Submitted:
14 May 2025
Posted:
15 May 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Methods
3. Results
3.1. Leveraging Phytocompounds in Cosmeceutical Formulations: Market Trends and Delivery Advances
3.2. Overview of Skin Care Products Delivery Technologies
3.3. Characterization of Olive Oil and Olive Oil Preparation Byproducts Composition: Applications in Dermatology
3.4. Anti-Aging, Photoprotective and Anti-Microbial Potential in Skin Applications
3.5. Anti-Inflammatory Effects and Pathway Modulation
3.6. Skin Cancer Prevention and Selective Antiproliferative Effects
3.7. Hair Health and Follicular Stimulation by OMWW
Conclusions
Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability statement
Acknowledgments
Conflicts of interest
References
- Abu-Lafi, S., Al-Natsheh, M.S., Yaghmoor, R. & Al-Rimawi, F. (2017) 'Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities', Evidence-Based Complementary and Alternative Medicine, 2017, p. 3706915. [CrossRef]
- Addas, A., Ragab, M., Maghrabi, A., Abo-Dahab, S.M. & El-Nobi, E.F. (2021) 'UV Index for Public Health Awareness Based on OMI/NASA Satellite Data at King Abdulaziz University, Saudi Arabia', Advances in Mathematical Physics, 2021, p. 2835393. [CrossRef]
- Aggoun, M., Arhab, R., Cornu, A., Portelli, J. & Barkat, M. (2016) 'Olive mill wastewater: Phenolic composition and antioxidant activity', Journal of Environmental Management, 170(1), pp. 1–9.
- Agramunt, J., Parke, B., Mena, S., Ubels, V., Jimenez, F., Williams, G., Rhodes, A.D., Limbu, S., Hexter, M., Knight, L., Hashemi, P., Kozlov, A.S. & Higgins, C.A. (2023) 'Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons', Science Advances, 9(43), eadh3273. [CrossRef]
- Ahmed, B. , Qadir, M.I. & Ghafoor, S. (2020) 'Malignant Melanoma: Skin Cancer-Diagnosis, Prevention, and Treatment', Critical Reviews in Eukaryotic Gene Expression, 30(4), pp. 291–297. [CrossRef]
- Aiello, A., et al. (2024) 'Effect of a Phytochemical-Rich Olive-Derived Extract on Anthropometric, Hematological, and Metabolic Parameters', Nutrients, 16(18), p. 3068. [CrossRef]
- Albanesi, C., De Pità, O. & Girolomoni, G. (2005) 'Resident skin cells in psoriasis: a special look at the pathogenetic functions of keratinocytes', Clinics in Dermatology, 25(6), pp. 581–588. [CrossRef]
- Albini, A., Albini, F., Corradino, P., Dugo, L., Calabrone, L. & Noonan, D.M. (2023) 'From antiquity to contemporary times: how olive oil by-products and wastewater can contribute to health', Frontiers in Nutrition, 10. [CrossRef]
- Albini, A., et al. (2021) 'A Polyphenol-Rich Extract of Olive Mill Wastewater Enhances Cancer Chemotherapy Effects, While Mitigating Cardiac Toxicity', Frontiers in Pharmacology, 12, p. 694762. [CrossRef]
- Albini, A., et al. (2019) 'Nutraceuticals and ‘Repurposed’ Drugs of Phytochemical Origin in Prevention and Interception of Chronic Degenerative Diseases and Cancer', Current Medicinal Chemistry, 26(6), pp. 973–987. [CrossRef]
- Alkhalidi, H., Sciubba, F. & Gallo, G. (2023) 'Olive mill wastewater: From by-product to smart antioxidant material', Sustainability, 15(5), p. 1234. [CrossRef]
- Almohanna, H.M., Ahmed, A.A., Tsatalis, J.P. & Tosti, A. (2019) 'The Role of Vitamins and Minerals in Hair Loss: A Review', Dermatology and Therapy (Heidelberg), 9(1), pp. 51–70. [CrossRef]
