Submitted:
25 April 2025
Posted:
25 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Regional Temperature Anomaly Patterns 1940-2023
3.2. Country-Level Temperature Anomaly Patterns 1940-2023
3.3. Modeled Historical Variation in Temperature Anomalies 1851-2100 – Scenario 4.5
3.4. Modeled Historical Variation in Temperature Anomalies 1851-2100 – Scenario 8.5
3.5. Observed vs. Modeled Variation in JASO Temperature Anomalies in 2015-2024
4. Discussion
4.1. Spatio-Temporal Variation in JASO Temperature Anomalies 1940-2023
4.2. Spatio-Temporal Variation in JASO Temperature Anomalies 1851-2100 – Scenario 4.5
4.3. Spatio-Temporal Variation in JASO Temperature Anomalies 1851-2100 – Scenario 8.5
4.4. Factors Explaining Regional SST Warming Trends
4.5. Regional Consequences of Projected Warming Trends
4.6. SOS for Coral Reefs – The Urgency for Adaptive Coral Conservation and Restoration Strategies
4.7. Timely Adaptation and Mitigation Strategies for Developing Nations and Small Island Developing States Across the WC and ETP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021, Cambridge University Press, Cambridge. www.ipcc.ch/report/ar6/wg1/.
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E., Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M., Holbrook, N.J. A hierarchical approach to defining marine heatwaves. Progr, Oceanogr. 2016, 141, 227-338. [CrossRef]
- Dutheil, C.; Lal, S.; Lengaigne, M.; Cravatte, S.; Menkès, C.; Receveur, A.; Börgel, F.; Gröger, M.; Houlbreque, F.; Le Gendre, R.; Mangolte, I. The massive 2016 marine heatwave in the Southwest Pacific: An “El Niño–Madden-Julian Oscillation” compound event. Sci. Adv. 2024, 10(41), eadp2948.
- Hoegh-Guldberg, O.; Skirving, W.; Dove, S.G.; Spady, B.L.; Norrie, A.; Geiger, E.F.; Liu, G.; De La Cour, J.L.; Manzello, D.P. Coral reefs in peril in a record-breaking year. Science. 2023, 382(6676), 1238-1240. [CrossRef]
- Goessling, H.F.; Rackow, T.; Jung, T. Recent global temperature surge intensified by record-low planetary albedo. Science. 2025, 387(6729), 68-73. [CrossRef]
- Mejias-Rivera, C.L.; Courtney, T.A. Ocean warming, heat stress, and coral bleaching in Puerto Rico. Caribb. J. Sci. 2024, 54(1), 132-149. [CrossRef]
- Lachs, L.; Bozec, Y.M.; Bythell, J.C.; Donner, S.D.; East, H.K.; Edwards, A.J.; Golbuu, Y.; Gouezo, M.; Guest, J.R.; Humanes, A.; Riginos, C. Natural selection could determine whether Acropora corals persist under expected climate change. Science. 2024, 386(6727), 1289-1294, eadl6480. [CrossRef]
- Baum, J.K.; Claar, D.C.; Tietjen, K.L.; Magel, J.M.; Maucieri, D.G.; Cobb, K.M.; McDevitt-Irwin, J.M. Transformation of coral communities subjected to an unprecedented heatwave is modulated by local disturbance. Science Adv. 2023, 9(14), eabq5615. [CrossRef]
- Wang, S.; Foster, A.; Lenz, E.A.; Kessler, J.D.; Stroeve, J.C.; Anderson, L.O.; Turetsky, M.; Betts, R.; Zou, S.; Liu, W.; Boos, W.R. Mechanisms and impacts of Earth system tipping elements. Rev. Geophys. 2023, 61(1), e2021RG000757. [CrossRef]
- Donovan, M.K.; Burkepile, D.E.; Kratochwill, C.; Shlesinger, T.; Sully, S.; Oliver, T.A.; Hodgson, G.; Freiwald, J.; van Woesik, R. Local conditions magnify coral loss after marine heatwaves. Science. 2021, 372(6545), 977-980. [CrossRef]
- Wiedenmann, J.; D’Angelo, C.; Smith, E.G.; Hunt, A.N.; Legiret, F.E.; Postle, A.D.; Achterberg, E.P. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Clim. Change. 2013, 3(2), 160-164. [CrossRef]
- Vega Thurber, R.L.; Burkepile, D.E.; Fuchs, C.; Shantz, A.A.; McMinds, R.; Zaneveld, J.R. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Global Change Biol. 2014, 20(2), 544-554. [CrossRef]
- Burkepile, D.E.; Shantz, A.A.; Adam, T.C.; Munsterman, K.S.; Speare, K.E.; Ladd, M.C.; Rice, M.M.; Ezzat, L.; McIlroy, S.; Wong, J.C.; Baker, D.M. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems. 2020, 23, 798-811. [CrossRef]
- Fernandes de Barros Marangoni, L.; Ferrier-Pagès, C.; Rottier, C.; Bianchini, A.; Grover, R. Unravelling the different causes of nitrate and ammonium effects on coral bleaching. Sci. Rept. 2020, 10(1), 11975. [CrossRef]
- Lesser, M.P. Eutrophication on coral reefs: what is the evidence for phase shifts, nutrient limitation and coral bleaching. BioScience. 2021, 71(12), 1216-1233. [CrossRef]
- Starko, S.; Fifer, J.E.; Claar, D.C.; Davies, S.W.; Cunning, R.; Baker, A.C.; Baum, J.K. Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. Sci. Adv. 2023, 9(32), eadf0954. [CrossRef]
- Romanou, A.; Hegerl, G.; Seneviratne, S.; Abis, B.; Bastos, A.; Conversi, A.; Landolfi, A.; Kim, H.; Lerner, P.; Mekus, J.; Otto-Bliesner, B. Extreme events contributing to tipping elements and tipping points. Surv. Geophys. 2024, 1-46. [CrossRef]
- Wunderling, N.; Donges, J.F.; Kurths, J.; Winkelmann, R. Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dynam. Disc. 2021, 12, 1-21. [CrossRef]
- Wunderling, N.; Winkelmann, R.; Rockström, J.; Loriani, S.; Armstrong McKay, D.I.; Ritchie, P.D.; Sakschewski, B.; Donges, J.F. Global warming overshoots increase risks of climate tipping cascades in a network model. Nature Clim. Change. 2023, 13(1): 75-82. [CrossRef]
- Wunderling, N.; von der Heydt, A.S.; Aksenov, Y.; Barker, S.; Bastiaansen, R.; Brovkin, V.; Brunetti, M.; Couplet, V.; Kleinen, T.; Lear, C.H.; Lohmann, J. Climate tipping point interactions and cascades: a review. Earth Syst. Dynam. 2024, 15(1), 41-74. [CrossRef]
- Braun, C.D.; Lezama-Ochoa, N.; Farchadi, N.; Arostegui, M.C.; Alexander, M.; Allyn, A.; Bograd, S.J.; Brodie, S.; Crear, D.P.; Curtis, T.H.; Hazen, E.L. Widespread habitat loss and redistribution of marine top predators in a changing ocean. Science Adv. 2023, 9(32), eadi2718. [CrossRef]
- Laufkötter, C.; Zscheischler, J.; Frölicher, T.L. High-impact marine heatwaves attributable to human-induced global warming. Science. 2020, 369(6511), 1621-1625. [CrossRef]
- Dalton, S.J.; Carroll, A.G.; Sampayo, E.; Roff, G.; Harrison, P.L.; Entwistle, K.; Huang, Z.; Salih, A.; Diamond, S.L. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. Sci. Total Env. 2020, 715, 136951. [CrossRef]
- Asner, G.P.; Vaughn, N.R.; Martin, R.E.; Foo, S.A.; Heckler, J.; Neilson, B.J.; Gove, J.M. Mapped coral mortality and refugia in an archipelago-scale marine heat wave. Proc. Natl. Acad. Sci. USA, 2022, 119(19), e2123331119. [CrossRef]
- Shlesinger, T.; van Woesik, R. Oceanic differences in coral-bleaching responses to marine heatwaves. Sci. Total Env. 2023, 871, 162113.
