Submitted:
26 April 2025
Posted:
29 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AOD | Aerosol optical depth |
| OI STOI KF 3D-Var 4D-Var |
Optimal interpolation Spatial-temporal optimal interpolation Kalman filtering 3-dimentional variational 4-dimentional variational |
| AERONET | Aerosol Robotic Network |
| RMSE | Root-mean-square error |
Appendix A
| AERONET site | Longitude | Latitude |
|---|---|---|
| Lille Barcelona Venise Xanthi Ispra Mainz Helgoland Palaiseau Paris Moldova IMS-METU-ERDEMLI Kyiv Hamburg Modena Moscow_MSU_MO Minsk Rome_Tor_Vergata Leipzig Davos Munich_University Lecce_University ATHENS-NOA Belsk Villefranche Palencia Carpentras Toulon Dunkerque Evora Laegeren Cabo_da_Roca Granada Gustav_Dalen_Tower OHP_OBSERVATOIRE Chilbolton Helsinki_Lighthouse Sevastopol Brussels Zvenigorod Porquerolles Burjassot Bucharest_Inoe Autilla Kanzelhohe_Obs Ersa Arcachon Wytham_Woods Malaga Birkenes Eforie Huelva Aubiere_LAMP Frioul CLUJ_UBB Gloria Bari_University Tabernas_PSA-DLR Calern_OCA Montsec Bure_OPE Coruna Madrid Tizi_Ouzou Iasi_LOASL Zaragoza FZJ-JOYCE Badajoz Cerro_Poyos Valladolid Murcia MetObs_Lindenberg Ben_Salem CENER HohenpeissenbergDWD Galata_Platform Tunis_Carthage Carloforte Exeter_MO Strzyzow LAQUILA_Coppito Toulouse_MF Martova Zeebrugge-MOW1 Peterhof Finokalia-FKL Berlin_FUB |
3.142°E 2.112°E 12.508°E 24.919°E 8.627°E 8.3°E 7.887°E 2.215°E 2.356°E 28.816°E 34.255°E 30.497°E 9.973°E 10.945°E 37.522°E 27.601°E 12.647°E 12.435°E 9.844°E 11.573°E 18.111°E 23.718°E 20.792°E 7.329°E 4.516°W 5.058°E 6.009°E 2.368°E 7.911°W 8.364°E 9.498°W 3.605°W 17.467°E 5.71°E 1.437°W 24.926°E 33.517°E 4.35°E 36.775°E 6.161°E 0.42°W 26.028°E 4.603°W 13.901°E 9.359°E 1.163°W 1.332°W 4.478°W 8.252°E 28.632°E 6.569°W 3.111°E 5.293°E 23.551°E 29.36°E 16.884°E 2.358°W 6.923°E 0.73°E 5.505°E 8.421°W 3.724°W 4.056°E 27.556°E 0.882°W 6.413°E 7.011°W 3.487°W 4.706°W 1.171°W 14.121°E 9.914°E 1.602°W 11.012°E 28.193°E 10.2°E 8.31°E 3.475°W 21.861°E 13.351°E 1.374°E 36.953°E 3.12°E 29.826°E 25.67°E 13.31°E |
50.612°N 41.389°N 45.314°N 41.147°N 45.803°N 49.999°N 54.178°N 48.712°N 48.847°N 47.001°N 36.565°N 50.364°N 53.568°N 44.632°N 55.707°N 53.92°N 41.84°N 51.353°N 46.813°N 48.148°N 40.335°N 37.972°N 51.837°N 43.684°N 41.989°N 44.083°N 43.136°N 51.035°N 38.568°N 47.478°N 38.782°N 37.164°N 58.594°N 43.935°N 51.144°N 59.949°N 44.616°N 50.783°N 55.695°N 43.001°N 39.507°N 44.348°N 41.997°N 46.677°N 43.004°N 44.664°N 51.77°N 36.715°N 58.388°N 44.075°N 37.016°N 45.761°N 43.266°N 46.768°N 44.6°N 41.108°N 37.091°N 43.752°N 42.051°N 48.562°N 43.363°N 40.452°N 36.699°N 47.193°N 41.633°N 50.908°N 38.883°N 37.109°N 41.664°N 38.001°N 52.209°N 35.551°N 42.816°N 47.802°N 43.045°N 36.839°N 39.14°N 50.729°N 49.879°N 42.368°N 43.573°N 49.936°N 51.362°N 59.881°N 35.338°N 52.458°N |
References
- Lahoz, W.A. Data Assimilation; Springer-Verlag Berlin Heidelberg, 2010.
