Submitted:
16 May 2025
Posted:
16 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Thermodynamics of the Fe-C-N-A-B-Ti System in the Fe-Rich Corner in Microalloyed Steel
2.1. Calphad Modeling
2.2. Subsystems with Relevance in Microalloyed Steel
2.3. Gibbs-Energy Description of the BN-Phase
3. Materials and Sample Characterization
3.1. Composition
3.2. Methods
3.2.1. Microstructure Analysis
3.2.2. EDS - Particle Analysis
4. Results
4.1. Initial Microstructure
4.2. Interrelation of AlN and BN Within Fe-C-N-Al-B
4.2.1. Solvus - Temperature of AlN and BN
4.2.2. Pseudo-Binary Fe-Al and Fe-B Phase Diagram Within the Fe-N-C-Al-B System
4.3. Interrelation of AlN, BN and TiN Within Fe-C-N-Al-B-Ti
4.3.1. Experiment
4.3.2. Pseudo-Binary Fe-Ti Phase Diagram Within the Fe-N-C-Al-B-Ti System
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker TN (2016) Microalloyed Steels. Ironmaking & Steelmaking, Taylor & Francis 43(4): 264–307. [CrossRef]
- Costa e Silva A (2020) Challenges and opportunities in thermodynamic and kinetic modeling microalloyed HSLA steels using computational thermodynamics. Calphad 68: 101720. [CrossRef]
- HABU R, MIYATA M, TAMUKAI S et al. (1983) Improvement of Hardenability of Steel Containing Aluminum and Boron by Double Quenching. ISIJ International 23(2): 176–183. [CrossRef]
- KAWAMURA K, OTSUBO T, FURUKAWA T (1976) Relationship between the Hardenability of Steel and the “Effective Boron” in Steel. ISIJ Int. 16(10): 545–550. [CrossRef]
- McMahon CJ (1980) The role of solute segregation in promoting the hardenability of steel. Metall Trans A 11(3): 531–535. [CrossRef]
- Wipp D (2021) Boron Influence on Microstructural Evolution and Mechanical Properties in Micro-Alloyed Carbon Steels: Precipitation and Segregation Behavior. Dissertation, Technische Universität Wien.
- Sharma M, Ortlepp I, Bleck W (2019) Boron in Heat-Treatable Steels: A Review. steel research international 90(11): 1900133. [CrossRef]
- Wang WS, Zhu HY, Sun J et al. (2019) Thermodynamic analysis of BN, AlN AND TiN Precipitation in boron-bearing steel. Metalurgija 58(3-4): 199–202.
- Baker TN (2019) Titanium Microalloyed Steels. Ironmaking & Steelmaking 46(1): 1–55. [CrossRef]
- Wilson FG, Gladman T (1988) Aluminium Nitride in Steel. International Materials Reviews 33(1): 221–286. [CrossRef]
- Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. With special reference to refractory metals. Academic Press Inc, New York.
- P Gustafson (1985) A thermodynamic evaluation of the Fe-C system. Calphad: 259–267.
- Frisk K (1991) A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems. Calphad 15(1): 79–106. [CrossRef]
- Miettinen J, Visuri V-V, Fabritius T et al. (2020) Thermodynamic Description of Ternary Fe-B-X Systems. Part 7: Fe-B-C. Archives of Metallurgy and Materials Vol. 65, iss. 2: 923–933. [CrossRef]
- Lee B-J (2001) Thermodynamic assessment of the Fe-Nb-Ti-C-N system. Metallurgical and Materials Transactions A 32(10): 2423–2439. [CrossRef]
- Chin K-G, Lee H-J, Kwak J-H et al. (2010) Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels. Journal of Alloys and Compounds 505(1): 217–223. [CrossRef]
- E. Povoden-Karadeniz (Ed.) (2025) Thermodynamic Database “ME-Fe_CDLIPE2.0.2.tdb”.