- Goreau, T.J.; Hayes, R.L. 2023 Record marine heat waves: coral reef bleaching HotSpot maps reveal global sea surface temperature extremes, coral mortality, and ocean circulation changes. Oxford Open Clim. Change. 2024, 4(1), kgae005. [CrossRef]
- Godinot, C.; Houlbrèque, F.; Grover, R.; Ferrier-Pagès, C. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS One. 2011, 6(9), e25024. [CrossRef]
- Hughes, T.P.; Rodrigues, M.J.; Bellwood, D.R.; Ceccarelli, D.; Hoegh-Guldberg, O.; McCook, L.; Moltschaniwskyj, N.; Pratchett, M.S.; Steneck, R.S.; Willis, B. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biol. 2007, 17(4), 360-365. [CrossRef]
- Leggat, W.P.; Camp, E.F.; Suggett, D.J.; Heron, S.F.; Fordyce, A.J.; Gardner, S.; Deakin, L.; Turner, M.; Beeching, L.J.; Kuzhiumparambil, U.; Eakin, C.M. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 2019, 29(16), 2723-2730. [CrossRef]
- Anderson, J.J.; Gurarie, E.; Bracis, C.; Burke, B.J.; Laidre, K.L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Mod. 2013, 264, 83-97. [CrossRef]
- Alvarez-Filip, L.; Estrada-Saldívar, N.; Pérez-Cervantes, E.; Molina-Hernández, A.; González-Barrios, F.J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ. 2019, 7, e8069. [CrossRef]
- Bernal-Sotelo, K.; Acosta, A.; Cortés, J. Decadal change in the population of Dendrogyra cylindrus (Scleractinia: Meandrinidae) in old providence and St. Catalina Islands, Colombian Caribbean. Front. Mar. Sci. 2019, 5, 513. [CrossRef]
- Chan, A.N.; Lewis, C.L.; Neely, K.L.; Baums, I.B. Fallen pillars: The past, present, and future population dynamics of a rare, specialist coral–algal symbiosis. Front. Mar. Sci. 2019, 6, 218. [CrossRef]
- Estrada-Saldívar, N.; Molina-Hernández, A.; Pérez-Cervantes, E.; Medellín-Maldonado, F.; González-Barrios, F.J.; Alvarez-Filip, L. Reef-scale impacts of the stony coral tissue loss disease outbreak. Coral Reefs. 2020, 39, 861-866. [CrossRef]
- Estrada-Saldívar, N.; Quiroga-García, B.A.; Pérez-Cervantes, E.; Rivera-Garibay, O.O.; Alvarez-Filip, L. Effects of the stony coral tissue loss disease outbreak on coral communities and the benthic composition of Cozumel reefs. Front. Mar. Sci. 2021, 8, 632777. [CrossRef]
- Jones, N.P.; Kabay, L.; Semon Lunz, K.; Gilliam, D.S. Temperature stress and disease drives the extirpation of the threatened pillar coral, Dendrogyra cylindrus, in southeast Florida. Sci. Rept. 2021, 11(1), 14113. [CrossRef]
- Cavada-Blanco, F.; Croquer, A.; Vermeij, M.; Goergen, L.; Rodriguez, R. Dendrogyra cylindrus: extinction risk assessment. The Red List of Threatened Species. 2022, Dec 22.
- Alvarez-Filip, L.; González-Barrios, F.J.; Pérez-Cervantes, E.; Molina-Hernández, A.; Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Comm. Biol. 2022, 5(1), 440. [CrossRef]
- Mellin, C.; Brown, S.; Cantin, N.; Klein-Salas, E.; Mouillot, D.; Heron, S.F.; Fordham, D.A. Cumulative risk of future bleaching for the world’s coral reefs. Sci. Adv. 2024, 10(26), eadn9660. [CrossRef]
- Hays, G.C.; Richardson, A.J.; Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 2005, 20(6), 337-344. [CrossRef]
- Pesce, M.; Critto, A.; Torresan, S.; Giubilato, E.; Santini, M.; Zirino, A.; Ouyang, W.; Marcomini, A. Modelling climate change impacts on nutrients and primary production in coastal waters. Sci. Total Env. 2018, 628, 919-937. [CrossRef]
- Raven, J.A.; Beardall, J. Influence of global environmental change on plankton. J. Plankton Res. 2021, 43(6), 779-800. [CrossRef]
- Möllmann, C.; Müller-Karulis, B.; Kornilovs, G.; St. John, M.A. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J. Mar. Sci. 2008, 65(3), 302-310. [CrossRef]
- Kirby, R.R.; Beaugrand, G.; Lindley, J.A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems. 2009, 12, 48-61. [CrossRef]
- Pratchett, M.S.; Munday, P.L.; Graham, N.A.; Kronen, M.; Pinca, S.; Friedman, K.; Brewer, T.D.; Bell, J.D.; Wilson, S.K.; Cinner, J.E.; Kinch, J.P. Vulnerability of coastal fisheries in the tropical Pacific to climate change. In: Bell, J.D.; Johnson, J.E.; Hobday, A.J. (eds) Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. Secretariat of the Pacific Community, Noumea, New Caledonia. 2011, Chapter 9, 167-185.
- Hayashida, H.; Matear, R.J.; Strutton, P.G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Global Change Biol. 2020, 26(9), 4800-4811. [CrossRef]
- Wyatt, A.M.; Resplandy, L.; Marchetti, A. Ecosystem impacts of marine heat waves in the Northeast Pacific. Biogeosciences. 2022, 19(24), 5689-5705. [CrossRef]
- Kauppi, L.; Göbeler, N.; Norkko, J.; Norkko, A.; Romero-Ramirez, A.; Bernard, G. Changes in macrofauna bioturbation during repeated heatwaves mediate changes in biogeochemical cycling of nutrients. Front. Mar. Sci. 2023, 9, 1070377. [CrossRef]
- Serrano, O.; Arias-Ortiz, A.; Duarte, C.M.; Kendrick, G.A.; Lavery, P.S. Impact of marine heatwaves on seagrass ecosystems. In: Ecosystem Collapse and Climate Change, 2021, 345-364. Cham: Springer International Publishing.
- Alvarez-Filip, L.; Dulvy, N.K.; Gill, J.A.; Côté, I.M.; Watkinson, A.R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. Royal Soc. B: Biol. Sci. 2009, 276(1669), 3019-3025. [CrossRef]
- Alvarez-Filip, L.; Paddack, M.J.; Collen, B.; Robertson, D.R.; Côté, I.M. Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation. PLoS One. 2015, 10(4), e0126004. [CrossRef]
- Hernández-Delgado, E.A.; Alejandro-Camis, P.; Cabrera-Beauchamp, G.; Fonseca-Miranda, J.S.; Gómez-Andújar, N.X.; Gómez, P.; Guzmán-Rodríguez, R.; Olivo-Maldonado, I.; Suleimán-Ramos, S.E. Stronger hurricanes and climate change in the Caribbean Sea: Threats to the sustainability of endangered coral species. Sustainability. 2024, 16(4), 1506. [CrossRef]
- Allison, E.H.; Perry, A.L.; Badjeck, M.C.; Adger, W.N.; Brown, K.; Conway, D.; Halls, A.S.; Pilling, G.M.; Reynolds, J.D.; Andrew, N.L.; Dulvy, N.K. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fisher. 2009, 10(2), 173-196. [CrossRef]
- Burge, C.A.; Eakin, C.M.; Friedman, C.S.; Froelich, B.; Hershberger, P.K.; Hofmann, E.E.; Petes, L.E.; Prager, K.C.; Weil, E.; Willis, B.L.; Ford, S.E. Climate change influences on marine infectious diseases: implications for management and society. Ann. Rev. Mar. Sci. 2014, 6(1), 249-277. [CrossRef]
- Tracy, A.M.; Pielmeier, M.L.; Yoshioka, R.M.; Heron, S.F.; Harvell, C.D. Increases and decreases in marine disease reports in an era of global change. Proc. Royal Soc. B. 2019, 286(1912), 20191718. [CrossRef]
- Byers, J.E. Marine parasites and disease in the era of global climate change. Ann. Rev. Mar. Sci. 2021, 13(1), 397-420.
- Armstrong McKay, D.I.; Staal, A.; Abrams, J.F.; Winkelmann, R.; Sakschewski, B.; Loriani, S.; Fetzer, I.; Cornell, S.E.; Rockström, J.; Lenton, T.M. Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science. 2022, 377(6611), eabn7950.
- Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. Tipping elements in the Earth's climate system. Proc. Natl. Acad. Sci. USA 2008, 105(6), 1786-93. [CrossRef]
- Lenton, T.M. Environmental tipping points. Ann. Rev. Environ. Res. 2013, 38(1), 1-29.
