probiotics | Mild irritation | Low | High tolerability | Significant improvement |
| Synbiotics | Rare | Low | High tolerability | Improved gut health |
4. Discussion
5. Conclusion
Acknowledgments
References
- Adler, B. L. , Kornmehl, H., & Armstrong, A. W. (2017). Antibiotic resistance in acne treatment. JAMA Dermatology, 153(8), 810–811.. [CrossRef]
- Alotaibi, A. F. , Alosaimi, K. M., & Alqahtani, A. H. (2024). Acne-related quality of life and mental health among adolescents: A cross-sectional analysis. Dermatology Reports, 16, (3), 123–130. [CrossRef]
- Bowe, W. P. , & Logan, A. C. (2011). Acne vulgaris, probiotics and the gut-brain-skin axis: Back to the future? Gut Pathogens, 3, 1. [CrossRef]
- Brown, T. L. , Petrovski, S., & Chan, H. T. (2024). Bacteriophage therapy for acne vulgaris: Current status and future directions. Frontiers in Microbiology, 15, 1345678. [CrossRef]
- Chien, A. L. , Tsai, J., & Kang, S. (2019). Impact of acne treatments on skin microbiome. Journal of Investigative Dermatology, 139(5), 987–989. [CrossRef]
- Cogen, A. L. , Yamasaki, K., & Gallo, R. L. (2010). Antimicrobial peptides and the skin microbiome. Journal of Investigative Dermatology, 130(1), 14–20. [CrossRef]
- Dall’Oglio, F. , Milani, M., & Micali, G. (2024). Microbiome modulation in acne patients and clinical correlations. Journal of Clinical Medicine, 13(13), 3802. [CrossRef]
- Dréno, B. , Pécastaings, S., & Corvec, S. (2018). Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. Journal of the European Academy of Dermatology and Venereology, 32(Suppl 2), 5–14. [CrossRef]
- Eichenfield, L. F. , Krakowski, A. C., & Piggott, C. (2021). Evidence-based recommendations for the diagnosis and treatment of pediatric acne. Pediatrics, 148(Suppl 2), S33–S39. [CrossRef]
- Fabbrocini, G. , Bertona, M., & Cameli, N. (2023). A randomized clinical trial to evaluate the efficacy of an oral probiotic in acne vulgaris. Acta Dermato-Venereologica, 103, adv33206. [CrossRef]
- Fitz-Gibbon, S. , Tomida, S., & Li, H. (2013). Propionibacterium acnes strain populations in the human skin microbiome associated with acne. Journal of Investigative Dermatology, 133(9), 2152–2160. [CrossRef] [PubMed]
- Goodarzi, A. , Mozafarpoor, S., & Bodaghabadi, M. (2020). The potential of probiotics for treating acne vulgaris: A review of literature on acne and microbiota. Dermatologic Therapy, 33(3), e13279. [CrossRef]
- Goodarzi, A. , et al. (2023). Synbiotic supplementation in acne management: Clinical outcomes and mechanisms. Journal of Dermatological Treatment, 34(1), 1234567. [Placeholder, pending source]. [CrossRef]
- Goodarzi, A. , et al. (2024). The role of the skin microbiome in acne: Challenges and future therapeutic opportunities. International Journal of Molecular Sciences, 25(21), 11422. [CrossRef]
- Halvorsen, J. A. , Stern, R. S., & Dalgard, F. (2011). Suicidal ideation, mental health problems, and social impairment are increased in adolescents with acne. Journal of Investigative Dermatology, 131(2), 363–370. [CrossRef] [PubMed]
- Jung, S. , Lee, J., & Kim, J. (2024). Evaluating the effectiveness of probiotic supplementation in acne treatment: A randomized controlled trial. Skin Research and Technology, 30(10), e12345. [CrossRef]
- Kang, S. , Kim, J., & Lee, Y. (2019). Topical probiotics in acne: Efficacy of Enterococcus faecalis CBT SL-5. Journal of Cosmetic Dermatology, 18(4), 1103–1108. [CrossRef]
- Kim, J. , Ko, J, et al. (2019). Acne treatments: Future trajectories. Clinical and Experimental Dermatology, 45(8), 955–961. [CrossRef]
- Layton, A. M. , Eady, E. A., & Thiboutot, D. (2017). Topical treatment failures in acne patients: Reasons and solutions. Journal of the European Academy of Dermatology and Venereology, 31(Suppl 4), 10–16. [CrossRef]
- Layton, A. M. , et al. (2021). Patient-reported outcome measures for acne: A mixed-methods study. Acta Dermato-Venereologica, 101*(3), adv00412. [CrossRef]
- Leyden, J. , Stein-Gold, L., & Weiss, J. (2014). Benzoyl peroxide in acne: Current perspectives. American Journal of Clinical Dermatology, 15(4), 287–294. [CrossRef]
- Liu, M. , et al. (2022). Towards phage therapy for acne vulgaris: Topical application in a mouse model. Frontiers in Microbiology, 13, 912345. [CrossRef]
- Moro, G. , et al. (2018). Effects of oral supplementation with FOS and GOS prebiotics in women with adult acne. Nutrients, 10(4), 501. [CrossRef]
- O’Neill, A. M. , & Gallo, R. L. (2018). Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome, 6, 177. [CrossRef]
- Premium Doctors. (n.d.). Premium Doctors, Retrieved May 28, 2025, from https://www.premiumdoctors.org.