- Aparicio-Soto, M., Sánchez-Hidalgo, M., Rosillo, M.Á., Castejón, M.L. & Alarcón-de-la-Lastra, C. (2019) 'Extra virgin olive oil: a key functional food for prevention of immune-inflammatory diseases', Food & Function, 10(7), pp. 3805–3824. [CrossRef]
- Avola, R., Graziano, A.C.E., Pannuzzo, G., Bonina, F. & Cardile, V. (2019) 'Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts', Journal of Cellular Physiology, 234(6), pp. 9065–9076. [CrossRef]
- Baci, D., et al. (2019) 'Downregulation of Pro-Inflammatory and Pro-Angiogenic Pathways in Prostate Cancer Cells by a Polyphenol-Rich Extract from Olive Mill Wastewater', International Journal of Molecular Sciences, 20(2), p. 307. [CrossRef]
- Barone, M., De Bernardis, R. & Persichetti, P. (2024) 'Aesthetic Medicine Across Generations: Evolving Trends and Influences', Aesthetic Plastic Surgery. [CrossRef]
- Bassani, B., et al. (2016) 'Potential Chemopreventive Activities of a Polyphenol Rich Purified Extract from Olive Mill Wastewater on Colon Cancer Cells', Journal of Functional Foods, 27, pp. 236–248. [CrossRef]
- Benedetto, N., et al. (2022) 'An Olive Oil Mill Wastewater Extract Improves Chemotherapeutic Activity Against Breast Cancer Cells While Protecting From Cardiotoxicity', Frontiers in Cardiovascular Medicine, 9, p. 867867. [CrossRef]
- Benincasa, C., Santoro, I., Nardi, M., Cassano, A. & Sindona, G. (2019) 'Eco-Friendly Extraction and Characterisation of Nutraceuticals from Olive Leaves', Molecules, 24(19), p. 3481. [CrossRef]
- Biniek, K., Levi, K. & Dauskardt, R.H. (2012) 'Solar UV radiation reduces the barrier function of human skin', Proceedings of the National Academy of Sciences of the United States of America, 109(42), pp. 17111–17116. [CrossRef]
- Bressel, M., Kauffmann, J. & Schmitt, S. (2024) 'Critical Review of Techniques for Food Emulsion Characterization: Rheological Analysis of Emulsions and Their Implications for Formulation Stability', Food Hydrocolloids, 102(3), pp. 1069–1085. [CrossRef]
- Caporaso, N., Formisano, D. & Genovese, A. (2023) 'Valorization of lyophilized olive mill wastewater: Chemical and biological properties for functional applications', Sustainability, 15(4), p. 3360. [CrossRef]
- Cardinali, A., De Marco, E. & De Santis, G. (2010) 'Phenolic compounds in olive mill wastewater: Analysis and characterization', Food Chemistry, 120(3), pp. 690–695. [CrossRef]
- Carrara, M., Kelly, M.T., Roso, F., Larroque, M. & Margout, D. (2021) 'Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review', Journal of Agricultural and Food Chemistry, 69(26), pp. 7268–7284. [CrossRef]
- Carrara, M., Beccali, M., Cellura, M. & Pipitone, F. (2021) 'Olive mill wastewater: A source of biologically active compounds', Journal of Cleaner Production, 279, p. 123841. [CrossRef]
- Chinembiri, T.N., du Plessis, L.H., Gerber, M., Hamman, J.H. & du Plessis, J. (2014) 'Review of natural compounds for potential skin cancer treatment', Molecules, 19(8), pp. 11679–11721. [CrossRef]
- Cuffaro, D., Vassallo, A. & La Carrubba, V. (2023) 'Valorization of olive mill wastewater: Recovery of bioactive compounds for food applications', Sustainability, 15(1), p. 1234. [CrossRef]
- Dauber, C., Parente, E., Zucca, M.P., Gámbaro, A. & Vieitez, I. (2023) 'Olea europea and By-Products: Extraction Methods and Cosmetic Applications', Cosmetics, 10(4), p. 112. [CrossRef]