- Goldblatt, C.; Watson, A.J. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Phil. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 2012, 370(1974), 4197-4216. [CrossRef]
- Hernández-Delgado, E.A.; Laureano, R. Bringing back the fish: Sustainable success of community-based restoration of Elkhorn coral (Acropora palmata) in Vega Baja, Puerto Rico (2008-2023). Sustainability. 2024, 16, 5985.
- Dietz, S.; Rising, J.; Stoerk, T.; Wagner, G. Economic impacts of tipping points in the climate system. Proc. Natl. Acad. Sci. USA. 2021, 118(34): e2103081118. [CrossRef]
- Kopp, R.E.; Hayhoe, K.; Easterling, D.R.; Hall, T.; Horton, R.; Kunkel, K.E.; LeGrande, A.N. Potential surprises—Compound extremes and tipping elements. Climate Science Special Report: Fourth National Climate Assessment, D.J. Wuebbles et al., Eds., Vol. I, US Global Change Research Program, 2017, 411–429.
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; Sen Gupta, A.; Moore, P.J.; Thomsen, M.; Wernberg, T.; Smale, D.A. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science. 2021, 374(6566), eabj3593. [CrossRef]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12219–12224, doi:10.1073/pnas.1301293110.
- Knutson, T.R.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.; Zhao, M.; Kim, H.-S.; Bender, M.; Tuleya, R.E.; Held, I.M.; Villarini, G. Dynamical downscaling projections of twenty-first-century Atlantic Hurricane activity: CMIP3 and CMIP5 model-based scenarios, J. Climate. 2013, 26(17), 6591–6617. [CrossRef]
- Hernández-Delgado, E.A. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Poll. Bull. 2015, 101(1), 5-28. [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; Schepers, D.; Simmons, A.; Soci, C.; Dee, D.; Thépaut, J-N. ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2023, 10.24381/cds.f17050d7 (Accessed on 01-10-2024).
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9(5), 1937-1958. [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; Massey University: Auckland, New Zealand; PRIMER-e Ltd.: Plymouth, UK, 2008.
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed.; PRIMER-E: Plymouth, UK, 2014.
- Philander, S.G.; Rasmusson, E.M. The southern oscillation and El Niño. Adv. Geophys. 1985, 28, 197-215.
- Vega, M.J.; Alvarez-Silva, O.; Restrepo, J.C.; Ortiz, J.C.; Otero, L.J. Interannual variability of wave climate in the Caribbean Sea. Ocean Dynam. 2020, 70, 965-976. [CrossRef]
- Tartaglione, C.A.; Smith, S.R.; O'Brien, J.J. ENSO impact on hurricane landfall probabilities for the Caribbean. J. Clim. 2003, 16(17), 2925-2931.
- Klotzbach, P.J. The influence of El Niño–Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J. Clim. 2011, 24(3), 721-731. [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: the role of the North Atlantic Oscillation. J. Mar. Syst. 2010, 79(3-4), 231-244. [CrossRef]
- Hetzinger, S.; Pfeiffer, M.; Dullo, W.C.; Garbe-Schönberg, D.; Halfar, J. Rapid 20th century warming in the Caribbean and impact of remote forcing on climate in the northern tropical Atlantic as recorded in a Guadeloupe coral. Palaeogeog., Palaeoclimatol., Palaeoecol. 2010, 296(1-2), 111-124. [CrossRef]
- Jury, M.; Malmgren, B.A.; Winter, A. Subregional precipitation climate of the Caribbean and relationships with ENSO and NAO. J. Geophys. Res.: Atmospheres. 2007, 112(D16), D16107. [CrossRef]
- Moron, V.; Gouirand, I.; Taylor, M. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature. Clim. Dynam. 2016, 47, 601-21. [CrossRef]
- Stephenson, T.S.; Vincent, L.A.; Allen, T.; Van Meerbeeck, C.J.; McLean, N.; Peterson, T.C.; Taylor, M.A.; Aaron-Morrison, A.P.; Auguste, T.; Bernard, D.; Boekhoudt, J.R.I.; Blenman, R.C.; Braithwaite, G.C.; Brown, G.; Butler, M.; Cumberbatch, C.J.M.; Etienne-Leblanc, S.; Lake, D.E.; Martin, D.E.; McDonald, J.L.; Ozoria Zaruela, M.; Porter, A.O.; Santana Ramirez, M.; Tamar, G.A.; Roberts, B.A.; Sallons Mitro, S.; Shaw, A.; Spence, J.M.; Winter, A.; Trotman, A.R. Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int. J. Climatol. 2014, 34, 2957–2971.
- Simonti, A.L.; Eastman, J.R. 2005 Caribbean mass coral bleaching event: A sea surface temperature empirical orthogonal teleconnection analysis. J. Geophys. Res.: Oceans. 2010, 115(C11), C11009. [CrossRef]
- Vimont, D.J.; Kossin, J.P. The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett. 2007, 34(7), L07709. [CrossRef]
- Lizcano-Sandoval, L.D.; Marulanda-Gómez, Á.; López-Victoria, M.; Rodriguez-Ramirez, A. Climate change and Atlantic Multidecadal Oscillation as drivers of recent declines in coral growth rates in the Southwestern Caribbean. Front. Mar. Sci. 2019, 6, 38. [CrossRef]
- Jury, M.R. MJO influence in the Caribbean. Theor. Appl. Climatol. 2020, 139(3), 1559-1567. [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific decadal oscillation. J. Oceanogr. 2002, 58, 35-44.
- Nidheesh, A.G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A.S.; Cassou, C. Influence of ENSO on the Pacific decadal oscillation in CMIP models. Clim. Dynam. 2017, 49, 3309-3326. [CrossRef]
- Pierrehumbert, R.T. Thermostats, radiator fins, and the local runaway greenhouse. J. Atm. Sci. 1995, 52(10), 1784-1806.
- Wang, C. Variability of the Caribbean low-level jet and its relations to climate. Climate Dynam. 2007, 29, 411-422. [CrossRef]
- Wang, C.; Lee, S.K. Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett. 2007, 34(2), L02703. [CrossRef]
- Li, H.; Misra, V. Thirty-two-year ocean–atmosphere coupled downscaling of global reanalysis over the Intra-American Seas. Climate Dynam. 2014, 43, 2471-2489. [CrossRef]
- Montoya-Sánchez, R.A.; Devis-Morales, A.; Bernal, G.; Poveda, G. Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. J. Mar. Syst. 2018, 187, 111-127. [CrossRef]
- Rajasree, V.P.; Cao, X.; Ramsay, H.; Ocasio, K.M.; Kilroy, G.; Alvey, III, G.R.; Chang, M.; Nam, C.C.; Fudeyasu, H.; Teng, H.F.; Yu, H. Tropical cyclogenesis: Controlling factors and physical mechanisms. Trop. Cyclone Res. Rev. 2023, 12(3), 165-181. [CrossRef]
- Jones, P.D.; Harpham, C.; Harris, I.; Goodess, C.M.; Burton, A.; Centella-Artola, A.; Taylor, M.A.; Bezanilla-Morlot, A.; Campbell, J.D.; Stephenson, T.S.; Joslyn, O. Long-term trends in precipitation and temperature across the Caribbean. Int. J. Climatol. 2016, 36(9), 3314-3333. [CrossRef]
- Zhao, L.; Xu, J.; Powell, A.M.; Jiang, Z. Uncertainties of the global-to-regional temperature and precipitation simulations in CMIP5 models for past and future 100 years. Theor. Appl. Climatol. 2015, 122, 259-270. [CrossRef]
- Zhou, C.; Wang, K. Land surface temperature over global deserts: Means, variability, and trends. J. Geophys. Res.: Atmospheres. 2016, 121(24), 14344-14357. [CrossRef]
- Sun, X.; Ren, G.; Xu, W.; Li, Q.; Ren, Y. Global land-surface air temperature change based on the new CMA GLSAT data set. Sci. Bull. 2017, 62(4), 236-238. [CrossRef]
- Sun, C.; Jiang, Z.; Li, W.; Hou, Q.; Li, L. Changes in extreme temperature over China when global warming stabilized at 1.5°C and 2.0°C. Sci. Rep. 2019, 9, 14982. [CrossRef]
- Sun, X.; Ren, G.; Ren, Y.; Lin, W.; Zhang, P.; Zhang, S.; Xue, X. Asian climate warming since 1901: observation and simulation. Clim. Res. 2023, 91, 67-82. [CrossRef]
