Submitted:
05 May 2025
Posted:
15 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background
1.2. Contribution of Paper
2. Witt Operators
2.1. Identification of Symmetry
3. Quantum Mechanics Interpretation
3.1. Derivation of Schrödinger Equation
4. Results
5. Conclusion
References
- M.A. Virasoro, Subsidiary Conditions and Ghosts in Dual-Resonance Models, Phys. Rev. D1 (1970)2933.
- P. Frampton and H.B. Nielsen, Dual-Model Spectrum Analysis, using Virasoro-Algebra Representations, Nuclear Physics B45 (1972) 318 332. North-tlolland Publishing.
- Richard, C. Brower, Spectrum -Generating Algebra and No -Ghost Theorem for the Dual Model, Phy. Rev. D, Vol 6, Number 6, 15 September.
- P. Van Alstine, Remark on the c-number anomaly in the Virasoro algebra, Phy. Rev. D, Vol 12, Number 12, 15 September.
- Ratindranath Akhoury and Yasuhiro Okada, Strings in curved space-time: Virasoro algebra in the classical and quantum theory, Phy. Rev. D, Vol 35, Number 6, 15 March.
- Yoshihiko Saito, Nonexistence of a ground state and breaking of the no-ghost theorem on a squeezed string, Phy. Rev. D, Vol 36, Number 10, 15 November.
- J. Scherk, An introduction to the theory of dual models and strings, Rev. Mod. Phys. 47, 123, 1 January, 1975.
- N. Sakai and P. Suranyi, Modification of Virasoro Generators by Kac-Moody Generators, Nuclear Physics B318 (1989) 655-668 North-Holland, Amsterdam.
- Dotsenko and, V. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B240 (1984) 312.
- So Katagiri, et al. Beyond squeezing a la Virasoro algebra. Progress of Theoretical and Experimental Physics 2019.12 (2019): 123B04.
- J. J. Sakurai, San Fu Tuan. Modern Quantum Mechanics, Chap-II, Revised Edition. Pearson Education, 1994.
- Chinmoy Samanta, Aniruddha Chakraborty, Exact results for the Schrödinger equation with moving localized potential, Physics Letters A, Volume 408, 2021, 127485.
- Yehuda, B. Band, Yshai Avishai, 2 - The Formalism of Quantum Mechanics, Editor(s): Yehuda B. Band, Yshai Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science, Academic Press, 2013, Pages 61-104.
- John, R. Ray, Exact solutions to the time-dependent Schrödinger equation, Phys. Rev. A 26, 729 (1982).
- Roger, G. Newton, Representation of the Potential in the Schrödinger Equation, Phys. Rev. Lett. 53, 1863 (1984).
- Roland Cristopher, F. Caballar, Leonard R. Ocampo, and Eric A. Galapon, Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries, Phys. Rev. A 81, 062105 (2010).
- Moshe Shapiro, Derivation of the coordinate-momentum commutation relations from canonical invariance, Phys. Rev. A 74, 042104 (2006).
- Pikovski, I. , Vanner, M., Aspelmeyer, M. et al. Probing Planck-scale physics with quantum optics. Nature Phys 8, 393–397 (2012).
- Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65–69 (1993).
- Alexander Thomas, Infinitesimal Modular Group: q-Deformed sl2 and Witt Algebra, Sigma 20 (2024), 053. [CrossRef]
- Avan J., Frappat L., Ragoucy E., Deformed Virasoro algebras from elliptic quantum algebras. Math. Phys. 354 2017, 354, 753–777. [CrossRef]
- Chaichian M., Isaev A.P., Lukierski J., Popowicz Z., Prešnajder P., q -deformations of Virasoro algebra and conformal dimensions. Lett. B 262 1991, 1991), 32–38.
- Frenkel E., Reshetikhin N., Quantum affine algebras and deformations of the Virasoro and W-algebras. Math. Phys. 178 ( 1996, 1996), 237–264.
- Helmut Strade, Representations of the Witt algebra, Journal of Algebra, Volume 49, Issue 2, 1977, Pages 595-605.
- R. J. Blattner, Induced and produced representations of Lie algebras, Trans. Amer. Math. Sot. 114 (1969, S. 457-474.
- G Veneziano, An introduction to dual models of strong interactions and their physical motivations, Physics Reports Volume 9, Issue 4, 74, Pages 199-242. 19 February.
- A. N. Redlich, When is the central charge of the Virasoro algebra in string theories in curved space-time not a numerical constant? Phys. Rev. D 33, 1094 (1986).
- Jonathan Bagger, Dennis Nemeschansky, and Shimon Yankielowicz, Virasoro algebras with central charge c>1, Phys. Rev. Lett. 60, 389 (1988).
- Maximo Banados, Embeddings of the Virasoro Algebra and Black Hole Entropy, Phys. Rev. Lett. 82, 2030 (1999).
- Clifford, V. Johnson, Supersymmetric Virasoro minimal strings, Phys. Rev. D 110, 066016 (2024).
- Clifford, V. Johnson, Random matrix model of the Virasoro minimal string, Phys. Rev. D 110, 066015 (2024).
- Reiho Sakamoto, Explicit formula for singular vectors of the Virasoro algebra with central charge less than 1, Chaos, Solitons and Fractals, Volume 25, Issue 1, 2005, Pages 147-151.
- Jean-François Fortin, Lorenzo Quintavalle, Witold Skiba, Casimirs of the Virasoro algebra, Physics Letters B, Volume 858, 2024, 139080.
- K. Iohara, Y. K. Iohara, Y. Koga, Representation Theory of the Virasoro Algebra Springer Monographs in Mathematics, Springer, London (2011).
- Chongying Dong, Wei Zhang, On classification of rational vertex operator algebras with central charges less than 1, Journal of Algebra, Volume 320, Issue 1, 2008, Pages 86-93.
- Thomas, L. Curtright, David B. Fairlie, Cosmas K. Zachos, Ternary Virasoro–Witt algebra, Physics Letters B, Volume 666, Issue 4, 2008, Pages 386-390.
- Arfken, George B.; Weber, Hans J. (1995), Mathematical methods for physicists (4th edición), San Diego, [CA.]: Academic Press.
- Butkov, Eugene (1968), Mathematical physics, Reading, [Mass.]: Addison-Wesley.
- Mathews, Jon; Walker, Robert L. (1970), Mathematical methods of physics (2nd Ed.), New York, [NY.]: W. A. Benjamin.
- Claudemir Fidelis, Diogo Diniz, Plamen Koshlukov, Z-graded identities of the Virasoro algebra, Journal of Algebra, Volume 640, 2024, Pages 401-431.
| 1 | It is allowed in virtue to polynomial character of Equation 16 and Equation 17. |
| 2 | That can also be understood as the inequality: in the classical limit applying systems with a large amplitude of oscillation |
| 3 | It will be added and subtracted . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).