- De Cicco, P., Catani, M.V., Gasperi, V., Sibilano, M., Quaglietta, M. & Savini, I. (2022) 'Olive Leaf Extract Inhibits Proliferation, Epithelial-Mesenchymal Transition and Metastatic Potential of Human Melanoma Cells', Antioxidants, 11(2), p. 263. [CrossRef]
- Di Mauro, M.D., Tomasello, B., Giardina, R.C., Dattilo, S., Mazzei, V., Sinatra, F., Caruso, M., D'Antona, N. & Renis, M. (2017) 'Sugar and mineral enriched fraction from olive mill wastewater for promising cosmeceutical application: Characterization, in vitro and in vivo studies', Food & Function, 8(12), pp. 4713–4722. [CrossRef]
- Draelos, Z.D. (2018) 'The science behind skin care: Cleansers', Journal of Cosmetic Dermatology, 17(1), pp. 8–14. [CrossRef]
- El-Abbassi, A., Fadhl, B.M. & Khaireddine, A. (2012) 'Olive mill wastewater: A review on its composition and treatment methods', Journal of Environmental Management, 95(Suppl), pp. S1–S15. [CrossRef]
- Flohr, C. & Hay, R. (2021) 'Putting the burden of skin diseases on the global map', British Journal of Dermatology, 184(2), pp. 189–190. [CrossRef]
- Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E. & De Benedictis, G. (2000) 'Inflamm-aging. An evolutionary perspective on immunosenescence', Annals of the New York Academy of Sciences, 908, pp. 244–254. [CrossRef]
- Fulop, T., Larbi, A., Pawelec, G., Khalil, A., Cohen, A.A., Hirokawa, K., Witkowski, J.M. & Franceschi, C. (2023) 'Immunology of Aging: the Birth of Inflammaging', Clinical Reviews in Allergy & Immunology, 64(2), pp. 109–122. [CrossRef]
- Gallazzi, M., et al. (2020) 'An Extract of Olive Mill Wastewater Downregulates Growth, Adhesion and Invasion Pathways in Lung Cancer Cells: Involvement of CXCR4', Nutrients, 12(4), p. 903. [CrossRef]
- Galletti, F., Peluso, G., Bifulco, M. & Russo, G.L. (2022) 'Biological effects of the olive tree and its derivatives on the skin', Food & Function, 13(11), pp. 5952–5970. [CrossRef]
- Ganesan, P. & Choi, D.K. (2016) 'Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy', International Journal of Nanomedicine, 11, pp. 1987–2007. [CrossRef]
- Goldminz, A.M., Au, S.C., Kim, N., Gottlieb, A.B. & Lizzul, P.F. (2013) 'NF-κB: An essential transcription factor in psoriasis', Journal of Dermatological Science, 69(2), pp. 89–94. [CrossRef]
- González-Acedo, A., Ramos-Torrecillas, J., Illescas-Montes, R., Costela-Ruiz, V.J., Ruiz, C., Melguizo-Rodríguez, L. & García-Martínez, O. (2023) 'The Benefits of Olive Oil for Skin Health: Study on the Effect of Hydroxytyrosol, Tyrosol, and Oleocanthal on Human Fibroblasts', Nutrients, 15(9), p. 2077. [CrossRef]
- Gorini, I., Iorio, S., Ciliberti, R., Licata, M. & Armocida, G. (2019) 'Olive oil in pharmacological and cosmetic traditions', Journal of Cosmetic Dermatology, 18, pp. 1575–1579. [CrossRef]
- Gorzelanny, C., Meß, C., Schneider, S.W., Huck, V. & Brandner, J.M. (2020) 'Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them?', Pharmaceutics, 12(7), p. 684. [CrossRef]
- Halloy, J., Bernard, B.A., Loussouarn, G., Goldbeter, A. (2002) 'The follicular automaton model: Effect of stochasticity and of synchronization of hair cycles', Journal of Theoretical Biology, 214(3), pp. 469–479. [CrossRef]
- Hirao, T. (2017) 'Structure and Function of Skin From a Cosmetic Aspect', in Elsevier eBooks (p. 673). Elsevier BV. [CrossRef]
- Hua, S. (2015) 'Lipid-based nano-delivery systems for skin delivery of drugs and bioactives', Frontiers in Pharmacology, 6, pp. 1–15. [CrossRef]