- Duan, J.; Li, L.; Chen, L.; Zhang, H. Time-dependent warming amplification over the Tibetan Plateau during the past few decades. Atm. Sci. Lett. 2020, 21(10), e998. [CrossRef]
- Nita, I.A.; Sfîcă, L.; Voiculescu, M.; Birsan, M.V.; Micheu, M.M. Changes in the global mean air temperature over land since 1980. Atm. Res. 2022, 279, 106392. [CrossRef]
- Ren, G.; Zhan, Y.; Ren, Y.; Wen, K.; Zhang, Y.; Sun, X.; Zhang, P.; Zheng, X.; Qin, Y.; Zhang, S.; He, J. Observed changes in temperature and precipitation over Asia, 1901-2020. Clim. Res. 2023, 90, 31-43. [CrossRef]
- Gautam, R.; Pathak, B.; Bhuyan, P.K.; Borgohain, A.; Kundu, S.S. Long-term trend analysis of surface temperature over North-East India and adjoining regions based on CRU and ERA5 reanalysis. J. Earth Syst. Sci. 2024, 133(3), 141. [CrossRef]
- Li, Q.; Dong, W.; Li, W.; Gao, X.; Jones, P.; Kennedy, J.; Parker, D. Assessment of the uncertainties in temperature change in China during the last century. Chinese Sci. Bull. 2010, 55, 1974-1982. [CrossRef]
- Yosef, Y.; Aguilar, E.; Alpert, P. Detecting and adjusting artificial biases of long-term temperature records in Israel. Int. J. Climatol. 2018, 38(8), 3273-3289. [CrossRef]
- You, Q.; Min, J.; Fraedrich, K.; Zhang, W.; Kang, S.; Zhang, L.; Meng, X. Projected trends in mean, maximum, and minimum surface temperature in China from simulations. Global Planet Change. 2014, 112, 53-63. [CrossRef]
- Hu, G.; Zhao, L.; Wu, T.; Wu, X.; Park, H.; Li, R.; Zhu, X.; Ni, J.; Zou, D.; Hao, J.; Li, W. Continued warming of the permafrost regions over the Northern Hemisphere under future climate change. Earth's Future. 2022, 10(9), e2022EF002835. [CrossRef]
- Bove, C.B.; Mudge, L.; Bruno, J.F. A century of warming on Caribbean reefs. PloS Climate. 2022, 1(3), e0000002. [CrossRef]
- Antuña-Marrero, J.C.; Otterå, O.H.; Robock, A.; Mesquita, M.D. Modelled and observed sea surface temperature trends for the Caribbean and Antilles. Int. J. Climatol. 2016, 36(4), 1873-1886. [CrossRef]
- Shi, J.; Hu, C. South Florida estuaries are warming faster than global oceans. Env. Res. Lett. 2022, 18(1), 014003. [CrossRef]
- Shears, N.T.; Bowen, M.M. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci. Rept. 2017, 7(1), 1-9. [CrossRef]
- Alpert, A.E.; Cohen, A.L.; Oppo, D.W.; DeCarlo, T.M.; Gaetani, G.A.; Hernández-Delgado, E.A.; Winter, A.; Gonneea, M.E. Twentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry. Paleoceanography. 2017, 32(2), 146-160. [CrossRef]
- Bustos Usta, D.F.; Torres Parra, R.R. Ocean and atmosphere changes in the Caribbean Sea during the twenty-first century using CMIP5 models. Ocean Dynam. 2021, 71(6), 757-777. [CrossRef]
- Karmalkar, A.V.; Taylor, M.A.; Campbell, J.; Stephenson, T.; New, M.; Centella, A.; Benzanilla, A.; Charlery, J. A review of observed and projected changes in climate for the islands in the Caribbean. Atmósfera. 2013, 26(2), 283-309. [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 2001, 28(10), 2077-2080. [CrossRef]
- Alexander, M.A.; Kilbourne, K.H.; Nye, J.A. Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008. J. Mar. Syst. 2014, 133, 14-26. [CrossRef]
- Delworth, T.L.; Zhang, R.; Mann, M.E. Decadal to centennial variability of the Atlantic from observations and models. Ocean Circ.: Mech. Impacts 2007, 173, 131-148.
- Kavvada, A.; Ruiz-Barradas, A.; Nigam, S. AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim. Dynam. 2013, 41, 1345-1364. [CrossRef]
- Mann, M.E.; Steinman, B.A.; Miller, SK. On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett. 2014, 41(9), 3211-3219. [CrossRef]
- Steinman, B.A.; Mann, M.E.; Miller, SK. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science. 2015, 347(6225), 988-991. [CrossRef]
- Mann, M.E.; Steinman, B.A.; Miller, S.K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Comm. 2020, 11(1), 49. [CrossRef]
- Zhang, W.; Mei, X.; Geng, X.; Turner, A.G.; Jin, F.F. A nonstationary ENSO–NAO relationship due to AMO modulation. J. Clim. 2019, 32(1), 33-43. [CrossRef]
- Mann, M.E.; Steinman, B.A.; Brouillette, D.J.; Miller, S.K. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science. 2021, 371(6533), 1014-1019. [CrossRef]
- Houghton, J. The science of global warming. Int. Sci. Rev. 2001, 26(4), 247-257.
- Sanderson, M.G.; Hemming, D.L.; Betts, R.A. Regional temperature and precipitation changes under high-end (≥4°C) global warming. Phil. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 2011, 369(1934), 85-98.
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Change. 2017, 143, 13-26. [CrossRef]
- Raftery, A.E.; Zimmer, A.; Frierson, D.M.; Startz, R.; Liu, P. Less than 2°C warming by 2100 unlikely. Nature Clim. Change. 2017, 7(9), 637-641.
- Wang, X.; Jiang, D.; Lang, X. Climate change of 4°C global warming above pre-industrial levels. Adv. Atm. Sci. 2018, 35, 757-770. [CrossRef]
- Pielke, Jr. R.; Burgess, M.G.; Ritchie, J. Plausible 2005-2050 emissions scenarios project between 2 and 3 degrees C of warming by 2100. Env. Res. Lett. 2022, 17, 024027.
- Bärring, L.; Strandberg, G. Does the projected pathway to global warming targets matter? Env. Res. Lett. 2018, 13(2), 024029. [CrossRef]
- Betts, R.A.; Collins, M.; Hemming, D.L.; Jones, C.D.; Lowe, J.A.; Sanderson, M.G. When could global warming reach 4°C? Phil. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 2011, 369(1934), 67-84.
- Chang, E.K.; Guo, Y.; Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res.: Atmospheres. 2012, 117(D23), D23118. [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351-364. [CrossRef]
- Allison, E.H.; Perry, A.L.; Badjeck, M.C.; Adger, N.; Brown, K.; Conway, D.; Halls, A.S.; Pilling, G.M.; Reynolds, J.D.; Andrew, N.L.; Dulvy, N.K. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fisheries. 2009, 10(2), 173-196. [CrossRef]
- Brander, K. Impacts of climate change on fisheries. J. Mar. Syst. 2010, 79(3-4), 389-402.
- Hollowed, A.B.; Barange, M.; Beamish, R.J.; Brander, K.; Cochrane, K.; Drinkwater, K.; Foreman, M.G.; Hare, J.A.; Holt, J.; Ito, S.I.; Kim, S. Projected impacts of climate change on marine fish and fisheries. ICES J. Mar. Sci. 2013, 70(5), 1023-1037. [CrossRef]
- Erauskin-Extramiana, M.; Arrizabalaga, H.; Hobday, A.J.; Cabré, A.; Ibaibarriaga, L.; Arregui, I.; Murua, H.; Chust, G. Large-scale distribution of tuna species in a warming ocean. Global Change Biol. 2019, 25(6), 2043-2060. [CrossRef]
- Reyer, C.P.; Adams, S.; Albrecht, T.; Baarsch, F.; Boit, A.; Canales Trujillo, N.; Cartsburg, M.; Coumou, D.; Eden, A.; Fernandes, E.; Langerwisch, F. et al. Climate change impacts in Latin America and the Caribbean and their implications for development. Reg. Environ. Change. 2017, 17, 1601-1621. [CrossRef]
- Prager, S.D.; Ríos, A.R.; Schiek, B.; Almeida, J.S.; González, C.E. Climate change vulnerability and economic impacts in the agricultural sector in Latin America and the Caribbean. IDB Technical Note IDB-TN-01915. 2020, Inter-American Development Bank (IDB); International Center for Tropical Agriculture (CIAT). Cali, Colombia.
