Submitted:
20 April 2025
Posted:
21 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Overview of Seminal Plasma Extracellular Vesicles
3. Harnessing Seminal Plasma Extracellular Vesicles Contents as Non-Invasive Diagnostic Biomarkers for Livestock Fertility Assessment and Male Infertility Diagnosis
| Phenotype | Species | subtype | biomarker | Reference |
|---|---|---|---|---|
| Fertility | bull | protein | SP10, ADAM7, and SPAM 1 | [33] |
| miRNA | miR-195 | [34] | ||
| boar | protein | EZRIN | [35] | |
| miRNA | miR-26a | [36] | ||
| buffalo | protein | PDIA4 and GSN | [37] | |
| rabbit | miRNA | miR-190b-5p, miR-193b-5p, let-7b-3p, and miR-378-3p | [38] | |
| Sperm motility |
boar | gene-lipid linkages | CerG1 (d22:0/24:0) - RCAN3, Cer (d18:1/24:0) - SCFD2 and CerG1 (d18:0/24:1) - SCFD2 | [39] |
| protein | GART, ADCY7, and CDC42 | [40] | ||
| miRNA | miR-122-5p, miR-486, miR-451, miR-345-3p, miR-362, and miR-500-5p | [41] | ||
| miRNA | miR-205, miR-493-5p, and miR-378b-3p | [42] | ||
| miRNA | miR-222 | [43] | ||
| circRNA | circCREBBP | [44] | ||
| buffalo | protein | ACRBP, SPACA1, PRDX5, SPACA4, DYNLL2, ZAN, IZUMO1, and ADAM2 | [45] | |
| Conception rates | boar | protein | GPX5 | [46] |
| Semen quality |
human | protein | LTF, CRISP3, SERPINA3, ELSPBP1, GSTM3, AGP2, SAP, ANPEP, MME, and FAS | [47] |
| miRNA | miR-10b-3p, miR-122-5p, miR-205-5p, miR-222-3p, miR-34c-5p, miR-509-3-5p, miR-888-5p, miR-892a, miR-363-3p, miR-941, miR-146a-5p, and miR-744-5p | |||
| miRNA | miR-7110, miR-4800, miR-4488, miR-3916, and miR-4508 | [48] | ||
| circRNA | hsa_circ_0009013, hsa_circ_0123184, hsa_circ_0114168, hsa_circ_0139507, and hsa_circ_0139505 |
|||
| piRNA | piR-hsa-26399, piR-hsa-28160, piR-hsa-28478, and piR-hsa-1077 | |||
| rRNA | URS00008C6BF7, URS00008C9E2E, URS0000914753, URS0000CA0D60, and URS00008CE4BC |
|||
| lncRNA | URS0000D56E09, URS0000D5AE24, URS0000A7764F, ENST00000631211.1, and ENST00000629969.1 |
|||
| Live birth rate | human | circRNA | hsa_circ_0103367, hsa_circ_0008611, hsa_circ_0008109, hsa_circ_0004177, hsa_circ_0009684, hsa_circ_0013829, hsa_circ_0035429, hsa_circ_0114168, hsa_circ_0001488, and hsa_circ_0118471 | [49] |
| piRNA | piR-hsa-28478 and piR-hsa-1077 | |||
| Azoospermia | human | miRNA | miR-10a-5p, miR-146a-5p, miR-31-5p, miR-181b-5p | [50,51] |
| Non-obstructive azoospermia | human | tsRNA | tRF-Val-AAC-010 and tRF-Pro-AGG-003 | [52] |
| Oligoasthenospermia | human | circRNA | has_circ_0004721, has_circ_0002452, has_circ_0079245, has_circ_0005584, has_circ_0003823, has_circ_8826, has_circ_0125759, has_circ_0109282, and has_circ_0009142 |
[53] |
| Spermatogenic ability | human | piRNA | piR-has-61927 | [54] |
| protein | ANXA2 and KIF5B | [55] | ||
| Unilateral varicocele | human | miRNA | miR-210-3p | [56] |