- Hwa, C., Bauer, E.A. & Cohen, D.E. (2011) 'Skin biology', Dermatologic Therapy, 24, pp. 464–470. [CrossRef]
- Kennedy, K.J., Price, K., Rando, T.L., Boylan, J. & Dyer, A.R. (2018) 'Ensuring healthy skin as part of wound prevention: An integrative review of health professionals' actions', Journal of Wound Care, 27(11), pp. 707–715. [CrossRef]
- Kilic, A., Masur, C., Reich, H., Knie, U., Dähnhardt, D., Dähnhardt-Pfeiffer, S. & Abels, C. (2019) 'Skin acidification with a water-in-oil emulsion (pH 4) restores disrupted epidermal barrier and improves structure of lipid lamellae in the elderly', Journal of Dermatology, 46(6), pp. 457–465. [CrossRef]
- Kim, B., Cho, H.-E., Moon, S.H., Ahn, H., Bae, S., Cho, H.-D. & An, S. (2020) 'Transdermal delivery systems in cosmetics', in Biomedical Dermatology (Vol. 4, Issue 1). BioMed Central. [CrossRef]
- Kische, H., Arnold, A., Gross, S., Wallaschofski, H., Völzke, H., Nauck, M. & Haring, R. (2017) 'Sex Hormones and Hair Loss in Men From the General Population of Northeastern Germany', JAMA Dermatology, 153(9), pp. 935–937. [CrossRef]
- Kligman, D. (2000) 'Cosmeceuticals', Dermatologic Clinics, 18(4), pp. 609–615. [CrossRef]
- Knaggs, H. & Lephart, E.D. (2023) 'Enhancing Skin Anti-Aging through Healthy Lifestyle Factors', Cosmetics, 10(5), p. 142. [CrossRef]
- Ibrahim, A.A.E., Bagherani, N., Smoller, B.R., Reyes-Baron, C. & Bagherani, N. (2021) 'Functions of the Skin', in Atlas of Dermatology, Dermatopathology and Venereology. Springer, Cham. [CrossRef]
- Janakat, S., Al-Nabulsi, A., Allehdan, S., Olaimat, A. & Holley, R. (2015) 'Antimicrobial activity of amurca (olive oil lees) extract against selected foodborne pathogens', Food Science and Technology, 35, pp. 259–265. [CrossRef]
- Lasisi, T., Smallcombe, J.W., Kenney, W.L., Shriver, M.D., Zydney, B., Jablonski, N.G. & Havenith, G. (2023) 'Human scalp hair as a thermoregulatory adaptation', Proceedings of the National Academy of Sciences of the United States of America, 120(24), e2301760120. [CrossRef]
- Lecci, R., Romani, A., Ieri, F., Mulinacci, N., Pinelli, P., Bernini, R. & Caporali, A. (2021) 'Antioxidant and Pro-Oxidant Capacities as Mechanisms of Photoprotection of Olive Polyphenols on UVA-Damaged Human Keratinocytes', Antioxidants, 10(4), p. 600. [CrossRef]
- Li, H., He, H., Liu, C., Akanji, T., Gutkowski, J., Li, R., Ma, H., Wan, Y., Wu, P., Li, D., Seeram, N.P. & Ma, H. (2022) 'Dietary polyphenol oleuropein and its metabolite hydroxytyrosol are moderate skin permeable elastase and collagenase inhibitors with synergistic cellular antioxidant effects in human skin fibroblasts', International Journal of Food Sciences and Nutrition, 73(4), pp. 460–470. [CrossRef]
- Lin, X., Zhu, L. & He, J. (2022) 'Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles', Frontiers in Cell and Developmental Biology, 10, p. 899095. [CrossRef]
- Litchman, G., Nair, P.A., Badri, T. & Kelly, S.E. (2022) 'Microneedling', in StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470464/.
- Lodén, M. (2012) 'Effect of moisturizers on epidermal barrier function', Clinical Dermatology, 30(3), pp. 286–296. [CrossRef]
- López-Ojeda, W., Pandey, A., Alhajj, M. & Oakley, A. (2019) 'Anatomy, Skin (Integument)', in StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://europepmc.org/abstract/MED/28723009.