- Lachaud, M.A.; Bravo-Ureta, B.E.; Ludena, C.E. Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC). Agricult. Econ. 2022, 53(2), 321-332. [CrossRef]
- Soong, J.L.; Phillips, C.L.; Ledna, C.; Koven, C.D.; Torn, M.S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res: Biogeosciences. 2020, 125(2), e2019JG005266. [CrossRef]
- Brienen, R.J.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; López-González, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; Vásquez Martínez, R. Long-term decline of the Amazon carbon sink. Nature. 2015, 519(7543), 344-348. [CrossRef]
- Crowther, T.W.; Todd-Brown, K.E.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; Blair, J.M. et al. Quantifying global soil carbon losses in response to warming. Nature. 2016, 540(7631), 104-108.
- Qin, Y.; Xiao, X.; Wigneron, J.P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; Zhang, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Clim. Change. 2021, 11(5), 442-448. [CrossRef]
- Neelin, J.D.; Münnich, M.; Su, H.; Meyerson, J.E.; Holloway, C.E. Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA. 2006, 103(16), 6110-6115. [CrossRef]
- Cashman, A.; Nurse, L.; John, C. Climate change in the Caribbean: the water management implications. The J. Env. Dev. 2010, 19(1), 42-67. [CrossRef]
- Taylor, M.A.; Stephenson, T.S.; Chen, A.A.; Stephenson, K.A. Climate change and the Caribbean: Review and response. Caribb. Studies. 2012, 40(2), 169-200. [CrossRef]
- Hernández-Delgado, E.A. Climate change impacts on Caribbean coastal ecosystems: Emergent ecological and environmental geography challenges. In: Routledge Handbook of Latin America and the Environment, 2023, 36-50. Routledge.
- Lugo, A.E. Effects and outcomes of Caribbean hurricanes in a climate change scenario. Sci. Total Env. 2000, 262(3), 243-251. [CrossRef]
- Bishop, M.L.; Payne, A. Climate change and the future of Caribbean development. The J. Dev. Studies. 2012, 48(10), 1536-1553. [CrossRef]
- Karmalkar, A.V.; Bradley, R.S.; Díaz, H.F. Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim. Dynam. 2011, 37, 605-629. [CrossRef]
- Imbach, P.; Chou, S.C.; Lyra, A.; Rodrigues, D.; Rodriguez, D.; Latinovic, D.; Siqueira, G.; Silva, A.; Garofolo, L.; Georgiou, S. Future climate change scenarios in Central America at high spatial resolution. PLoS One. 2018, 13(4), e0193570. [CrossRef]
- Hidalgo León, H.G.; Amador Astúa, J.A.; Alfaro Martínez, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94-112.
- Harvey, C.A.; Saborio-Rodríguez, M.; Martínez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate change impacts and adaptation among smallholder farmers in Central America. Agric. Food Sec. 2018, 7(1), 1-20. [CrossRef]
- Lyra, A.; Imbach, P.; Rodríguez, D.; Chou, S.C.; Georgiou, S.; Garofolo, L. Projections of climate change impacts on Central America tropical rainforest. Clim. Change. 2017, 141, 93-105. [CrossRef]
- Caruso, C.; Hughes, K.; Drury, C. Selecting heat-tolerant corals for proactive reef restoration. Front. Mar. Sci. 2021, 8, 632027. [CrossRef]
- Quigley, K.M. Breeding and selecting corals resilient to global warming. Ann. Rev. Anim. Biosci. 2024, 12(1), 209-332. [CrossRef]
- Humanes, A.; Lachs, L.; Beauchamp, E.; Bukurou, L.; Buzzoni, D.; Bythell, J.; Craggs, J.R.; de la Torre Cerro, R.; Edwards, A.J.; Golbuu, Y.; Martínez, H.M. Selective breeding enhances coral heat tolerance to marine heatwaves. Nature Comm. 2024, 15(1), 8703. [CrossRef]
- Palumbi, S.R.; Barshis, D.J.; Traylor-Knowles, N.; Bay, R.A. Mechanisms of reef coral resistance to future climate change. Science. 2014, 344(6186), 895-898. [CrossRef]
- Smith, E.G.; Hazzouri, K.M.; Choi, J.Y.; Delaney, P.; Al-Kharafi, M.; Howells, E.J.; Aranda, M.; Burt, J.A. Signatures of selection underpinning rapid coral adaptation to the world’s warmest reefs. Sci. Adv. 2022, 8(2), eabl7287. [CrossRef]
- Lachs, L.; Donner, S.D.; Mumby, P.J.; Bythell, J.C.; Humanes, A.; East, H.K.; Guest, J.R. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change. Nature Comm. 2023, 14(1), 4939. [CrossRef]
- Selmoni, O.; Bay, L.K.; Exposito-Alonso, M.; Cleves, P.A. Finding genes and pathways that underlie coral adaptation. Trends Gen. 2024, 40(3), 213-227. [CrossRef]
- Nunn, B.L.; Brown, T.; Timmins-Schiffman, E.; Mudge, M.C.; Riffle, M.; Axworthy, J.B.; Dilworth, J.; Kenkel, C.D.; Zaneveld, J.; Rodrigues, L.J.; Padilla-Gamiño, J.L. Protein signatures predict coral resilience and survival to thermal bleaching events. Comm. Earth Environ. 2025, 6(1), 191. [CrossRef]
- Huang, W.; Chen, J.; Yang, E.; Meng, L.; Feng, Y.; Chen, Y.; Huang, Z.; Tan, R.; Xiao, Z.; Zhou, Y.; Xu, M. Heat-tolerant subtropical Porites lutea may be better adapted to future climate change than tropical one in the South China Sea. Sci. Total Environ. 2025, 962, 178381. [CrossRef]
- Baums, I.B.; Baker, A.C.; Davies, S.W.; Grottoli, A.G.; Kenkel, C.D.; Kitchen, S.A.; Kuffner, I.B.; LaJeunesse, T.C.; Matz, M.V.; Miller, M.W.; Parkinson, J.E. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 2019, 29(8), e01978. [CrossRef]
- Shaver, E.C.; McLeod, E.; Hein, M.Y.; Palumbi, S.R.; Quigley, K.; Vardi, T.; Mumby, P.J.; Smith, D.; Montoya-Maya, P.; Muller, E.M.; Banaszak, A.T. A roadmap to integrating resilience into the practice of coral reef restoration. Global Change Biol. 2022, 28(16), 4751-4764. [CrossRef]
- Montoya Maya, P.H.; Smit, K.P.; Burt, A.J.; Frias-Torres, S. Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean. Nature Conserv. 2016, 16, 1-7. [CrossRef]
- Doropoulos, C.; Vons, F.; Elzinga, J.; Ter Hofstede, R.; Salee, K.; Van Koningsveld, M.; Babcock, R.C. Testing industrial-scale coral restoration techniques: harvesting and culturing wild coral-spawn slicks. Front. Mar. Sci. 2019, 6, 658. [CrossRef]
- McLeod, I.M.; Hein, M.Y.; Babcock, R.; Bay, L.; Bourne, D.G.; Cook, N.; Doropoulos, C.; Gibbs, M.; Harrison, P.; Lockie, S.; van Oppen, M.J. Coral restoration and adaptation in Australia: The first five years. Plos One. 2022, 17(11), e0273325. [CrossRef]
- Vardi, T.; Hoot, W.C.; Levy, J.; Shaver, E.; Winters, R.S.; Banaszak, A.T.; Baums, I.B.; Chamberland, V.F.; Cook, N.; Gulko, D.; Hein, M.Y. et al. Six priorities to advance the science and practice of coral reef restoration worldwide. Rest. Ecology. 2021, 29(8), e13498. [CrossRef]
- Page, C.A.; Muller, E.M.; Vaughan, D.E. Microfragmenting for the successful restoration of slow growing massive corals. Ecol. Eng. 2018, 123, 86-94. [CrossRef]
- Tortolero-Langarica, J.A.; Rodríguez-Troncoso, A.P.; Cupul-Magaña, A.L.; Rinkevich, B. Micro-fragmentation as an effective and applied tool to restore remote reefs in the Eastern Tropical Pacific. Int. J. Env. Res. Public Health. 2020, 17(18), 6574. [CrossRef]
- Banaszak, A.T.; Marhaver, K.L.; Miller, M.W.; Hartmann, A.C.; Albright, R.; Hagedorn, M.; Harrison, P.L.; Latijnhouwers, K.R.; Mendoza Quiroz, S.; Pizarro, V.; Chamberland, V.F. Applying coral breeding to reef restoration: best practices, knowledge gaps, and priority actions in a rapidly-evolving field. Rest. Ecol. 2023, 31(7), e13913. [CrossRef]
- Blanco-Pimentel, M.; Kenkel, C.D.; Kitchen, S.A.; Calle-Triviño, J.; Baums, I.B.; Cortés-Useche, C.; Morikawa, M.K. Overcoming barriers to reef restoration: field-based method for approximate genotyping of Acropora cervicornis. Rest. Ecol. 2024, 32(3), e14073. [CrossRef]
- Hobbs, R.J.; O'Brien, J.K.; Bay, L.K.; Severati, A.; Spindler, R.; Henley, E.M.; Quigley, K.M.; Randall, C.J.; van Oppen, M.J.; Carter, V.; Zuchowicz, N. A decade of coral biobanking science in Australia-transitioning into applied reef restoration. Front. Mar. Sci. 2022, 9, 960470. [CrossRef]
- Daly, J.; Zuchowicz, N.; Nuñez Lendo, C.I.; Khosla, K.; Lager, C.; Henley, E.M.; Bischof, J.; Kleinhans, F.W.; Lin, C.; Peters, E.C.; Hagedorn, M. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rept. 2018, 8(1), 15714. [CrossRef]
- Hagedorn, M.; Page, C.A.; O’Neil, K.L.; Flores, D.M.; Tichy, L.; Conn, T.; Chamberland, V.F.; Lager, C.; Zuchowicz, N.; Lohr, K.; Blackburn, H. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. USA. 2021, 118(38), e2110559118.
