Submitted:
06 May 2025
Posted:
09 May 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
1.1. Existing Environmental Data Sources
1.2. Integrate Emission Factors from EPDs in LCA
2. Methods: Integrating Emission Factors in LCA Programs
2.1. Differences Between EPD and Process-Based Databases
2.2. Operation of LCA Programs for LCA Result Generation from LCI Databases
2.3. Reverse Calculation and Impact Category Proxies to Integrate Emission Factors in LCA
3. Results: Implementation of the OBD Database in Brightway2
3.1. Finding Unique Flows in the Relevant Impact Categories to the Ecosphere
3.2. Balancing Mechanism for Non-Unique Ecosphere Flows
3.3. Impact Category k as Sum of Other Impact Categories
3.4. Technical Implementation in Python
- Labelling scenarios
- 2.
- Inconsistent data entries for life cycle stage modules
- 3.
- Aggregation of life cycle stage modules 'A1-A3'
3.5. Example of LCA Calculations with Data from Process-Based and EPD Databases
4. Discussion: Limitations of the Method and the Example
5. Conclusions and Recommendations: Advantages of the Method and Outlook
Author Contributions
Funding
Acknowledgements
References
- Abu-Ghaida H, Ritzen M, Hollberg A, Theissen S, Attia S, Lizin S (2024) Accounting for product recovery potential in building life cycle assessments: a disassembly network-based approach. Int J Life Cycle Assess 29:1151–1176. [CrossRef]
- Baehr J, Zenglein F, Sonnemann G, Lederer M, Schebek L (2024) Back in the Driver’s Seat: How New EU Greenhouse-Gas Reporting Schemes Challenge Corporate Accounting. Sustainability 16:3693. [CrossRef]
- Bee E, Prada A, Baggio P, Psimopoulos E (2019) Air-source heat pump and photovoltaic systems for residential heating and cooling: Potential of self-consumption in different European climates. Build Simul 12:453–463. [CrossRef]
- beta (2017) Pandas read csv file with float values results in weird rounding and decimal digits. Stack Overflow.
- Brightway Developers (2024) bw2io.export.ecospold1 — Brightway documentation. https://docs.brightway.dev/en/latest/content/api/bw2io/export/ecospold1/index.html#module-contents. Accessed 20 Dec 2024.
- Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen (2024) ÖKOBAUDAT. https://www.oekobaudat.de/. Accessed 22 Feb 2024. 2024.
- de Villiers C, La Torre M, Molinari M (2022) The Global Reporting Initiative’s (GRI) past, present and future: critical reflections and a research agenda on sustainability reporting (standard-setting). Pacific Accounting Review 34:728–747. [CrossRef]
- Del Rosario P, Palumbo E, Traverso M (2021) Environmental Product Declarations as Data Source for the Environmental Assessment of Buildings in the Context of Level(s) and DGNB: How Feasible Is Their Adoption? Sustainability 13:6143. [CrossRef]
- Deutsches Institut für Normung (2022) DIN EN 15804:2022-03, Nachhaltigkeit von Bauwerken_- Umweltproduktdeklarationen_- Grundregeln für die Produktkategorie Bauprodukte; Deutsche Fassung EN_15804:2012+A2:2019_+ AC:2021.
- ecoinvent (2023) Releases Overview. https://support.ecoinvent.org/releases-overview. Accessed 28 Oct 2024.
- Emara Y, Ciroth A (2014) The database ÖKOBAU.DAT in openLCA and SimaPro.
- European Commission, Joint Research Centre (2021) Level(s) indicator 2.1: Bill of Quantities, materials and lifespans. https://susproc.jrc.ec.europa.eu/product-bureau/sites/default/files/2021-01/UM3_Indicator_2.1_v1.1_34pp.pdf. Accessed 17 Oct 2024.
- Figl H, Kusche O (2023) ÖKOBAUDAT-Handbuch Technisch/formale Informationen und Regeln zur ÖKOBAUDAT-Datenbank Version 2.1. https://www.oekobaudat.de/fileadmin/downloads/2023-11-20_OEBD-Handbuch_v2.1_Red_2023-12-18.pdf. Accessed 8 Jul 2024.
- Fraunhofer ISE (2024) Photovoltaics Report. In: Fraunhofer-Institut für Solare Energiesysteme ISE. https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/photovoltaics-report.html. Accessed 28 Oct 2024.
- Fritz MMC, Schöggl J-P, Baumgartner RJ (2017) Selected sustainability aspects for supply chain data exchange: Towards a supply chain-wide sustainability assessment. Journal of Cleaner Production 141:587–607. [CrossRef]
- Greenhouse Gas Protocol (2016) Global Warming Potential Values. https://ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf. Accessed 12 Apr 2024. 2024.
- Hauschild MZ, Rosenbaum RK, Olsen SI (2017) Life Cycle Assessment: Theory and Practice. Springer.