- Mărănducă, A., Mărănducă, L. & Simionescu, R. (2020) 'The structure and function of the skin', Romanian Journal of Morphology and Embryology, 61(1), pp. 7–14.
- Masaki, H. (2010) 'Role of antioxidants in the skin: Anti-aging effects', Journal of Dermatological Science, 58(2), pp. 85–90. [CrossRef]
- Mijatović, S., Timotijević, G., Miljković, Đ., Radović, J., Maksimović-Ivanić, D., Dekanski, D. & Stošić-Grujičić, S. (2011) 'Multiple antimelanoma potential of dry olive leaf extract', International Journal of Cancer, 128(8), pp. 1955–1965. [CrossRef]
- Morávková, T. & Stern, P. (2011) 'Rheological and Textural Properties of Cosmetic Emulsions', Applied Rheology, 21(3), p. 35200. [CrossRef]
- Natarelli, N., Gahoonia, N. & Sivamani, R.K. (2023) 'Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss', Journal of Clinical Medicine, 12(3), p. 893. [CrossRef]
- Nomikos, N.N., Nomikos, G.N. & Kores, D.S. (2010) 'The use of deep friction massage with olive oil as a means of prevention and treatment of sports injuries in ancient times', Archives of Medical Science, 6(5), pp. 642–645. [CrossRef]
- Osmond, G.W., Augustine, C.K., Zipfel, P.A., Padussis, J. & Tyler, D.S. (2012) 'Enhancing melanoma treatment with resveratrol', Journal of Surgical Research, 172(1), pp. 109–115. [CrossRef]
- Otto, A., Du Plessis, J. & Wiechers, J.W. (2009) 'Formulation effects of topical emulsions on transdermal and dermal delivery', International Journal of Cosmetic Science, 31(1), pp. 1–19. [CrossRef]
- Pandey, A., Jatana, G.K. & Sonthalia, S. (2023) 'Cosmeceuticals', in StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan.
- Papadopoulou, A., Petrotos, K., Stagos, D., Gerasopoulos, K., Maimaris, A., Makris, H., Kafantaris, I., Makri, S., Kerasioti, E., Halabalaki, M., Brieudes, V., Ntasi, G., Kokkas, S., Tzimas, P., Goulas, P., Zakharenko, A.M., Golokhvast, K.S., Tsatsakis, A. & Kouretas, D. (2017) 'Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters', Oxidative Medicine and Cellular Longevity, 2017, p. 8273160. [CrossRef]
- Patel, M. & Joshi, A. (2012) 'Nanoemulsions for cosmeceutical applications: Advantages and formulation considerations', Advanced Drug Delivery Reviews, 64(6), pp. 670–685. [CrossRef]
- Pegoraro, C., MacNeil, S. & Battaglia, G. (2012) 'Transdermal drug delivery: from micro to nano', Nanoscale, 4(6), p. 1881. [CrossRef]
- Pérez-Pérez, V., Jiménez-Martínez, C., González-Escobar, J.L. & Corzo-Ríos, L.J. (2024) 'Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: trends and opportunities', Frontiers in Chemistry, 12, p. 1423500. [CrossRef]
- Perugini, P., Vettor, M., Rona, C., Troisi, L., Villanova, L., Genta, I., Conti, B. & Pavanetto, F. (2008) 'Efficacy of oleuropein against UVB irradiation: preliminary evaluation', International Journal of Cosmetic Science, 30(2), pp. 113–120. [CrossRef]
- Phelps, A.H. Jr. (1967) 'Air pollution aspects of soap and detergent manufacture', Journal of the Air Pollution Control Association, 17(8), pp. 505–507. [CrossRef]
- Pojero, F., Poma, P., Spanò, V., Montalbano, A., Barraja, P. & Notarbartolo, M. (2022) 'Targeting senescence with olive oil polyphenols as a novel therapeutic strategy for chronic diseases', European Journal of Medicinal Chemistry, 227, p. 113910. [CrossRef]
- Ponphaiboon, J., Limmatvapirat, S. & Limmatvapirat, C. (2024) 'Development and Evaluation of a Stable Oil-in-Water Emulsion with High Ostrich Oil Concentration for Skincare Applications', Molecules, 29(5), p. 982. [CrossRef]
- Rager, E.L., Bridgeford, E.P. & Ollila, D.W. (2005) 'Cutaneous melanoma: update on prevention, screening, diagnosis, and treatment', American Family Physician, 72(2), pp. 269–276.