- Sandu, A.; Chai, T. Chemical Data Assimilation — An Overview. Atmosphere 2011, 2, 426–463. [CrossRef]
- Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G.R.; Flemming, J.; Inness, A.; Pagowski, M.; Pérez Camaño, J.L.; Saide, P.E.; San Jose, R.; Sofiev, M.; Vira, J.; Baklanov, A.; Carnevale, C.; Grell, G.; C. Seigneur, C. Data Assimilation in Atmospheric Chemistry Models: Current Status and Future Prospects for Coupled Chemistry Meteorology Models. Atmos. Chem. Phys. 2015, 15, 5325–5358. [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2002.
- Wikle, C.K.; Berliner, L.M. A Bayesian Tutorial for Data Assimilation. Phys. D. Nonlinear Phenom. 2007, 230, 1–16. https://doi:10.1016/j.physd.2006.09.017.
- Daley, R. Atmospheric Data Analysis; Cambridge University Press: Cambridge, UK, 1991.
- Rodgers, C. D. Inverse Methods for Atmospheric Sounding : Theory and Practice; World Scientific: Singapore, 2000.
- Gandin, L.S. Objective Analysis of Meteorological Fields; Gidrometeorol. Izd.: Leningrad, Russia, 1963.
- Lorenc, A.C. A Global Three-Dimensional Multivariate Statistical Analysis Scheme. Mon. Weather Rev. 1981, 109, 701–721. [CrossRef]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
- Constantinescu, E.M.; Sandu, A.; Chai, T.; Carmichael, G. Ensemble-based Chemical Data Assimilation: General Approach. Q. J. R. Meteorol. Soc. 2007, 133, 1229–1243. [CrossRef]
- Sasaki, Y. An Objective Analysis Based on the Variational Method. J. Meteorol. Soc. Japan 1958, 36, 77–88. [CrossRef]
- Le Dimet, F.-X.; Talagrand, O. Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects. Tellus 1986, 38A, 97–110. [CrossRef]
- Courtier, P.; Thepaut, J.-N.; Hollingsworth, A. A Strategy for Operational Implementation of 4D-Var, Using an Incremental Approach. Q. J. R. Meteorol. Soc. 1994, 120, 1367–1387. [CrossRef]
- Carmichael, G.R.; Sandu, A.; Chai, T.; Daescu, D.N.; Constantinescu, E.M;, Tang, Y. Predicting Air Quality: Improvements through Advanced Methods to Integrate Models and Measurements. J. Comput. Phys., 2008, 227, 3540–3571. [CrossRef]
- Wahba, G.; Wendelberger, J. Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation. Mon. Wea. Rev. 1980, 108, 1122–1143.
- Lorenc, A.C. Analysis Methods for Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194. [CrossRef]
- Candiani, G.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M. A Comparison of Reanalysis Techniques: Applying Optimal Interpolation and Ensemble Kalman Filtering to Improve Air Quality Monitoring at Mesoscale. Sci. Total Environ. 2013, 458–460, 7–14. [CrossRef]
- Khattatov, B.V.; Gille, J.C.; Lyjak, L.V.; Brasseur, G.P.; Dvortsov, V.L.; Roche, A.E.; Waters, J. Assimilation of Photochemically Active Species and a Case Analysis of UARS Data. J. Geophys. Res. 1999, 104, 18715–18737. http://dx.doi.org/10.1029/1999JD900225.