- Brown, A.L.; Anastasiou, D.E.; Schul, M.; MacVittie, S.; Spiers, L.J.; Meyer, J.L.; Manfrino, C.; Frazer, T.K. Mixtures of genotypes increase disease resistance in a coral nursery. Sci. Rept. 2022, 12(1), 19286. [CrossRef]
- Bowden-Kerby, A. Coral-focused climate change adaptation and restoration based on accelerating natural processes: Launching the “Reefs of Hope” paradigm. Oceans 2022, 4(1), 13-26. [CrossRef]
- Goergen, E.A.; Schopmeyer, S.; Moulding, A.L.; Moura, A.; Kramer, P.; Viehman, T.S. Coral reef restoration monitoring guide: Methods to evaluate restoration success from local to ecosystem scales. NOAA Technical Memorandum NOS NCCOS 279, 2020, Silver Spring, MD. 145 pp. doi: 10.25923/xndz-h538.
- Alexander, J.B.; Bunce, M.; White, N.; Wilkinson, S.P.; Adam, A.A.; Berry, T.; Stat, M.; Thomas, L.; Newman, S.J.; Dugal, L.; Richards, Z.T. Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs. 2020, 39, 159-171. [CrossRef]
- Rodríguez-Casariego, J.A.; Mercado-Molina, A.E.; García-Souto, D.; Ortiz-Rivera, I.M.; Lopes, C.; Baums, I.B.; Sabat, A.M.; Eirin-López, J.M. Genome-wide DNA methylation analysis reveals a conserved epigenetic response to seasonal environmental variation in the staghorn coral Acropora cervicornis. Front. Mar. Sci. 2020, 7, 560424. [CrossRef]
- Eirin-López, J.M.; Putnam, H. Marine environmental epigenetics. Front. Mar. Sci. 2021, 8, 685075.
- Xu, J.; Zhao, D. Review of coral reef ecosystem remote sensing. Acta Ecologica Sinica. 2014, 34(1): 19-25. [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.; Ticzon, V. Remote sensing of coral reefs for monitoring and management: a review. Remote Sensing. 2016, 8(2), 118. [CrossRef]
- Foo, S.A.; Asner, G.P. Scaling up coral reef restoration using remote sensing technology. Front. Mar. Sci. 2019, 6, 79. [CrossRef]
- Eakin, C.M.; Lough, J.M.; Heron, S.F. Climate variability and change: monitoring data and evidence for increased coral bleaching stress. In: Coral Bleaching: Patterns, Processes, Causes and Consequences, 2009 (pp. 41-67). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Flower, J.; Ortiz, J.C.; Chollett, I.; Abdullah, S.; Castro-Sanguino, C.; Hock, K.; Lam, V.; Mumby, P.J. Interpreting coral reef monitoring data: A guide for improved management decisions. Ecol. Indicators. 2017, 72, 848-869. [CrossRef]
- Bellantuono, A.J.; Granados-Cifuentes, C.; Miller, D.J.; Hoegh-Guldberg, O.; Rodríguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PloS One. 2012, 7(11), e50685. [CrossRef]
- Page, C.E.; Leggat, W.; Heron, S.F.; Fordyce, A.J.; Ainsworth, T.D. High flow conditions mediate damaging impacts of sub-lethal thermal stress on corals’ endosymbiotic algae. Conserv. Physiol. 2021, 9(1), coab046. [CrossRef]
- van Oppen, M.J.; Oliver, J.K.; Putnam, H.M.; Gates, R.D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. USA. 2015, 112(8), 2307-2313. [CrossRef]
- van Oppen, M.J.; Oakeshott, J.G. A breakthrough in understanding the molecular basis of coral heat tolerance. Proc. Natl. Acad. Sci. USA. 2020, 117(46), 28546-28548.
- Humanes, A.; Beauchamp, E.A.; Bythell, J.C.; Carl, M.K.; Craggs, J.R.; Edwards, A.J.; Golbuu, Y.; Lachs, L.; Martínez, H.M.; Palmowski, P.; Paysinger, F. An experimental framework for selectively breeding corals for assisted evolution. Front. Mar. Sci. 2021, 8, 669995. [CrossRef]
- DeFilippo, L.B.; McManus, L.C.; Schindler, D.E.; Pinsky, M.L.; Colton, M.A.; Fox, H.E.; Tekwa, E.W.; Palumbi, S.R.; Essington, T.E.; Webster, M.M. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. Ecol. Appl. 2022, 32(7), e2650. [CrossRef]
- Boström-Einarsson, L.; Babcock, R.C.; Bayraktarov, E.; Ceccarelli, D.; Cook, N.; Ferse, S.C.; Hancock, B.; Harrison, P.; Hein, M.; Shaver, E.; Smith, A. Coral restoration–A systematic review of current methods, successes, failures and future directions. PloS One. 2020, 15(1), e0226631.
- Watt-Pringle, R.; Razak, T.B.; Jompa, J.; Ambo-Rappe, R.; Kostaman, A.N.; Smith, D.J. Coral reef restoration in Indonesia: lessons learnt from the world’s largest coral restoration nation. Biodiv. Conserv. 2024, 33(10), 2675-707. [CrossRef]
- Cano, I.; Sellares-Blasco, R.I.; Lefcheck, J.S.; Villalpando, M.F.; Croquer, A. Effects of herbivory by the urchin Diadema antillarum on early restoration success of the coral Acropora cervicornis in the central Caribbean. J. Exp. Mar. Biol. Ecol. 2021, 539, 151541. [CrossRef]
- Williams, S.M. The reduction of harmful algae on Caribbean coral reefs through the reintroduction of a keystone herbivore, the long-spined sea urchin Diadema antillarum. Rest. Ecol. 2022, 30(1), e13475. [CrossRef]
- Butler, M.J. IV.; Durán, A.; Feehan, C.J.; Harborne, A.R.; Hykema, A.; Patterson, J.T.; Sharp, W.C.; Spadaro, A.J.; Wijers, T.; Williams, S.M. Restoration of herbivory on Caribbean coral reefs: are fishes, urchins, or crabs the solution? Front. Mar. Sci. 2024, 11, 1329028.
- Viehman, T.S.; Reguero, B.G.; Lenihan, H.S.; Rosman, J.H.; Storlazzi, C.D.; Goergen, E.A.; Canals Silander, M.F.; Groves, S.H.; Holstein, D.M.; Bruckner, A.W.; Carrick, J.V. et al. Coral restoration for coastal resilience: Integrating ecology, hydrodynamics, and engineering at multiple scales. Ecosphere. 2023, 14(5), e4517. [CrossRef]
- Hernández-Delgado, E.A. Coastal restoration challenges and strategies for small island developing states in the face of sea level rise and climate change. Coasts. 2024, 4(2), 235-286. [CrossRef]
- Storlazzi, C.D.; Reguero, B.G.; Alkins, K.C.; Shope, J.B.; Gaido-Lassarre, C.; Viehman, T.S.; Beck, M.W. Hybrid coral reef restoration can be a cost-effective nature-based solution to provide protection to vulnerable coastal populations. Sci. Adv. 2025, 11(3), eadn4004. [CrossRef]
- Familkhalili, R.; Storlazzi, C.D.; Nemeth, M.; Viehman, S. Assessing the effect of coral reef restoration location on coastal flood hazard along the San Juan Coastline, Puerto Rico. Front. Mar. Sci. 2025, 12, 1528460.