- Raymond-Lezman, J.R. & Riskin, S.I. (2024) 'Sunscreen Safety and Efficacy for the Prevention of Cutaneous Neoplasm', Cureus, 16(3), p. e56369. [CrossRef]
- Rivers, J.K. (2008) 'The role of cosmeceuticals in antiaging therapy', Skin Therapy Letter, 13(8), pp. 5–9.
- Ruzzolini, J., Peppicelli, S., Andreucci, E., Bianchini, F., Scardigli, A., Romani, A., la Marca, G., Nediani, C. & Calorini, L. (2018) 'Oleuropein, the Main Polyphenol of Olea europaea Leaf Extract, Has an Anti-Cancer Effect on Human BRAF Melanoma Cells and Potentiates the Cytotoxicity of Current Chemotherapies', Nutrients, 10(12), p. 1950. [CrossRef]
- Saluja, S.S. & Fabi, S.G. (2017) 'A Holistic Approach to Antiaging as an Adjunct to Antiaging Procedures: A Review of the Literature', Dermatologic Surgery, 43(4), pp. 475–484. [CrossRef]
- Sambhakar, P., Malik, S., Bhatia, R., Al Harrasi, S., Rani, A., Saharan, R.C., Kumar, R., Suresh, G. & Sehrawat, R. (2023) 'Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs', Journal of Pharmaceutical Sciences, 112(1), pp. 1–15. [CrossRef]
- Samra, T., Lin, R.R. & Maderal, A.D. (2024) 'The Effects of Environmental Pollutants and Exposures on Hair Follicle Pathophysiology', Skin Appendage Disorders, 10(4), pp. 262–272. https://doi.org/10.1159/000537745. [CrossRef]
- Schlupp, P., Schmidts, T.M., Pössl, A., Wildenhain, S., Lo Franco, G., Lo Franco, A. & Lo Franco, B. (2019) 'Effects of a Phenol-Enriched Purified Extract from Olive Mill Wastewater on Skin Cells', Cosmetics, 6(2), p. 30. https://doi.org/10.3390/cosmetics6020030. [CrossRef]
- Sciubba, F., Chronopoulou, L., Pizzichini, D., Lionetti, V., Fontana, C., Aromolo, R., Socciarelli, S., Gambelli, L., Bartolacci, B., Finotti, E., Benedetti, A., Miccheli, A., Neri, U., Palocci, C. & Bellincampi, D. (2020) 'Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens', Biology (Basel), 9(12), p. 450. https://doi.org/10.3390/biology9120450. [CrossRef]
- Seah, B.C.-Q. & Teo, B.M. (2018) 'Recent advances in ultrasound-based transdermal drug delivery', International Journal of Nanomedicine, 7749. Dove Medical Press. [CrossRef]
- Sharma, N. & Sarangdevot, K. (2012) 'Nanoemulsions: A new topical drug delivery system for the treatment of acne', Journal of Research in Pharmacy, 27(1), pp. 1–11.
- Sittek, L.-M., Schmidts, T.M. & Schlupp, P. (2021) 'Polyphenol-Rich Olive Mill Wastewater Extract and Its Potential Use in Hair Care Products', Journal of Cosmetics, Dermatological Sciences and Applications, 11, pp. 356–370. [CrossRef]
- Smeriglio, A., Denaro, M., Mastracci, L., Grillo, F., Cornara, L., Shirooie, S., Nabavi, S.M. & Trombetta, D. (2019) 'Safety and efficacy of hydroxytyrosol-based formulation on skin inflammation: in vitro evaluation on reconstructed human epidermis model', DARU Journal of Pharmaceutical Sciences, 27, pp. 283–293. [CrossRef]
- Sofi, F., Cesari, F., Abbate, R., Gensini, G.F. & Casini, A. (2008) 'Adherence to Mediterranean diet and health status: meta-analysis', BMJ, 337, p. a1344. [CrossRef]
- Svobodová, A., Psotová, J. & Walterová, D. (2003) 'Natural phenolics in the prevention of UV-induced skin damage: A review', Biomedicine & Pharmacotherapy, 147(2), pp. 137–145.
