Submitted:
07 May 2025
Posted:
08 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PTMCs | Post-transition metal dichalcogenides |
| CDW | Charge density wave |
| ML | Monolayer |
| MBE | Molecular beam epitaxy |
| RHEED | Reflection high energy electron diffraction |
| XPS | X-ray photoemission spectroscopy |
| ARPES | Angle-resolved photoemission spectroscopy |
| UHV | Ultra-high-vacuum |
| BZ | Brillouin zone |
| CBM | Conduction band minimum |
| VBM | Valence band maximum |
| EDC | Energy distribution curve |
| FL | Few-layer |
| Multi-L | Multi-layer |
References
- Tan, S.M.; Chua, C.K.; Sedmidubský, D.; Sofer, Z.B.; Pumera, M. Electrochemistry of layered GaSe and GeS: Applications to ORR, OER and HER. Physical Chemistry Chemical Physics 2016, 18, 1699. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Szökölová, K.; Nasir, M.Z.M.; Sofer, Z.; Pumera, M. Electrochemistry of Layered Semiconducting AIIIBVI Chalcogenides: Indium Monochalcogenides (InS, InSe, InTe). ChemCatChem 2019, 11, 2634. [Google Scholar] [CrossRef]
- Sucharitakul, S.; Goble, N.J.; Kumar, U.R.; Sankar, R.; Bogorad, Z.A.; Chou, F.C.; Chen, Y.T.; Gao, X.P.A. Intrinsic Electron Mobility Exceeding 103 cm2/(V s) in Multilayer InSe FETs. Nano Letters 2015, 15, 3815. [Google Scholar] [CrossRef]
- Xu, K.; Yin, L.; Huang, Y.; Shifa, T.A.; Chu, J.; Wang, F.; Cheng, R.; Wang, Z.; He, J. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. Nanoscale 2016, 8, 16802. [Google Scholar] [CrossRef] [PubMed]
- Sucharitakul, S.; Goble, N.J.; Kumar, U.R.; Sankar, R.; Bogorad, Z.A.; Chou, F.-C.; Chen, Y.-T.; Gao, X.P.A. Intrinsic Electron Mobility Exceeding 103 cm2/(Vs) in Multilayer InSe FETs. Nano Letters 2015, 15, 3815. [Google Scholar] [CrossRef]
- Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, J.; Yoon, M.; Qiao, X.-F.; Zhang, X.; Feng, W.; Tan, P.; Zheng, W.; Liu, J.; Wang, X.; Idrobo, J.C.; Geohegan, D.B.; Xiao, K. Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Research 2014, 7, 694. [Google Scholar] [CrossRef]
- Marvan, P.; Mazánek, V.; Sofer, Z. Shear-force exfoliation of indium and gallium chalcogenides for selective gas sensing applications. Nanoscale 2019, 11, 4310. [Google Scholar] [CrossRef]
- Li, G.; Ding, G.; Gao, G. Thermoelectric properties of SnSe2 monolayer. Journal of Physics: Condensed Matter 2017, 29, 015001. [Google Scholar]
- Shafique, A.; Samad, A.; Shin, Y.-H. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study. Physical Chemistry Chemical Physics 2017, 19, 20677. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, K.; Wang, Z.; Shifa, T.A.; Wang, Q.; Wang, F.; Jiang, C.; He, J. Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. Nanoscale 2015, 7, 17375. [Google Scholar] [CrossRef]
- Zhou, X.; Gan, L.; Tian, W.; Zhang, Q.; Jin, S.; Li, H.; Bando, Y.; Golberg, D.; Zhai, T. Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors. Advanced Materials 2015, 27, 8035. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zheng, Y.; Luo, Z.; Hao, S.; Du, C.; Liang, Q.; Li, Z.; Khor, K.A.; Hippalgaonkar, K.; Xu, J.; Yan, Q.; Wolverton, C.; Kanatzidis, M.G. n-Type SnSe2 Oriented-Nanoplate-Based Pellets for High Thermoelectric Performance. Advanced Energy Materials 2018, 8, 1702167. [Google Scholar] [CrossRef]
- Choi, J.; Jin, J.; Jung, I.G.; Kim, J.M.; Kim, H.J.; Son, S.U. SnSe2 nanoplate–graphene composites as anode materials for lithium ion batteries. Chemical Communications 2011, 47, 5241. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Caldwell, M.A.; Jeyasingh, R.G.D.; Aloni, S.; Shelby, R.M.; Wong, H.S.P.; Milliron, D.J. Electronic and optical switching of solution-phase deposited SnSe2 phase change memory material. Journal of Applied Physics 2011, 109, 113506. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Fan, J.-Q.; Wang, W.-L.; Zhang, D.; Wang, L.; Li, W.; He, K.; Song, C.-L.; Ma, X.-C.; Xue, Q.-K. Observation of interface superconductivity in a SnSe2 epitaxial graphene van der Waals heterostructure. Physical Review B 2018, 98, 220508. [Google Scholar] [CrossRef]
- Mao, Y.; Ma, X.; Wu, D.; Lin, C.; Shan, H.; Wu, X.; Zhao, J.; Zhao, A.; Wang, B. Interfacial Polarons in van der Waals Heterojunction of Monolayer SnSe2 on SrTiO3 (001). Nano Letters 2020, 20, 8067. [Google Scholar] [CrossRef]