- Heijungs R (2022) The revised mathematics of life cycle sustainability assessment. Journal of Cleaner Production 350:131380. [CrossRef]
- Institut Bauen und Umwelt, e.V. (2024) Veröffentlichte EPDs. In: IBU - Institut Bauen und Umwelt e.V. https://ibu-epd.com/veroeffentlichte-epds/. Accessed 10 Jun 2024. 2024. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC) (2021) IPCC Emissions Factor Database | GHG Protocol. https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database. Accessed 10 Jun 2024. 2024.
- International EPD® System EPD International. https://www.environdec.com/home. Accessed 10 Jun 2024. 2024.
- International Standardization Organization (2006a) ISO 14025:2006 - Environmental labels and declarations.
- International Standardization Organization (2006b) ISO 14040:2006.
- Meinrenken CJ, Chen D, Esparza RA, Iyer V, Paridis SP, Prasad A, Whillas E (2020) Carbon emissions embodied in product value chains and the role of Life Cycle Assessment in curbing them. Sci Rep 10:6184. [CrossRef]
- Mendoza Beltran A, Cox B, Mutel C, van Vuuren DP, Font Vivanco D, Deetman S, Edelenbosch OY, Guinée J, Tukker A (2020) When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment. Journal of Industrial Ecology 24:64–79. [CrossRef]
- Mutel C (2017) Brightway: An open source framework for Life Cycle Assessment. Journal of Open Source Software 2:236. [CrossRef]
- Science Based Targets initiative (SBTi) (2024) SBTi CORPORATE NET-ZERO STANDARD.
- Steen B, Carlson R, Löfgren G (1995) SPINE. A Relation Database Structure for Life Cycle Assessments.
- Steubing B, de Koning D, Haas A, Mutel CL (2020) The Activity Browser — An open source LCA software building on top of the brightway framework. Software Impacts 3:100012. [CrossRef]
- Strazza C, Del Borghi A, Magrassi F, Gallo M (2016) Using environmental product declaration as source of data for life cycle assessment: a case study. Journal of Cleaner Production 112:333–342. [CrossRef]
- The pandas development team (2020) Pandas.
- Umweltbundesamt (2022) CO2-Emissionsfaktoren für fossile Brennstoffe: Aktualisierung 2022.
- World Resources Institute and World Business Council, for Sustainable Development, GHG Protocol Initiative Team (2004) The Greenhouse Gas Protocol - A Corporate Accounting and Reporting Standard. 2004.
- Zargar S, Yao Y, Tu Q (2022) A review of inventory modeling methods for missing data in life cycle assessment. Journal of Industrial Ecology 26:1676–1689. [CrossRef]
- Zhang X, Heeren N, Bauer C, Burgherr P, McKenna R, Habert G (2024) The impacts of future sectoral change on the greenhouse gas emissions of construction materials for Swiss residential buildings. Energy and Buildings 303:113824. [CrossRef]
- (2022) Directive (EU) 2022/2464 of the European Parliament and of the Council of 14 December 2022 amending Regulation (EU) No 537/2014, Directive 2004/109/EC, Directive 2006/43/EC and Directive 2013/34/EU, as regards corporate sustainability reporting (Text with EEA relevance).
- ISO 14068-1:2023(en), Climate change management — Transition to net zero — Part 1: Carbon neutrality. 2023.
- Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the use of the Environmental Footprint methods to measure and communicate the life cycle environmental performance of products and organisations. 2021.



| Obligatory impact categories | Additional impact categories |
| acidification | ecotoxicity |
| climate change | human toxicity: carcinogenic |
| climate change, biogenic | human toxicity: non-carcinogenic |
| climate change, fossil | ionising radiation |
| climate change, land use and land use change | land use |
| energy resources: non-renewable | particulate matter formation |
| Eutrophication, freshwater | |
| Eutrophication, marine | |
| Eutrophication, terrestrial | |
| material resources, metals/minerals | |
| ozone depletion | |
| photochemical oxidant formation: human health | |
| water use |
| Impact category | inon-unique | iother unique |
| Acidification potential, Accumulated Exceedance (AP) | Sulphur dioxide (‘air’, ’lower stratosphere + upper troposphere’) | Butanol ('air', 'low population density, long-term') |
| Eutrophication potential - terrestrial | Nitrate (‘air’) | Nitrate (‘water, ground’) |
| Depletion potential of the stratospheric ozone layer (ODP) | Methane, dichlorodifluoro-, CFC-12 ('air', 'low population density, long-term') | Carbon dioxide, fossil ('air', 'urban air close to ground') |
| Technical building equipment | Database used | Amount | Name of the dataset | Lifetime |
| Cable duct | OBD | 34.56 kilogram | Cable duct PVC, rigid; PVC | 30 years |
| Communication module | eccoinvent | 1 unit | Internet access equipment | 15 years |