- dela Cruz, D.W.; Rinkevich, B.; Gomez, E.D.; Yap, H.T. Assessing an abridged nursery phase for slow growing corals used in coral restoration. Ecol. Eng. 2015, 84, 408-415. [CrossRef]
- Frey, J.B.; Berkes, F. Can partnerships and community-based conservation reverse the decline of coral reef social-ecological systems? Int. J. Commons. 2014, 8(1), 26-46.
- Hernández-Delgado, E.A.; Mercado-Molina, A.E.; & Suleimán-Ramos, S.E. Multi-disciplinary lessons learned from low-tech coral farming and reef rehabilitation practices. I. Best management practices. 213-243. In: Duque-Beltrán, C.; & E. Tello-Camacho (Eds.), Corals in a Changing World, 2018, InTech Publ.
- Hernández-Delgado, E.A.; Mercado-Molina, A.E.; Suleimán-Ramos, S.E.; Lucking, M.A. Multi-disciplinary lessons learned from low-tech coral farming and reef rehabilitation practices. II. Coral demography and social-ecological benefits. 245-268. In: Duque-Beltrán, C.; & E. Tello-Camacho (Eds.), Corals in a Changing World, 2018, InTech Publ.
- Hein, M.Y.; Birtles, A.; Willis, B.L.; Gardiner, N.; Beeden, R.; Marshall, N.A. Coral restoration: Socio-ecological perspectives of benefits and limitations. Biol. Conserv. 2019, 229, 14-25.
- Bayraktarov, E.; Banaszak, A.T.; Montoya Maya, P.; Kleypas, J.; Arias-González, J.E.; Blanco, M.; Calle-Triviño, J.; Charuvi, N.; Cortés-Useche, C.; Galván, V.; García Salgado, M.A. et al. Coral reef restoration efforts in Latin American countries and territories. PLoS One. 2020, 15(8), e0228477. [CrossRef]
- Norris, B.K.; Storlazzi, C.D.; Pomeroy, A.W.; Reguero, B.G. Optimizing infragravity wave attenuation to improve coral reef restoration design for coastal defense. J. Mar. Sci. Eng. 2024, 12(5), 768.
- Rinkevich, B. Climate change and active reef restoration—ways of constructing the “reefs of tomorrow”. J. Mar. Sci. Eng. 2015, 3(1), 111-127. [CrossRef]
- Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 2019, 7(7), 201.
- Rinkevich, B. Ecological engineering approaches in coral reef restoration. ICES J. Mar. Sci. 2021, 78(1) ,410-420.
- Kim, T.; Baek, S.; Kwon, Y., Lee, J.; Cha, S.M.; Kwon, S. Improved coastal erosion prevention using a hybrid method with an artificial coral reef: large-scale 3D hydraulic experiment. Water. 2020, 12(10), 2801. [CrossRef]
- Roelvink, F.E.; Storlazzi, C.D.; Van Dongeren, A.R.; Pearson, S.G. Coral reef restorations can be optimized to reduce coastal flooding hazards. Front. Mar. Sci. 2021, 8, 653945. [CrossRef]
- Brathwaite, A.; Clua, E.; Roach, R.; Pascal, N. Coral reef restoration for coastal protection: Crafting technical and financial solutions. J. Env. Mgmt. 2022, 310, 114718.
- Geldard, J.; Lowe, R.; Draper, S.; Ghisalberti, M.; Westera, S.; Ellwood, G.; Cuttler, M.; Smith, D.; McArdle, A. Effectiveness of coral reef restoration in wave attenuation applications. Coast. Eng. Proc. 2022, 37, 90–91.
- Norris, B.K.; Storlazzi, C.D.; Pomeroy, A.W.; Rosenberger, K.J.; Logan, J.B.; Cheriton, O.M. Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design. Coast. Eng. 2023, 184, 104331. [CrossRef]
- Norris, B.K.; Reguero, B.; Beck, M.; Bartolai, J.; Yukish, M.A.; Rhode-Barbarigos, L.; Haus, B.K.; Barajas, G.; Maza, M.; Lara, J.L. Designing modular, artificial reefs for both coastal defense and coral restoration. In, Artificial Reefs for Both Coastal Defense and Coral Restoration, 2024.
- Tagliafico, A.; Baker, P.; Kelaher, B.; Ellis, S.; Harrison, D. The effects of shade and light on corals in the context of coral bleaching and shading technologies. Front. Mar. Sci. 2022, 9, 919382. [CrossRef]
- Butcherine, P.; Tagliafico, A.; Ellis, S.L.; Kelaher, B.P.; Hendrickson, C.; Harrison, D. Intermittent shading can moderate coral bleaching on shallow reefs. Front. Mar. Sci. 2023, 10, 1162896. [CrossRef]
- Razak, T.B.; Boström-Einarsson, L.; Alisa, C.A.; Vida, R.T.; Lamont, T.A. Coral reef restoration in Indonesia: A review of policies and projects. Mar. Pol. 2022, 137, 104940. [CrossRef]
- Morrison, T.H.; Adger, N.; Barnett, J.; Brown, K.; Possingham, H.; Hughes, T. Advancing coral reef governance into the Anthropocene. One Earth. 2020, 2(1), 64-74. [CrossRef]
- Westoby, R.; Becken, S.; Laria, A.P. Perspectives on the human dimensions of coral restoration. Reg. Env. Change. 2020, 20(4), 109. [CrossRef]
- Shumway, N.; Foster, R.; Fidelman, P. The governance of marine and coral reef restoration, lessons and paths forward for novel interventions. Env. Sci. Pol. 2025, 164, 103999. [CrossRef]
- Rinkevich, B. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration. J. Env. Mgmt. 2015, 162, 199-205. [CrossRef]
- Hernández-Delgado, E.A.; Ramos-Scharrón, C.E.; Guerrero, C.; Lucking, M.A.; Laureano, R.; Méndez-Lázaro, P.A.; Meléndez-Díaz, J.O. Long-term impacts of tourism and urban development in tropical coastal habitats in a changing climate: Lessons learned from Puerto Rico. 357-398. In, M. Kasimoglu (ed.), Visions from Global Tourism Industry-Creating and Sustaining Competitive Strategies. 2012, Intech Publications, Rikeja, Croatia.