- Najafkhani F, Kheiri S, Pourbahari B et al. Recent Advances in the Kinetics of Normal/Abnormal Grain Growth: A Review. 1644-9665 21(1): 1–20. [CrossRef]
- Rios PR, Fonseca GS (2010) Grain Boundary Pinning by Particles. Materials Science Forum 638-642: 3907–3912. [CrossRef]
- Radis R, Kozeschnik E (2010) Kinetics of AlN Precipitation in Microalloyed Steel. Modelling and Simulation in Materials Science and Engineering 18(5): 55003. [CrossRef]
- Wriedt HA The Al−N (Aluminum-Nitrogen) System. Bulletin of Alloy Phase diagrams 1986(4): 329–333. [CrossRef]
- Bruls RJ, Hintzen HT, With G de et al. (2001) The temperature dependence of the Grueneisen parameters of MgSiN2, AlN. Journal of Physics and Chemistry of Solids 62(4): 783–792. [CrossRef]
- Lu X-G, Selleby M, Sundman B (2005) Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. Calphad 29(1): 68–89. [CrossRef]
- Sennour M, Esnouf C (2003) Contribution of Advanced Microscopy Techniques to Nano-Precipitates Characterization: Case of AlN Precipitation in Low-Carbon Steel. Acta Materialia 51(4): 943–957. [CrossRef]
- Gao N, Baker TN (1998) Austenite Grain Growth Behaviour of Microalloyed Al-V-N and Al-V-Ti-N Steels. ISIJ Int. 38(7): 744–751. [CrossRef]
- Chen Y, Wang Y, Zhao A (2012) Precipitation of AlN and MnS in Low Carbon Aluminium-Killed Steel. J. Iron Steel Res. Int. 19(4): 51–56. [CrossRef]
- Führer M, Zamberger S, Povoden-Karadeniz E (2025) Experimental determination of AlN in microalloyed steel and thermodynamic analysis. Calphad 88: 102790. [CrossRef]
- Massardier V, Guétaz V, Merlin J et al. Kinetic and Microstructural Study of Aluminium Nitride Precipitation in a Low Carbon Aluminium-Killed Steel. Materials Science and Engineering: A 2003(1-2): 299–310. [CrossRef]
- Pearson, W. B., Villars, P., Calvert, L. D. (1986) Pearson’s handbook of crystallographic data for intermetallic phases. Cambridge.
- Suzuki S, Tanino M (2007) Role of Grain Boundary Segregation in Austenite Decomposition of Low-Alloyed Steel. Trans. Tech. Publ. 558-559: 965–970. [CrossRef]
- Sakuraya K, Okada H, Abe F (2006) Influence of Heat Treatment on Formation Behavior of Boron Nitride Inclusions in P122 Heat Resistant Steel. 1347-5460 46(11): 1712–1719. [CrossRef]
- Jonsson S (1998) Assessment of the Fe-Ti-C system, calculation of the Fe-TiN system, and prediction of the solubility limit of Ti(C,N) in liquid Fe. Metall Mater Trans B 29(2): 371–384. [CrossRef]
- (1990) High-Strength Structural and High-Strength Low-Alloy Steels. ASM Metals Handbook. 10th ed. Vol. 1. p. 403–423. In:Properties and selection: irons, steels and high performance alloys.
- Gontijo M, Chakraborty A, Webster RF et al. (2022) Thermomechanical and Microstructural Analysis of the Influence of B- and Ti-Content on the Hot Ductility Behavior of Microalloyed Steels. Metals 12(11): 1808. [CrossRef]
- Monschein S, Ragger KS, Zügner D et al. (2022) Influence of the Ti Content on the Grain Stability and the Recrystallization Behavior of Nb-Alloyed High-Strength Low-Alloyed Steels. steel research international 93(7): 2200094. [CrossRef]
- Su C, Zhao G, Xiao H et al. (2018) Abnormal Grain Growth of Hi–B Steel in the Secondary Recrystallization. Metallogr. Microstruct. Anal. 7(5): 608–617. [CrossRef]
- Roy S, Karmakar A, Mukherjee S et al. (2014) Effect of starting microstructure on austenite grain sizes developed after reheating of HSLA steel. Materials Science and Technology 30(10): 1142–1153. [CrossRef]
- Lang D, Povoden-Karadeniz E, Schatte J et al. (2017) Thermodynamic evaluation of the Mo-rich corner of the Mo-Hf-C system including O impurities. Journal of Alloys and Compounds 695: 372–381. [CrossRef]
- Saunders N, Miodownik AP (1998) CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Transferred to digital print. Pergamon Materials Series. Pergamon.