- Tombette, M.; Mallet, V.; Sportisse, B. PM10 Data Assimilation over Europe with the Optimal Interpolation Method. Atmos. Chem. Phys. 2009, 9, 57–70. [CrossRef]
- Miatselskaya, N.S.; Bril, A.I.; Chaikovsky, A.P.; Yukhymchuk, Yu.Yu.; Milinevski, G.P.; Simon, A.A. Optimal Interpolation of AERONET Radiometric Network Observations for the Evaluation of the Aerosol Optical Thickness Distribution in the Eastern European Region. J. Appl. Spectrosc. 2022, 89, 296–302. [CrossRef]
- Miatselskaya, N.; Milinevsky, G.; Bril, A.; Chaikovsky, A.; Miskevich, A.; Yukhymchuk, Y. Application of Optimal Interpolation to Spatially and Temporally Sparse Observations of Aerosol Optical Depth. Atmosphere. 2023, 14, 32. [CrossRef]
- Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating Ground-level PM2.5 with Aerosol Optical Depth Determined from Satellite Remote Sensing. J. Geophys. Res. 2006, 111, D21201. [CrossRef]
- Perez-Ramirez, D.; Veselovskii, I.; Whiteman, D. N.; Suvorina, A.; Korenskiy, M.; Kolgotin, A.; Holben, B.; Dubovik, O.; Siniuk, A.; Alados-Arboledas, L. High Temporal Resolution Estimates of Columnar Aerosol Microphysical Parameters from Spectrum of Aerosol Optical Depth by Linear Estimation: Application to Long-term AERONET and Star-photometry Measurements. Atmos. Meas. Tech., 2015, 8, 3117–3133. [CrossRef]
- Yu, H.; Dickinson, R.E.; Chin, M.; Kaufman, Y.J.; Geogdzhayev, B.; Mishchenko, M.I. Annual Cycle of Global Distributions of Aerosol Optical Depth from Integration of MODIS Retrievals and GOCART Model Simulations. J. Geophys. Res. 2003, 108, 4128. [CrossRef]
- Adhikary, B.; Kulkarni, S.; Dallura, A.; Tang, Y.; Chai, T.; Leung, L.R.; Qian, Y.; Chung, C.E.; Ramanathan, V.; Carmichael, G.R. A Regional Scale Chemical Transport Modeling of Asian Aerosols with Data Assimilation of AOD Observations Using Optimal Interpolation Technique. Atmos. Env. 2008, 42, 8600–8615. [CrossRef]
- Rubin, J.I.; Reid, J.S.; Hansen, J.A.; Anderson, J.L.; Holben, B.N.; Xian, P.; Westphal, D.L.; Zhang, J. Assimilation of AERONET and MODIS AOT Observations Using Variational and Ensemble Data Assimilation Methods and Its Impact on Aerosol Forecasting Skill. J. Geophys. Res.–Atmos. 2017, 122, 4967–4992. [CrossRef]
- Collins, W.D.; Rasch, P.J.; Eaton, B.E.; Khattatov, B.V.; Lamarque, J.-F.; Zender, C.S. Simulating Aerosols Using a Chemical Transport Model with Assimilation of Satellite Aerosol Retrievals: Methodology for INDOEX. J. Geophys. Res. Atmos. 2001, 106, 7313–7336. [CrossRef]
- Xue, Y.; Xu, H.; Guang, J.; Mei, L.; Guo, J.; Li, C.; Mikusauskas, R.; He, X. Observation of an Agricultural Biomass Burning in Central and East China Using Merged Aerosol Optical Depth Data from Multiple Satellite Missions. Int. J. Remote Sens. 2014, 35, 5971-5983. [CrossRef]
- Li, K.; Bai, K.; Li, Z.; Guo, J.; Chang, N.-B. Synergistic Data Fusion of Multimodal AOD and Air Quality Data for Near Real-Time Full Coverage Air Pollution Assessment. J. Environ. Manag. 2022, 302, 114121. [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [CrossRef]
- Holben, B.N.; Kim, J.; Sano, I.; Mukai, S.; Eck, T.F.; Giles, D.M.; Schafer, J.S.; Sinyuk, A.; Slutsker, I.; Smirnov, A. An Overview of Mesoscale Aerosol Processes, Comparisons, and Validation Studies from DRAGON Networks. Atmos. Chem. Phys. 2018, 18, 655–671. [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; Welton, E.J.; Korkin, S.V.; Lyapustin, A.I. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database – Automated Near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209, . [CrossRef]
- Available online: https://www.cimel.fr/ (accessed on 10 April 2025).