| Control cabinet | ecoinvent | 2 kilograms | electronics, for control units | 15 years |
| Charge controller | ecoinvent | 1 unit | battery management system, for Li-ion battery | 15 years |
| Display (5”) | ecoinvent | 0.29 units | display, liquid crystal, 17 inches | 15 years |
| Heating system | ecoinvent | 14040 MJ | heat production, air-water heat pump 10kW with 75% (1087 kWh) electricity from the German grid (market for electricity, low voltage, DE, ecoinvent) and 25% (326 kWh) from PV and the storage | per year |
| OBD | 9 m2 | Underfloor heating system PEX (200mm distance); 200 mm distance | 20 years | |
| Motion sensor | ecoinvent | 0.27 kilograms | polycarbonate | 15 years |
| 0.03 kilograms | electronic component, passive, unspecified | 15 years | ||
| Smoke detector | ecoinvent | 3*0.15 kilograms | polystyrene, extruded | 15 years |
| 3*0.05 kilograms | electronic component, passive, unspecified | 15 years | ||
| Power outlet | OBD | 7 units | Electric socket; 1 piece | 30 years |
| Lightning | OBD | 2 units | Rocker lightswitch; 1 piece | 30 years |
| 5 units | Louvrelight 2x T8-36W (LFL); 1 piece | 15 years | ||
| 1 unit | LED office luminaire | 15 years | ||
| Inverter | OBD | 1 unit | inverter production, 2.5kW | 15 years |
| PV | OBD | 1.98 m2 | Photovoltaic system 1000 kWh/m²*a | 20 years |
| Electricity storage | OBD | 12 kWh | Lithium iron phosphate (LiFePO4) battery (per 1kWh storage); 1kWh storage capacity | 15 years |
| ecoinvent | 1.77 mol H+-Eq | 661.13 kg CO2-Eq | 47.48 kg CO2-Eq | 613.16 kg CO2-Eq | 0.83 kg CO2-Eq | 7629.18 MJ, net calorific value | 0.72 kg P-Eq | 0.72 kg P-Eq | 3.24 mol N-Eq | 0.01 kg Sb-Eq | 0 kg CFC-11-Eq | 9.02E-06 disease incidence | 0.94 kg NMVOC-Eq | 120.5 m3 world eq. deprived |
| 52.92% | 68.04% | 100.99% | 66.39% | 80.13% | 65.19% | 96.22% | 65.83% | 56.83% | 37.73% | 98.38% | 87.87% | 50.68% | 67.31% | |
| OBD | 1.57 mol H+-Eq | 310.51 kg CO2-Eq | -0.47 kg CO2-Eq | 310.43 kg CO2-Eq | 0.21 kg CO2-Eq | 4074.45 MJ, net calorific value | 0.03 kg P-Eq | 0.23 kg N-Eq | 2.46 mol N-Eq | 0.02 kg Sb-Eq | 1.48E-06 kg CFC-11-Eq | 1.25E-06 disease incidence | 0.91 kg NMVOC-Eq | 58.52 m3 world eq. deprived |
| 47.08% | 31.96% | -0.99% | 33.61% | 19.87% | 34.81% | 3.78% | 34.74% | 43.17% | 62.27% | 1.62% | 12.13% | 49.32% | 32.69% | |
| Contribution tot he results per database | acidification | accumulated exceedance (ae) | climate change | global warming potential (GWP100) | climate change biogenic | global warming potential (GWP100) | climate change fossil | global warming potential (GWP100) | climate change land use and land use change | global warming potential (GWP100) | energy resources: non-renewable | abiotic depletion potential (ADP): fossil fuels | eutrophication freshwater | fraction of nutrients reaching freshwater end compartment (P) | eutrophication marine | fraction of nutrients reaching marine end compartment (N) | eutrophication terrestrial | accumulated exceedance (AE) | material resources metals/minerals | abiotic depletion potential (ADP): elements (ultimate reserves) | ozone depletion | ozone depletion potential | particulate matter formation | impact on human health | photochemical ozone formation: human health | tropospheric ozone concentration increase | water use | water deprivation potential (deprivation-weighted water consumption) |
| Deviation of results displayed in the Activity-Browser from the original OBD datasets of the product Lithium iron phosphate (LiFePO4) battery (per 1kWh storage); 1kWh storage capacity | |
| acidification | accumulated exceedance (ae) | 7.2 E-08 |
| climate change | global warming potential (GWP100) | 2.7 E-05 |
| climate change biogenic | global warming potential (GWP100) | 3.4 E-09 |
| climate change fossil | global warming potential (GWP100) | 2.7 E-05 |
| climate change land use and land use change | global warming potential (GWP100) | 3.9 E-09 |
| energy resources: non-renewable | abiotic depletion potential (ADP): fossil fuels | 3.8 E-08 |
| eutrophication freshwater | fraction of nutrients reaching freshwater end compartment (P) | 2.7 E-08 |
| eutrophication marine | fraction of nutrients reaching marine end compartment (N) | 5.1 E-09 |
| eutrophication terrestrial | accumulated exceedance (AE) | 6.1 E-09 |
| material resources metals/minerals | abiotic depletion potential (ADP): elements (ultimate reserves) | 1.5 E-08 |
| ozone depletion | ozone depletion potential | 1.1 E-08 |
| photochemical ozone formation: human health | tropospheric ozone concentration increase | 3.1 E-08 |
| water use | water deprivation potential (deprivation-weighted water consumption) | 5.4 E-08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