| Source1 | df | SS | MS | Pseudo-F | p | |
|---|---|---|---|---|---|---|
| Region Residual Pairwise groups 1940 vs 1950 1940 vs 1960 1940 vs 1970 1940 vs 1980 1940 vs 1990 1940 vs 2000 1940 vs 2010 1940 vs 2020 |
8 75 t 1.44 3.43 1.77 2.82 4.84 8.14 10.58 7.36 |
452.3 211.7 p 0.1507 0.0003 0.0586 0.0045 <0.0001 <0.0001 <0.0001 0.0012 |
56.5 2.8 |
20.03 |
<0.0001 |
| Source1 | df | SS | MS | Pseudo-F | p | |
|---|---|---|---|---|---|---|
| Region Residual Pairwise groups 1940 vs 1950 1940 vs 1960 1940 vs 1970 1940 vs 1980 1940 vs 1990 1940 vs 2000 1940 vs 2010 1940 vs 2020 |
8 75 t 0.73 1.01 2.58 1.19 0.86 3.72 4.23 4.59 |
324.6 339.4 p 0.5969 0.3599 0.0018 0.2391 0.4941 0.0002 0.0002 0.0011 |
40.6 4.5 |
8.97 |
<0.0001 |
| Country1 | Pseudo-F | p | Country | Pseudo-F | p | Country | Pseudo-F | P | |
|---|---|---|---|---|---|---|---|---|---|
| México Belize/Guatemala Honduras Nicaragua Costa Rica Panamá San Andrés Colombia Venezuela ABC Islands |
25.15 40.68 32.07 20.41 18.85 17.70 16.40 19.06 25.40 17.60 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
Leeward Is. Windward Is. US/British Vis Puerto Rico Dom. Rep. Haiti Jamaica Gr. Cayman Cuba Turks-Caicos |
18.24 16.28 15.67 18.82 19.51 19.54 20.01 19.96 19.61 13.81 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
Bahamas Florida N. Méx. Pacific S. Méx. Pacific Guatemala Pacific El Salv./Hond. Pac Nicaragua Pacific Costa Rica Pacific Panamá Pacific Colombia Pacific |
15.97 14.78 10.61 26.59 45.28 17.21 5.60 10.05 12.64 19.18 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
| Country1 | Pseudo-F | p | Country | Pseudo-F | p | Country | Pseudo-F | P | |
|---|---|---|---|---|---|---|---|---|---|
| México Belize/Guatemala Honduras Nicaragua Costa Rica Panamá San Andrés Colombia Venezuela ABC Islands |
14.85 6.39 9.94 10.31 11.51 11.80 8.88 6.86 9.07 7.36 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
Leeward Is. Windward Is. US/British Vis Puerto Rico Dom. Rep. Haiti Jamaica Gr. Cayman Cuba Turks-Caicos |
11.71 12.09 11.58 11.43 8.84 8.33 10.26 11.29 10.07 5.64 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0002 |
Bahamas Florida N. Méx. Pacific S. Méx. Pacific Guatemala Pacific El Salv./Hond. Pac Nicaragua Pacific Costa Rica Pacific Panamá Pacific Colombia Pacific |
8.39 12.64 4.03 9.22 9.55 6.12 3.46 2.72 3.46 4.21 |
<0.0001 <0.0001 0.0005 <0.0001 <0.0001 <0.0001 0.0017 0.0123 0.0021 0.0003 |
| Region1 | Pseudo-F | p | Pseudo-F | p | 2m temp ≥1.5°C |
SST ≥1.0°C |
|
|---|---|---|---|---|---|---|---|
|
W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific |
2m temp 152.9 110.5 145.0 106.2 148.4 210.5 74.4 60.6 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
SST 158.5 109.8 138.5 106.2 147.2 209.6 80.2 61.2 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
2080 2060 2060 2030 2050 2040 2040 2060 |
2060 2050 2060 2020 2040 2030 2040 2050 |
| Region1 | 1850-2020 | 2020-2100 | 2000-2020 | 2020-2050 | 2050-2100 | |
|---|---|---|---|---|---|---|
| W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific Regional average |
0.1170 0.1171 0.1217 0.1208 0.1204 0.1197 0.1245 0.1158 0.1196 |
0.1651 0.1418 0.1686 0.1389 0.1535 0.1654 0.2014 0.1577 0.1616 |
0.2704 0.3038 0.2309 0.3033 0.2832 0.2708 0.1447 0.1960 0.2504 |
0.2064 0.1784 0.2337 0.1817 0.2018 0.2196 0.2938 0.2246 0.2175 |
0.1342 0.1144 0.1198 0.1069 0.1172 0.1248 0.1322 0.1076 0.1196 |
| Region1 | 1850-2020 | 2020-2100 | 2000-2020 | 2020-2050 | 2050-2100 | |
|---|---|---|---|---|---|---|
| W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific Regional average |
0.0661 0.0778 0.0665 0.1178 0.1155 0.0990 0.0754 0.0741 0.0865 |
0.0915 0.0943 0.0896 0.1356 0.1155 0.1364 0.1237 0.1007 0.1109 |
0.1550 0.2039 0.1378 0.2958 0.2142 0.2256 0.0925 0.1259 0.1813 |
0.1149 0.1183 0.1266 0.1774 0.1517 0.1805 0.1813 0.1427 0.1492 |
0.0740 0.0764 0.0619 0.1042 0.0883 0.1034 0.0806 0.0692 0.0823 |
| Region1 | Pseudo-F | p | Pseudo-F | p | 2m temp ≥1.5°C |
SST ≥1.0°C |
|
|---|---|---|---|---|---|---|---|
|
W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific |
2m temp 350.0 231.6 299.0 208.5 302.9 385.0 161.5 129.7 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
SST 356.9 227.7 263.6 208.6 300.3 385.8 171.6 131.5 |
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 |
2030 2030 2030 2030 2030 2030 2020 2030 |
2040 2040 2040 2020 2030 2030 2030 2040 |
| Region1 | 1850-2020 | 2020-2100 | 2000-2020 | 2020-2050 | 2050-2100 | |
|---|---|---|---|---|---|---|
| W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific Regional average |
0.1212 0.1119 0.1242 0.1164 0.1219 0.1200 0.1359 0.1213 0.1216 |
0.4229 0.3750 0.4353 0.3563 0.3825 0.4178 0.5304 0.4419 0.4203 |
0.2748 0.2724 0.2455 0.2770 0.2925 0.2726 0.2134 0.2293 0.2597 |
0.3521 0.3225 0.3513 0.3148 0.3387 0.3575 0.3833 0.3318 0.3440 |
0.4756 0.4144 0.4983 0.3874 0.4154 0.4645 0.6406 0.5245 0.4776 |
| Region1 | 1850-2020 | 2020-2100 | 2000-2020 | 2020-2050 | 2050-2100 | |
|---|---|---|---|---|---|---|
| W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific Regional average |
0.0677 0.0742 0.0658 0.1136 0.0919 0.0992 0.0821 0.0779 0.0841 |
0.2359 0.2481 0.2327 0.3477 0.2879 0.3459 0.3233 0.2843 0.3021 |
0.1643 0.1823 0.1335 0.2701 0.2209 0.2267 0.1325 0.1487 0.1849 |
0.1979 0.2139 0.1902 0.2982 0.2549 0.2947 0.2366 0.2105 0.2371 |
0.2645 0.2737 0.2647 0.3781 0.3127 0.3843 0.3884 0.3396 0.3258 |
| Region1 | Global R | p | Obs vs 4.5 R | p | Obs vs 8.5 R | p | 4.5 vs 8.5 R | p | |
|---|---|---|---|---|---|---|---|---|---|
| Surface (2m) temperature Sea surface temperature |
0.128 0.152 |
0.0015 0.0030 |
0.274 0.292 |
0.0050 0.0010 |
0.076 0.119 |
0.1050 0.0260 |
0.024 0.021 |
0.2710 0.2930 |
| Region1 | Global R | p | Obs vs 4.5 R | p | Obs vs 8.5 R | p | 4.5 vs 8.5 R | p | |
|---|---|---|---|---|---|---|---|---|---|
| W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific |
0.083 0.064 -0.008 0.179 0.083 0.076 0.098 0.010 |
0.0480 0.0960 0.5150 0.0080 0.0590 0.0700 0.0340 0.3330 |
0.198 0.182 0.023 0.324 0.198 0.198 0.167 0.032 |
0.0030 0.0190 0.2830 0.0050 0.0150 0.0260 0.0210 0.2440 |
0.055 -0.010 -0.038 0.072 0.032 0.050 0.185 0.031 |
0.1660 0.4630 0.7010 0.0011 0.2450 0.1790 0.0150 0.2430 |
-0.007 0.019 -0.011 0.107 -0.005 -0.024 -0.060 -0.023 |
0.4480 0.2940 0.4690 0.0890 0.4150 0.5760 0.8930 0.5170 |
| Region1 | Global R | p | Obs vs 4.5 R | p | Obs vs 8.5 R | p | 4.5 vs 8.5 R | p | |
|---|---|---|---|---|---|---|---|---|---|
| W Caribbean SW Caribbean S Caribbean E Caribbean N Caribbean NW Caribbean NE Tropical Pacific SE Tropical Pacific |
0.130 0.099 0.027 0.199 0.134 0.085 0.058 -0.015 |
0.0050 0.0290 0.2390 0.0020 0.0080 0.0470 0.0910 0.5350 |
0.254 0.193 0.076 0.331 0.239 0.211 0.115 0.032 |
0.0010 0.0080 0.0670 0.0050 0.0090 0.0150 0.0520 0.2170 |
0.131 0.063 0.011 0.132 0.128 0.066 0.106 -0.040 |
0.0210 0.1420 0.3710 0.0310 0.0470 0.1260 0.0730 0.7390 |
0.015 0.022 -0.018 0.108 -0.002 -0.021 -0.062 -0.028 |
0.4900 0.2840 0.5290 0.0700 0.3880 0.5600 0.9100 0.5320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
