Submitted:
19 May 2025
Posted:
20 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
| fluid | dilation | how a fixed flow transforms |
|---|---|---|
| AdS/CFT () | . | |
| Schrödinger () | . | |
| Lifshitz (z) | . |
3. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Polyakov, A.M. Conformal symmetry of critical fluctuations. JETP Lett. 1970, 12, 381–383.
- Cardy, J. Scaling and Renormalization in Statistical Physics; Cambridge University Press, 1996.
- Honerkamp-Smith, A.R.; Veatch, S.L.; Keller, S.L. An introduction to critical points for biophysicists: Observations of compositional heterogeneity in lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2012, 1818, 53–63. Preprint: arXiv:1203.2199. [CrossRef]
- Veatch, S.L.; Keller, S.L. Seeing spots: Complex phase behavior in simple membranes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2005, 1746, 172–185. [CrossRef]
- Mouritsen, O.G. Life—As a Matter of Fat: The Emerging Science of Lipidomics; Springer: Berlin, 2005.
- Schmidt, D.; McIntosh, T.J.; El-Husseini, A.H. Lipid-protein interactions: Lessons learned from stress. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006, 1758, 1295–1302. [CrossRef]
- Sugahara, M.; Yasuda, S.; Kikuchi, T. Critical fluctuations in membrane protein populations enhance allosteric communication. Biophysical Journal 2019, 116, 32–39. [CrossRef]
- Machta, B.B.; Veatch, S.L.; Sethna, J.P. Critical Casimir forces in cellular membranes. Physical Review Letters 2013, 110, 228101. [CrossRef]
- Beggs, J.M.; Plenz, D. Neuronal avalanches in neocortical circuits. Journal of neuroscience 2003, 23, 11167–11177. [CrossRef]
- Chialvo, D.R. Emergent complex neural dynamics. Nature physics 2010, 6, 744–750. [CrossRef]
- Rubinov, M.; Sporns, O.; Thivierge, J.P.; Breakspear, M. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS computational biology 2011, 7, e1002038. [CrossRef]
- Kopell, N.; Ermentrout, G.; Whittington, M.A.; Traub, R.D. Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences 2000, 97, 1867–1872. [CrossRef]
- Kitzbichler, M.G.; Smith, M.L.; Christensen, S.R.; Bullmore, E. Broadband criticality of human brain network synchronization. PLoS computational biology 2009, 5, e1000314. [CrossRef]
- Botcharova, M.; Farmer, S.F.; Berthouze, L. Markers of criticality in phase synchronization. Frontiers in systems neuroscience 2014, 8, 176. [CrossRef]
- Rocha, R.P.; Koçillari, L.; Suweis, S.; Corbetta, M.; Maritan, A. Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. Scientific reports 2018, 8, 15682. [CrossRef]
- Pribram, K.H. Languages of the brain: Experimental paradoxes and principles in neuropsychology.; Prentice-Hall, 1971.
- Pribram, K.H. Brain and perception: Holonomy and structure in figural processing; Psychology Press, 2013.
- Kerskens, C.M.; Pérez, D.L. Experimental indications of non-classical brain functions. Journal of Physics Communications 2022, 6, 105001. [CrossRef]
- Tagliazucchi, E.; Balenzuela, P.; Fraiman, D.; Chialvo, D.R. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Frontiers in physiology 2012, 3, 15. [CrossRef]
- Banerjee, D.; Souslov, A.; Abanov, A.G.; Vitelli, V. Odd viscosity in chiral active fluids. Nature Communications 2017, 8. [CrossRef]
- Markovich, T.; Lubensky, T.C. Odd Viscosity in Active Matter: Microscopic Origin and 3D Effects. Physical review letters 2020, 127 4, 048001. [CrossRef]
- Unruh, W.G. Experimental Black-Hole Evaporation? Phys. Rev. Lett. 1981, 46, 1351–1353. [CrossRef]
- Weinfurtner, S.; Tedford, E.W.; Penrice, M.C.J.; Unruh, W.G.; Lawrence, G.A. Measurement of Stimulated Hawking Emission in an Analogue System. Phys. Rev. Lett. 2011, 106, 021302. [CrossRef]
- Bhattacharyya, S.; Minwalla, S.; Hubeny, V.E.; Rangamani, M. Nonlinear fluid dynamics from gravity. Journal of High Energy Physics 2008, 2008, 045. [CrossRef]
- Ainslie, P.N.; Brassard, P. Why is the neural control of cerebral autoregulation so controversial? F1000prime reports 2014, 6, 14. [CrossRef]
- Lang, E.W.; Mudaliar, Y.; Lagopoulos, J.; Dorsch, N.; Yam, A.; Griffith, J.; Mulvey, J. A review of cerebral autoregulation: assessment and measurements. Australasian Anaesthesia 2005, 2005, 161–172.
- Aaslid, R.; Lindegaard, K.F.; Sorteberg, W.; Nornes, H. Cerebral autoregulation dynamics in humans. Stroke 1989, 20, 45–52. [CrossRef]
- Paulson, O.; Strandgaard, S.; Edvinsson, L. Cerebral autoregulation. Cerebrovascular and brain metabolism reviews 1990, 2, 161–192.