- Wang, S.-Z.; Zhang, Y.-M.; Fan, J.-Q.; Ren, M.-Q.; Song, C.-L.; Ma, X.-C.; Xue, Q.-K. Charge density waves and Fermi level pinning in monolayer and bilayer SnSe2. Physical Review B 2020, 102, 241408. [Google Scholar] [CrossRef]
- Wu, H.; Li, S.; Susner, M.; Kwon, S.; Kim, M.; Haugan, T.; Lv, B. Spacing dependent and cation doping independent superconductivity in intercalated 1T 2D SnSe2. 2D Materials 2019, 6, 045048. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, E.; Fu, Y.; Chen, Z.; Pan, C.; Wang, C.; Wang, M.; Wang, Y.; Xu, K.; Cai, S.; Yan, X.; Wang, Y.; Liu, X.; Wang, P.; Liang, S.-J.; Cui, Y.; Hwang, H.Y.; Yuan, H.; Miao, F. Gate-Induced Interfacial Superconductivity in 1T-SnSe2. Nano Letters 2018, 18, 1410. [Google Scholar] [CrossRef]
- Schlüter, M.; Cohen, M.L. Valence-band density of states and chemical bonding for several non-transition-metal layer compounds: SnSe2, PbI2, BiI3, and GaSe. Physical Review B 1976, 14, 424. [Google Scholar] [CrossRef]
- Zhachuk, R.A.; Rogilo, D.I.; Petrov, A.S.; Sheglov, D.V.; Latyshev, A.V.; Colonna, S.; Ronci, F. Atomic structure of a single step and dynamics of Sn adatoms on the Si(111)-√3×√3-Sn surface. Physical Review B 2021, 104, 125437. [Google Scholar] [CrossRef]
- Wu, X.; Ming, F.; Smith, T.S.; Liu, G.; Ye, F.; Wang, K.; Johnston, S.; Weitering, H.H. Superconductivity in a Hole-Doped Mott-Insulating Triangular Adatom Layer on a Silicon Surface. Physical Review Letters 2020, 125, 117001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, C.; Tian, Q.; Meng, Q.; Zong, J.; Zhang, Y. Epitaxial Growth of Monolayer SnSe2 Films on Gd-Intercalated Quasi-Free-Standing Monolayer Graphene with Enhanced Interface Adsorption. The Journal of Physical Chemistry C 2022, 126, 5751. [Google Scholar] [CrossRef]
- Jiang, P.; Ma, X.; Ning, Y.; Song, C.; Chen, X.; Jia, J.-F.; Xue, Q.-K. Quantum Size Effect Directed Selective Self-Assembling of Cobalt Phthalocyanine on Pb(111) Thin Films. Journal of the American Chemical Society 2008, 130, 7790. [Google Scholar] [CrossRef] [PubMed]
- Huttmann, F.; Martínez-Galera, A.J.; Caciuc, V.; Atodiresei, N.; Schumacher, S.; Standop, S.; Hamada, I.; Wehling, T.O.; Blügel, S.; Michely, T. Tuning the van der Waals Interaction of Graphene with Molecules via Doping. Physical Review Letters 2015, 115, 236101. [Google Scholar] [CrossRef]
- Barr, T.L. An XPS study of Si as it occurs in adsorbents, catalysts, and thin films. Applications of Surface Science 1983, 15, 1. [Google Scholar] [CrossRef]
- Sheverdyaeva, P.M.; Mahatha, S.K.; Ronci, F.; Colonna, S.; Moras, P.; Satta, M.; Flammini, R. Signature of surface periodicity in the electronic structure of Si(1 1 1)-(7 × 7). Journal of physics. Condensed matter : an Institute of Physics journal 2017, 29, 215001. [Google Scholar] [CrossRef]
- Kinoshita, T.; Kono, S.; Sagawa, T. Angle-resolved photoelectron-spectroscopy study of the Si(111) √3×√3-Sn surface: Comparison with Si(111) √3×√3-Al, -Ga, and -In surfaces. Physical Review B 1986, 34, 3011. [Google Scholar] [CrossRef]
- Lobo, J.; Tejeda, A.; Mugarza, A.; Michel, E.G. Electronic structure of Sn/Si(111)-√3×√3R30° as a function of Sn coverage. Physical Review B 2003, 68, 235332. [Google Scholar] [CrossRef]
- Lochocki, E.B.; Vishwanath, S.; Liu, X.; Dobrowolska, M.; Furdyna, J.; Xing, H.G.; Shen, K.M. Electronic structure of SnSe2 films grown by molecular beam epitaxy. Applied Physics Letters 2019, 114, 091602. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Oleynik, I.I. Layer-dependent properties of ${\mathbf{SnS}}_{2}$ and ${\mathbf{SnSe}}_{2}$ two-dimensional materials. Physical Review B 2016, 94, 125443. [Google Scholar] [CrossRef]
- Bertrand, Y.; Solal, F.; Levy, F. Experimental band structure of 2H-SnSe2 by synchrotron radiation photoemission spectroscopy. Journal of Physics C: Solid State Physics 1984, 17, 2879. [Google Scholar] [CrossRef]
- Brizolla, G.M.S.; Chaves, A.J.; Teles, L.K.; Guilhon, I.; Junior, J.M.P. Electrically controlled charge qubit in van der Waals heterostructures: From ab initio calculation to tight-binding models. Physical Review B 2024, 109, 125416. [Google Scholar] [CrossRef]
- Ge, B.; Li, C.; Lu, W.; Ye, H.; Li, R.; He, W.; Wei, Z.; Shi, Z.; Kim, D.; Zhou, C.; Zhu, M.; Wuttig, M.; Yu, Y. Dynamic Phase Transition Leading to Extraordinary Plastic Deformability of Thermoelectric SnSe2 Single Crystal. Advanced Energy Materials 2023, 13, 2300965. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