- Dinsdale AT (1991) SGTE Data for Pure Elements. Calphad 15(4): 317–425. [CrossRef]
- Chipman J (1972) Thermodynamics and phase diagram of the Fe-C system. Metall Trans 3(1): 55–64. [CrossRef]
- Göhring H, Leineweber A, Mittemeijer EJ (2016) A thermodynamic model for non-stoichiometric cementite; the Fe–C phase diagram. Calphad 52: 38–46. [CrossRef]
- Naraghi R, Selleby M, Ågren J (2014) Thermodynamics of stable and metastable structures in Fe–C system. Calphad 46: 148–158. [CrossRef]
- Hallstedt B, Djurovic D, Appen J von et al. (2010) Thermodynamic properties of cementite. Calphad 34(1): 129–133. [CrossRef]
- van Rompaey T, Hari Kumar K, Wollants P (2002) Thermodynamic optimization of the B–Fe system. Journal of Alloys and Compounds 334(1-2): 173–181. [CrossRef]
- T.G. Chart (1981). Comm. Comm. Eur., 7210-CA/3/303.
- T.B. Massalski (Ed.) (1990) Binary Alloys Phase Diagrams,, 2nd Edition. ASM International, Metals Park, OH.
- O. Kubaschewski (1982) Iron–Binary Phase Diagrams. Springer Verlag, Berlin.
- Hallemans B, Wollants P, Roos JR (1994) Thermodynamic Reassessment and Calculation of the Fe-B Phase Diagram. International Journal of Materials Research 85(10): 676–682. [CrossRef]
- Ohtani H, Hasebe M, ISHIDA K et al. (1988) Calculation of Fe-C-B ternary phase diagram. ISIJ Int. 28(12): 1043–1050. [CrossRef]
- Kaufman L, Uhrenius B, Birnie D et al. (1984) Coupled pair potential, thermochemical and phase diagram data for transition metal binary systems-VII. Calphad 8(1): 25–66. [CrossRef]
- Lucci A, Della Gatta G, Venturello G (1969) On the Solubility of Boron in High-Purity Alpha-Iron. Metal Science Journal 3(1): 14–17. [CrossRef]
- Brodowsky H, Wernicke H-J (1984) Activity coefficients and the alpha-gamma transition lines in fe-b alloys. Calphad 8(2): 159–162. [CrossRef]
- Brown A, Garnish JD, Honeycombe RWK (1974) The Distribution of Boron in Pure Iron. Metal Science 8(1): 317–324. [CrossRef]
- Raghavan V (1993) B-Fe-N (boron-iron-nitrogen). JPE 14(5): 619–620. [CrossRef]
- Tomashik V (2008) Boron – Iron – Nitrogen. iron systems: phase diagrams, crystallographic and thermodynamic data. Landolt-Börnstein - Group IV Physical Chemistry: 457–471. [CrossRef]
- Fountain RW, Chipman J (1962) SOLUBILITY AND PRECIPITATION OF BORON NITRIDE IN IRON-BORON ALLOYS. Union Carbide Metals Co., Niagara Falls, N.Y. Vol: 224.
- Markus Führer, Sabine Zamberger, Yao Shan, Lukas Helml, Kiranbabu Srikakulapu, Ronald Schnitzer, Ernst Kozeschnik, Erwin Povoden-Karadeniz (2025) Influence of boron grain boundary segregation on the thermodynamics of the Fe-C-B-N system [unpublished manuscript]. Institue of materials science and technology, TU Wien.
- N. Saunders (1998) COST 507: Thermochemical database for light metal alloys Vol. 2, pp 23-27.
- Jacob A, Sobotka E, Povoden-Karadeniz E (2025) Thermodynamic modeling of multicomponent MX phases (M= Nb, Ti,V; X=C,N) in steel. Calphad 88: 102795. [CrossRef]
- E. Povoden-Karadeniz (2023) mc_fe_v2.061. Available online: https://www.matcalc.at/images/stories/Download/Database/mc_fe_v2061.tdb.
- Hillert M, Jonsson S (1992) An Assessment of the Al- Fe- N System. Metall Trans A 23(11): 3141–3149. [CrossRef]
- Miettinen J, Vassilev G (2014) Thermodynamic Description of Ternary Fe-B-X Systems. Part 1: Fe-B-Cr. Archives of Metallurgy and Materials 59(2): 601–607. [CrossRef]
- M. Seierstein (1998) System Al–Fe. COST507, Thermochemical Database for Light Metal Alloys, Vol 2, I. Ansara, A.T. Dinsdale, and M.H. Rand. European Commission, Luxembourg, p. 234. Office for Official Publications.