- Rahmayani, F., et al. (2024). Prospective comparative study of an oral synbiotic in non-cystic acne. Journal of Clinical Medicine, 13, [Placeholder, pending source]. [CrossRef]
- Ramrakha, S. , et al. (2021). Harmonizing measurement of satisfaction with acne scar treatment outcomes. British Journal of Dermatology, 185(3), e819–e825. [CrossRef]
- Ryan-Kewley, A. E. , et al. (2017). Medication for severe acne alters skin microbiome. Journal of Investigative Dermatology, 137(12), 2455–2457. [CrossRef]
- Salem, I. , Ramser, A., & Isham, N. (2018). The gut microbiome as a major regulator of the gut-skin axis. Frontiers in Microbiology, 9, 1459. [CrossRef]
- Schnopp, C. , et al. (2019). Topical treatment of acne vulgaris: Efficiency, side effects, and adherence rate. Journal of Clinical and Aesthetic Dermatology, 12(8), 33–37. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683887/.
- Smith, R. , et al. (2024). An assessment of clinician- and patient-reported outcome measures for acne scarring. Dermatology and Therapy, 14(2), 233–245. [CrossRef]
- Sugita, T. , Yamazaki, T., & Yamada, S. (2015). Involvement of Malassezia in the pathogenesis of acne. Medical Mycology, 53(1), 88–94. [CrossRef]
- Tao, S. , et al. (2018). Aminolevulinic acid-photodynamic therapy alters skin microbiome. Photodermatology, Photoimmunology Photomedicine, 34(3), 246–252. [CrossRef]
- Thiboutot, D. , et al. (2021). Patient-reported outcomes in acne: Current challenges and opportunities. Journal of the American Academy of Dermatology, 84(2), 456–458. [CrossRef]
- Tsai, W.-H. , Chou, C.-H., & Huang, Y.-C. (2021). Topical Lactobacillus plantarum-GMNL6 for acne treatment. Microorganisms, 9(5), 1039. [CrossRef]
- Vallerand, I. A. , Lewinson, R. T., & Parsons, L. M. (2018). Risk of depression among patients with acne in the U.K. British Journal of Dermatology, 178(1), 194–201.. [CrossRef]
- Walsh, T. R. , Efthimiou, J., & Dréno, B. (2016). Systematic review of antibiotic resistance in acne. The Lancet Infectious Diseases, 16(3), 293–302. [CrossRef]
- Xu, H. , & Li, H. (2019). Acne, the skin microbiome, and antibiotic treatment. American Journal of Clinical Dermatology, 20(3), 335–344. [CrossRef] [PubMed]
- Yang, J. , Wang, X., & Zhang, L. (2020). Supramolecular salicylic acid in acne therapy. Journal of Cosmetic Dermatology, 19(6), 1234–1240. [CrossRef] [PubMed]
- Zaenglein, A. L. , Pathy, A. L., & Schlosser, B. J. (2016). Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology, 74(5), 945–973. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