- Urban, K., Chu, S., Giesey, R.L., Mehrmal, S., Uppal, P., Delost, M.E. & Delost, G.R. (2020) 'Burden of skin disease and associated socioeconomic status in Asia: A cross-sectional analysis from the Global Burden of Disease Study 1990-2017', JAAD International, 2, pp. 40–50. [CrossRef]
- Urysiak-Czubatka, I., Kmieć, M.L. & Broniarczyk-Dyła, G. (2014) 'Assessment of the usefulness of dihydrotestosterone in the diagnostics of patients with androgenetic alopecia', Postępy Dermatologii i Alergologii, 31(4), pp. 207–215. [CrossRef]
- Verma, A., Zanoletti, A., Kareem, K.Y. et al. (2024) 'Skin protection from solar ultraviolet radiation using natural compounds: a review', Environmental Chemistry Letters, 22, pp. 273–295. [CrossRef]
- Visioli, F., Galli, C. & Caruso, D. (1999) 'Antioxidant properties of olive oil phenols', Journal of Nutritional Biochemistry, 10(5), pp. 305–310. [CrossRef]
- Wang, H., Syrovets, T., Kess, D., Büchele, B., Hainzl, H., Lunov, O. & Simmet, T. (2009) 'Targeting NF-κB with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis', Journal of Immunology, 183(7), pp. 4755–4763. [CrossRef]
- Wickett, R.R. & Visscher, M.O. (2006) 'Structure and function of the epidermal barrier', American Journal of Infection Control, 34(10). [CrossRef]
- Wong, R., Geyer, S., Weninger, W., Guimberteau, J.-C. & Wong, J.K. (2016) 'The dynamic anatomy and patterning of skin', Experimental Dermatology, 25, pp. 92–98. [CrossRef]
- World Health Assembly (WHA) (n.d.) 'Resolution on Skin Diseases'. Available at: https://globalskin.org/component/content/article/101-advocacy/641-wha-resolution-on-skin-diseases?Itemid=1710 (Accessed: [Insert Access Date]).
- Yousef, H., Alhajj, M., Fakoya, A.O., et al. (2024) 'Anatomy, Skin (Integument), Epidermis', in StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK470464/.
- Zhang, H.L., Qiu, X.X. & Liao, X.H. (2024) 'Dermal Papilla Cells: From Basic Research to Translational Applications', Biology (Basel), 13(10), p. 842. [CrossRef]
- Zhao, J., Harada, N. & Okajima, K. (2011) 'Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae', Growth Hormone & IGF Research, 21(5), pp. 260–267. [CrossRef]
- Zhou, Q., Mrowietz, U. & Rostami-Yazdi, M. (2009) 'Oxidative stress in the pathogenesis of psoriasis', Free Radical Biology and Medicine, 47(7), pp. 891–905. [CrossRef]
| Component Category | Percentage |
|---|---|
| Water | 83–94% |
| Organic Matter | 4–16% |
| Mineral Salts | 0.4–2.5% |
| Component Category | Molecular Details and Biological Functions |
| Sugars | Glucose, fructose, and mannitol, which serve as energy sources and contribute to osmolarity. |
| Nitrogenous Compounds | Proteins and amino acids involved in cellular repair and signaling. |
| Organic Acids | Acetic, malic, and citric acids—regulate pH and possess antimicrobial properties. |
| Lipids | Residual olive oil and derivatives—contain essential fatty acids beneficial for skin barrier function. |
| Phenolic Compounds | Over 50 identified, including hydroxytyrosol, tyrosol, oleuropein, caffeic acid, and verbascoside—potent antioxidants and anti-inflammatory agents. |
| Flavonoids | Luteolin, apigenin, and glycosides—exhibit anti-inflammatory, antioxidant, and photoprotective properties. |
| Lignans | Pinoresinol and acetoxypinoresinol—recognized for antioxidant and anticancer effects. |
| Vitamins | Mainly vitamin E (tocopherols), contributing to antioxidant protection and skin health. |
| Minerals | Potassium, sodium, calcium, and magnesium—support cellular function and hydration. |