- Witusiewicz VT, Bondar AA, Hecht U et al. (2008) The Al–B–Nb–Ti system. Journal of Alloys and Compounds 465(1-2): 64–77. [CrossRef]
- Am S Maneschi B (1966) Analysis of nitrides in boron steels by extraction of nonmetallic phases. MET ITAL.
- E. T. Turkdogan (1987) Causes and effects of nitride and carbonitride precipitation in HSLA steels in relation to continuous casting. In 70th Steelmaking Conference Proceedings, Pittsburgh, PA, March 29 - April 1.
- Sridar S, Kumar R, Kumar H (2019) Thermodynamic Modelling of Al-B-N System. Calphad 65: 291–298. [CrossRef]
- H. Wen HL (1998) Thermochemical database for light metal alloys, in: I. Ansara, A.T. Dinsdale, M.H. Rand (Eds.), COST507. European Communities, Luxembourg(Vol. 2, System B-N.): pp. 65–68 Ch.
- Thermo-Calc Software (2023) CALPHAD Methodology - Thermo-Calc Software. Available online: https://thermocalc.com/about-us/methodology/the-calphad-methodology/ (accessed on 5 April 2024).
- Dworkin AS, Sasmor DJ, van Artsdalen ER (1954) The Thermodynamics of Boron Nitride; Low-Temperature Heat Capacity and Entropy; Heats of Combustion and Formation. J. Chem. Phys. 22(5): 837–842. [CrossRef]
- LECO Corporation (2025) LECO. Available online: https://de.leco.com/ (accessed on 7 February 2025).
- Law CA (1999) Treatise of Petroleum Geology / Handbook of Petroleum Geology: Exploring for Oil and Gas Traps. Chapter 6: Evaluating Source Rocks. AAPG Special Volumes.
- (2024) Lambda WDS Spectrometers | EDAX. Available online: https://www.edax.com/products/wds/lambda-wds-analysis-system (accessed on 8 August 2024).
- Schacht E, Richter J (1998) Erfahrungen mit Ätzmitteln zum Nachweis der ehemaligen Austenitkorngrenzen in Stählen / Experiences with Etching Reagents to Show Former Austenite Grain Boundaries in Steels. Ätzmittel 35(7): 384–395. [CrossRef]
- Lückl M Kinetics Simulation of MnS Precipitation in Electrical Steel. 1869-344X 87(3): 271–275.
- Wang Y-N, Bao Y-P, Wang M et al. (2013) Basic Research on Precipitation and Control of BN Inclusions in Steel. Metall Mater Trans B 44(5): 1144–1154. [CrossRef]
- Schneider A, Stallybrass C, Konrad J et al. (2008) Formation of primary TiN precipitates during solidification of microalloyed steels – Scheil versus DICTRA simulations. International Journal of Materials Research 99(6): 674–679. [CrossRef]












| System | Citation |
|---|---|
| Fe - C | Gustafson [12] |
| Fe - N | Frisk [13] |
| Fe - B, Fe-B-C, Fe-B-N | Miettinen and Vassilev [63], Führer et al. [58] |
| Fe - Al | Seierstein [64], Chin et al. [16] |
| Fe - Ti | Lee [15] |
| Ti - N | Lee [15] |
| Ti - C | Povoden-Karadeniz [61] |
| Al - Ti | Witusiewicz et al. [65] |
| Al - N | Saunders [59], Führer et al. [27] |
| Al - C | Chin et al. [16] |
| Fe - Al - C | Chin et al. [16] |
| Fe - Al - N | Hillert and Jonsson [62] |
| Fe - Ti - C | Povoden-Karadeniz [61] |
| mass fraction in %, Fe = bal. | ||||||||
|---|---|---|---|---|---|---|---|---|