- Dubovik, O.; King, M.D. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. J. Geophys. Res. 2000, 105, 20673–20696. [CrossRef]
- Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 16 April 2025).
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength Dependence of the Optical Depth of Biomass Burning, Urban and Desert Dust Aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [CrossRef]
- Holben, B.N.; Tanre, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.; Chatenet, B.; Lavenue, F.; Kaufman, Y.J.; Vande Castle, J.; Setzer, A.; Markham, B.; Clark, D.; Frouin, R.; Halthore, R.; Karneli, A.; O'Neill, N.T.; Pietras, C.; Pinker, R.T.; Voss, K.; Zibordi, G. An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res. 2001, 106, 12067–12097. [CrossRef]
- Available online: https://geoschem.github.io (accessed on 10 April 2025).
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.; Liu, H.Y.; Mickley, L.J.; Schultz, M.G. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. J. Geophys. Res. 2001, 106, 23073–23096. [CrossRef]
- Park, R.J.; Jacob, D.J.; Field, B.D.; Yantosca, R.M.; Chin, M. Natural and Transboundary Pollution Influences on Sulfate-Nitrate-Ammonium Aerosols in the United States: Implications for Policy. J. Geophys. Res. 2004, 109, D15204. [CrossRef]
- Available online: https://gmao.gsfc.nasa.gov/GEOS_systems/ (accessed on 16 April 2025).
- Keller, C.A.; Long, M.S.; Yantosca, R.M.; Da Silva, A.M.; Pawson, S.; Jacob, D.J. HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models. Geosci. Model Dev. 2014, 7, 1409–1417. [CrossRef]
- Lin, S.-J.; Rood, R.B. Multidimensional Flux Form Semi-Lagrangian Transport Schemes. Mon. Weather Rev. 1996, 124, 2046–2070.
- Sherwen, T.; Schmidt, J.A.; Evans, M.J.; Carpenter, L.J.; Grossmann, K.; Eastham, S.D.; Jacob, D.J.; Dix, B.; Koenig, T.K.; Sinreich, R.; Ortega, I.; Volkamer, R.; Saiz-Lopez, A.; Prados-Roman, C.; Mahajan, A.S.; Ordóñez, C. Global Impacts of Tropospheric Halogens (Cl, Br, I) on Oxidants and Composition in GEOS-Chem. Atmos. Chem. Phys. 2016, 16, 12239–12271. [CrossRef]
- Travis, K.R.; Jacob, D.J.; Fisher, J.A.; Kim, P.S.; Marais, E.A.; Zhu, L.; Yu, K.; Miller, C.C.; Yantosca, R.M.; Sulprizio, M.P.; Thompson, A.M.; Wennberg, P.O.; Crounse, J.D.; St. Clair, J.M.; Cohen, R.C.; Laughner, J.L.; Dibb, J.E.; Hall, S.R.; Ullmann, K.; Wolfe, G.M.; Pollack, I.B.; Peischl, J.; Neuman, J.A.; Zhou, X. Why Do Models Overestimate Surface Ozone in the Southeast United States? Atmos. Chem. Phys. 2016, 16, 13561–13577, . [CrossRef]
- Eastham, S.D.; Weisenstein, D.K.; Barrett, S.R.H. Development and Evaluation of the Unified Tropospheric–Stratospheric Chemistry Extension (UCX) for the Global Chemistry-Transport Model GEOS-Chem. Atmos. Environ. 2014, 89, 52–63. [CrossRef]
- Latimer, R.N.C.; Martin, R.V. Interpretation of Measured Aerosol Mass Scattering Efficiency over North America Using a Chemical Transport Model. Atmos. Chem. Phys. 2019, 19, 2635–2653. [CrossRef]
- Ridley, D.A.; Heald, C.L.; Ford, B. North African Dust Export and Deposition: A Satellite and Model Perspective. J. Geophys. Res. 2012, 117, D02202. [CrossRef]
- Wang, Y.X.; Mcelroy, M.B.; Jacob, D.J.; Yantosca, R.M. A Nested Grid Formulation for Chemical Transport over Asia: Applications to CO. J. Geophys. Res. Atmos. 2004, 109, D22307. 10.1029/2004JD005237.