| Dietary Fibers | Mucilage and pectin with moisturizing and protective properties |
| Cells | In vitro | In vivo |
|---|---|---|
| Keratinocyte (Schlupp et al., 2019) | Antibacterial effect against Gram-negative and Gram-positive bacteria. Antioxidant effect reducing ROS formation. Anti-inflammatory effect, reducing IL-8. Photoprotection in UVA-damaged human keratinocytes. | Improvement of skin hydration and collagen density, enhancement of skin elasticity and decrease of erythema index. |
| Human follicle dermal papilla (Sittek 2021) | Positive influence on cell proliferation and release of growth factors IGF-1. Antioxidant effect reducing ROS formation and preventing oxidative stress. | Help in improving and extending hair growth. |
| HaCaT cells (keratinocytes) (Schlupp et al., 2019) |
Reduced IL-8 expression following TNF-α stimulation; confirmed anti-inflammatory effects of OMWW; hydrocortisone used as control. | — |
| Normal human epidermal keratinocytes (Lecci et al., 2021) | Improved cell growth and migration; protection from ROS damage; enhanced skin barrier function. | — |
| A375 melanoma cells (Schlupp 2019) | Selective cytotoxicity against melanoma cells; non-toxic to normal skin cells. | — |
| HFDPCs (Human follicle dermal papilla cells) (Sittek et al., 2021) | Stimulation of IGF-1 and VEGF secretion; increased proliferation; antioxidant protection. | — |
| Human skin (clinical) (Di Mauro et al., 2017) | — | Improved skin hydration and elasticity; decreased erythema index. |
| Bioactivity | Effect or Mechanism | Dermatological Applications |
|---|---|---|
| Antioxidant Activity | Neutralizes reactive oxygen species (ROS), prevents oxidative stress, and protects skin cells from UV-induced damage. | Anti-aging creams, sunscreens, protective serums |
| Anti-inflammatory Effects | Downregulates pro-inflammatory cytokines (e.g., IL-1β, IL-8, TNF-α); modulates NF-κB and MAPK pathways, reducing inflammation. | Eczema and psoriasis treatments, anti-inflammatory formulations |
| Photoprotection | Mitigates UVA and UVB-induced damage, reduces cytokine-mediated inflammation, and protects collagen structure. | Sunscreens, anti-photoaging products |
| Antimicrobial Activity | Inhibits the growth of skin pathogens such as Staphylococcus aureus, Propionibacterium acnes, and Candida spp. | Acne treatments, antibacterial creams, anti-fungal products |
| Skin Barrier Enhancement | Promotes keratinocyte repair, strengthens skin hydration and elasticity, and reinforces the epidermal barrier. | Moisturizers, barrier repair creams |
| Anti-aging Effects | Inhibits collagenase and elastase activity, preserves collagen matrix, and prevents wrinkle formation. | Regenerative serums, anti-wrinkle creams |
| Hair Growth Promotion | Stimulates IGF-1 and VEGF expression in dermal papilla cells, enhancing hair follicle growth and strength. | Hair growth serums, anti-alopecia formulations |
| Skin Cancer Prevention | Selectively induces apoptosis in melanoma cells while sparing healthy keratinocytes; modulates oxidative stress pathways. | Anti-melanoma treatments, preventive skincare |
| ROS Scavenging | Reduces ROS levels by over 60% in experimental models, preventing cellular oxidative damage. | Antioxidant serums, skin repair products |
| Wound Healing Support | Enhances fibroblast proliferation, promotes collagen synthesis, and accelerates tissue regeneration. | Healing ointments, post-surgical creams |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).