| Alloy | C | N | Al | B | Ti | Mn | S | O |
| Fe-C-N-Al-B - B-variation | ||||||||
| Al29B0 | 0.51 | 0.0076 | 0.029 | 0.0002 | 0.000 | 0.123 | 0.006 | 0.001 |
| Al29B22 | 0.50 | 0.0073 | 0.029 | 0.0022 | 0.000 | 0.123 | 0.006 | 0.001 |
| Al36B44 | 0.50 | 0.0070 | 0.036 | 0.0044 | 0.000 | 0.123 | 0.007 | 0.001 |
| Fe-C-N-Al-B - Al-variation | ||||||||
| B21Al0 | 0.50 | 0.0070 | 0.009 | 0.0021 | 0.000 | 0.115 | 0.0070 | 0.001 |
| B19Al35 | 0.49 | 0.0079 | 0.035 | 0.0019 | 0.000 | 0.114 | 0.008 | 0.001 |
| B21Al87 | 0.49 | 0.0083 | 0.087 | 0.0021 | 0.000 | 0.114 | 0.008 | 0.001 |
| B21Al180 | 0.50 | 0.0086 | 0.180 | 0.0021 | 0.000 | 0.117 | 0.008 | 0.001 |
| B21Al416 | 0.49 | 0.0086 | 0.416 | 0.0021 | 0.000 | 0.117 | 0.009 | 0.001 |
| Fe-C-N-Al-B-Ti - Ti-variation | ||||||||
| Al36B25Ti0 | 0.51 | 0.0069 | 0.036 | 0.0025 | 0.000 | 0.131 | 0.007 | 0.001 |
| Al38B36Ti20 | 0.50 | 0.0052 | 0.038 | 0.0036 | 0.020 | 0.131 | 0.007 | 0.001 |
| Al42B38Ti30 | 0.50 | 0.0045 | 0.042 | 0.0038 | 0.030 | 0.131 | 0.007 | 0.001 |
| Al44B39Ti42 | 0.50 | 0.0042 | 0.044 | 0.0039 | 0.042 | 0.130 | 0.007 | 0.001 |
| Type | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| ECD [nm] |
Al [wt.%] |
B [wt.%] |
N [wt.%] |
Ti [wt.%] |
C [wt.%] |
Mn [wt.%] |
S [wt.%] |
O [wt.%] |
|
| AlN | > 60 | >2 | < 0.1 | > 0 | < 0.1 | < 3 | < 3 | < 0.1 | < 0.1 |
| BN | > 60 | < 0.1 | > 2 | > 0 | < 0.1 | < 3 | < 3 | < 0.1 | < 0.1 |
| TiN | > 60 | < 0.1 | < 0.1 | > 0 | > 2 | > 0 | < 3 | < 0.1 | < 0.1 |
| MnS | > 60 | < 3 | < 3 | < 3 | < 3 | < 3 | > 3 | > 0.5 | < 0.1 |
| Al2O3 | > 60 | > 2 | < 3 | < 3 | < 3 | < 3 | < 3 | < 0.1 | > 1 |
| Alloy | Al | B | Ti | N | Tsol AlN | Tsol BN | Tsol AlN | Tsol BN |
|---|---|---|---|---|---|---|---|---|
| in wt.-% | experimental in °C | simulative in °C | ||||||
| Al29B0 | 0.029 | 0.0002 | 0.000 | 0.0076 | 1150±30 | - | 1187 | - |
| Al29B22 | 0.029 | 0.0022 | 0.000 | 0.0073 | 1150±30 | 1200±15 | 1165 | 1235 |
| Al36B44 | 0.036 | 0.0044 | 0.000 | 0.0070 | 970±40 | 1215±15 | 1122 | 1280 |
| B21Al0 | 0.009 | 0.0021 | 0.000 | 0.0070 | - | 1230±15 | - | 1230 |
| B19Al35 | 0.035 | 0.0019 | 0.000 | 0.0079 | 1180±20 | 1215±20 | 1195 | 1220 |
| B21Al88 | 0.088 | 0.0021 | 0.000 | 0.0083 | 1250±20 | 1110±20 | 1280 | - |
| B21Al180 | 0.180 | 0.0021 | 0.000 | 0.0086 | 1350±50 | - | 1370 | - |
| B21Al416 | 0.416 | 0.0021 | 0.000 | 0.0086 | (1450±50) | - | - | 1460 |
| Alloy | Al | B | Ti | N | Tsol AlN | Tsol BN | Tsol AlN | Tsol BN | Tsol TiN |
|---|---|---|---|---|---|---|---|---|---|
| in wt.-% | experiment in °C | simulation in °C | |||||||
| Al36B25Ti0 | 0.036 | 0.0025 | 0.000 | 0.0069 | 1140±20 | 1230±20 | 1170 | 1240 | - |
| Al38B36Ti20 | 0.038 | 0.0036 | 0.020 | 0.0052 | - | 1120±20 | - | 1100 | 1430±20 |
| Al42B38Ti30 | 0.042 | 0.0038 | 0.030 | 0.0045 | - | - | - | - | 1440±20 |
| Al44B39Ti42 | 0.044 | 0.0039 | 0.042 | 0.0042 | - | - | - | - | 1450±20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