- Hubeny, V.E.; Minwalla, S.; Rangamani, M. The Fluid/Gravity Correspondence. arXiv preprint 2011, [arXiv:hep-th/1107.5780].
- Kachru, S.; Liu, X.; Mulligan, M. Gravity Duals of Lifshitz-like Fixed Points. Phys. Rev. D 2008, 78, 106005, [arXiv:hep-th/0808.1725]. [CrossRef]
- Son, D.T. Toward an AdS/Cold Atoms Correspondence: A Geometric Realization of the Schrödinger Symmetry. Phys. Rev. D 2008, 78, 046003, [arXiv:hep-th/0804.3972]. [CrossRef]
- Balasubramanian, K.; McGreevy, J. Gravity Duals for Non-Relativistic CFTs. Phys. Rev. Lett. 2008, 101, 061601, [arXiv:hep-th/0804.4053]. [CrossRef]
- Hoyos, C.; Kim, B.S.; Oz, Y. Lifshitz Hydrodynamics. J. High Energy Phys. 2013, 11, 145, [arXiv:hep-th/1304.7481]. [CrossRef]
- Baier, R.; Romatschke, P.; Son, D.T.; Starinets, A.O.; Stephanov, M.A. Relativistic viscous hydrodynamics, conformal invariance, and holography. J. High Energy Phys. 2008, 04, 100, [arXiv:hep-th/0712.2451]. [CrossRef]
- Kety, S.S.; Schmidt, C.F.; et al. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. The Journal of clinical investigation 1948, 27, 476–483.
- Adams, A.; Balasubramanian, K.; McGreevy, J. Hot spacetimes for cold atoms. Journal of High Energy Physics 2008, 2008, 059. [CrossRef]
- Lecrux, C.; Hamel, E. The neurovascular unit in brain function and disease. Acta physiologica 2011, 203, 47–59. [CrossRef]
- Gu, X.; Chen, W.; Volkow, N.D.; Koretsky, A.P.; Du, C.; Pan, Y. Synchronized astrocytic Ca2+ responses in neurovascular coupling during somatosensory stimulation and for the resting state. Cell reports 2018, 23, 3878–3890. [CrossRef]
- Kennerley, A.J.; Harris, S.; Bruyns-Haylett, M.; Boorman, L.; Zheng, Y.; Jones, M.; Berwick, J. Early and late stimulus-evoked cortical hemodynamic responses provide insight into the neurogenic nature of neurovascular coupling. Journal of Cerebral Blood Flow & Metabolism 2012, 32, 468–480. [CrossRef]
- Lin, F.L.; Wu, S.Y. Non-relativistic holography and singular black hole. Physics Letters B 2009, 679, 65–72. [CrossRef]
- Barnes, E.; Vaman, D.; Wu, C. Holographic real-time nonrelativistic correlators at zero and finite temperature. Phys. Rev. D 2010, 82, 125042. [CrossRef]
- Witten, E. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 1998, 2, 505–532, [hep-th/9803131]. [CrossRef]
- Rangamani, M. Gravity and hydrodynamics: lectures on the fluid-gravity correspondence. Classical and Quantum Gravity 2009, 26, 224003. [CrossRef]
- Rousseaux, G.; Mathis, C.; Maissa, P.; Philbin, T.G.; Leonhardt, U. Observation of Negative-Frequency Waves in a Water Tank. New J. Phys. 2008, 10, 053015. [CrossRef]
- Euvé, L.P.; Michel, F.; Parentani, R.; Philbin, T.G.; Rousseaux, G. Observation of Noise Correlated by the Hawking Effect in a Water Tank. Phys. Rev. Lett. 2016, 117, 121301. [CrossRef]
- Maldacena, J. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252, [hep-th/9711200]. [CrossRef]
- Klebanov, I.R. TASI lectures: Introduction to the AdS/CFT correspondence. Strings, Branes and Gravity 2002, pp. 615–650, [hep-th/0009139]. [CrossRef]
- Zaanen, J.; Liu, Y.W.; Sun, Y.; Schalm, K. Holographic Duality in Condensed Matter Physics; Cambridge University Press, 2015.
- Faulkner, T.; Guica, M.; Hartman, T.; Myers, R.C.; Van Raamsdonk, M. Gravitation from entanglement in holographic CFTs. Journal of High Energy Physics 2014, 2014, 1–41. [CrossRef]
- Lashkari, N.; McDermott, M.B.; Van Raamsdonk, M. Gravitational dynamics from entanglement “thermodynamics”. Journal of High Energy Physics 2014, 2014, 1–16. [CrossRef]
- Swingle, B. Constructing holographic spacetimes using entanglement renormalization. arXiv preprint arXiv:1209.3304 2012. [CrossRef]
- Van Raamsdonk, M. Building up space–time with quantum entanglement. International Journal of Modern Physics D 2010, 19, 2429–2435. [CrossRef]
- Ryu, S.; Takayanagi, T. Aspects of holographic entanglement entropy. Journal of High Energy Physics 2006, 2006, 045. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