- Zhang, L.; Liu, L.; Zhao, Y.; Gong, S.; Zhang, Z.; Henze, D.K.; Capps, S.L.; Fu, T.-M.; Zhang, Q.; Wang, Y. Source Attribution of Particulate Matter Pollution over North China with the Adjoint Method. Environ. Res. Lett. 2015, 10, 084011. [CrossRef]
- Kim, P.S.; Jacob, D.J.; Fisher, J.A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R.M.; Sulprizio, M.P.; Jimenez, J.L.; Campuzano-Jost, P.; Froyd, K.D.; Liao, J.; Hair, J.W.; Fenn, M.A.; Butler, C.F.; Wagner, N.L.; Gordon, T.D.; Welti, A.; Wennberg, P.O.; Crounse, J.D.; St. Clair, J.M.; Teng, A.P.; Millet, D.B.; Schwarz, J.P.; Markovic, M.Z.; Perring, A.E. Sources, Seasonality, and Trends of Southeast US Aerosol: an Integrated Analysis of Surface, Aircraft, and Satellite Observations with the GEOS-Chem Model. Atmos. Chem. Phys. 2015, 15, 10411–10433. [CrossRef]
- Li, S.; Garay, M.J.; Chen, L.; Rees, E.; Liu, Y. Comparison of GEOS-Chem Aerosol Optical Depth with AERONET and MISR Data over the Contiguous United States. J. Geophys. Res. 2013, 118, 11228–11241. [CrossRef]
- Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; Honzak, L.; Jiménez-Guerrero, P.; Knote, C.; Langer, M.; Makar, P.A.; Pirovano, G.; Pérez, J.L.; José, R.S.; Syrakov, D.; Tuccella, P.; Werhahn, J.; Wolke, R.; Žabkar, R.; Zhang, J.; Galmarini, S. Uncertainties of Simulated Aerosol Optical Properties Induced by Assumptions on Aerosol Physical and Chemical Properties: An AQMEII-2 Perspective. Atmos. Environ., 2015, 115, 541–552. [CrossRef]

| Wavelength nm |
Granada | Lille | Minsk | |||
|---|---|---|---|---|---|---|
| GEOS-Chem | STOI | GEOS-Chem | STOI | GEOS-Chem | STOI | |
| 440 | 0.142 | 0.064 (55%) | 0.116 | 0.094 (19%) | 0.130 | 0.103 (21%) |
| 675 | 0.128 | 0.048 (62%) | 0.089 | 0.077 (14%) | 0.074 | 0.070 (7%) |
| 870 | 0.125 | 0.046 (63%) | 0.081 | 0.070 (13%) | 0.055 | 0.059 (-7%) |
| Wavelength nm |
Granada | Lille | Minsk | |||
|---|---|---|---|---|---|---|
| GEOS-Chem | STOI | GEOS-Chem | STOI | GEOS-Chem | STOI | |
| 440 | 0.142 | 0.064 (55%) | 0.116 | 0.101 (13%) | 0.130 | 0.128 (1%) |
| 675 | 0.128 | 0.048 (63%) | 0.089 | 0.079 (10%) | 0.074 | 0.069 (8%) |
| 870 | 0.125 | 0.045 (64%) | 0.081 | 0.071 (12%) | 0.055 | 0.047 (14%) |
| Wavelength nm |
Granada | Lille | Minsk | |||
|---|---|---|---|---|---|---|
| GEOS-Chem | STOI | GEOS-Chem | STOI | GEOS-Chem | STOI | |
| 440 | 0.142 | 0.063 (56%) | 0.116 | 0.095 (18%) | 0.130 | 0.103 (20%) |
| 675 | 0.128 | 0.047 (63%) | 0.089 | 0.077 (14%) | 0.074 | 0.060 (20%) |
| 870 | 0.125 | 0.045 (64%) | 0.081 | 0.070 (13%) | 0.055 | 0.044 (19%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