| Prostate cancer | human | protein | KLK3, KLK2, MSMB, NEFH, PSCA, PABPC1, TGM4, ALOX15B, and ANO7 | [57] |
| protein | CRP and H2B2E | [58] | ||
| mRNA | CASP3, DDX11, DLC1, ETV1, PTGS1, TP53, and VEGF | |||
| miRNA | miR-141-3p | |||
| miRNA | miR-27a-3p, miR-27b-3p, miR-155-5p, and miR-378a-3p | [59] | ||
| tsRNA | 5’-tRNA-Glu-TTC-9-1_L30 and 5’-tRNA-Val-CAC-3-1_L30 | [60] |
4. Seminal Plasma Extracellular Vesicles Promote Sperm Maturation
5. The Regulatory Role of Seminal Plasma Extracellular Vesicles in Sperm Function
6. Function of Seminal Plasma Extracellular Vesicles in Female Reproductive Tract
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Wang, Z.; Luo, X.; Guo, H.; Qiu, G.; Gong, Y.; Gao, H.; Cui, S. Cysteine Dioxygenase and Taurine Are Essential for Embryo Implantation by Involving in E2-ERα and P4-PR Signaling in Mouse. J Anim Sci Biotechnol. 2023, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Njagi, P.; Groot, W.; Arsenijevic, J.; Dyer, S.; Mburu, G.; Kiarie, J. Financial Costs of Assisted Reproductive Technology for Patients in Low- and Middle-Income Countries: A Systematic Review. Hum Reprod Open. 2023, 2023, hoad007. [Google Scholar] [CrossRef]
- Niederberger, C.; Pellicer, A.; Cohen, J.; Gardner, D.K.; Palermo, G.D.; O’Neill, C.L.; Chow, S.; Rosenwaks, Z.; Cobo, A.; Swain, J.E.; et al. Forty Years of IVF. Fertil Steril. 2018, 110, 185–324.e5. [Google Scholar] [PubMed]
- Bashiri, Z.; Amidi, F.; Amiri, I.; Zandieh, Z.; Maki, C.B.; Mohammadi, F.; Amiri, S.; Koruji, M. Male Factors: The Role of Sperm in Preimplantation Embryo Quality. Reprod Sci. 2021, 28, 1788–1811. [Google Scholar] [CrossRef]
- Xie, C.; Huang, C.; Yan, L.; Yao, R.; Xiao, J.; Yang, M.; Chen, H.; Tang, K.; Zhou, D.; Lin, P.; et al. Recipients’ and Environmental Factors Affecting the Pregnancy Rates of a Large, Fresh In Vitro Fertilization-Embryo Transfer Program for Dairy Cows in a Commercial Herd in China. Vet Sci. 2024, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Csabai, T.; Gorgey, E.; Rashidiani, S.; Parhizkar, F.; Aghebati-Maleki, L. Composition and Effects of Seminal Plasma in the Female Reproductive Tracts on Implantation of Human Embryos. Biomed Pharmacother. 2022, 151, 113065. [Google Scholar] [CrossRef]
- Pang, P.-C.; Chiu, P.C.N.; Lee, C.-L.; Chang, L.-Y.; Panico, M.; Morris, H.R.; Haslam, S.M.; Khoo, K.-H.; Clark, G.F.; Yeung, W.S.B.; et al. Human Sperm Binding Is Mediated by the Sialyl-Lewis(x) Oligosaccharide on the Zona Pellucida. Science. 2011, 333, 1761–1764. [Google Scholar] [CrossRef]
- Marlin, R.; Nugeyre, M.-T.; Tchitchek, N.; Parenti, M.; Lefebvre, C.; Hocini, H.; Benjelloun, F.; Cannou, C.; Nozza, S.; Dereuddre-Bosquet, N.; et al. Seminal Plasma Exposures Strengthen Vaccine Responses in the Female Reproductive Tract Mucosae. Front Immunol. 2019, 10, 430. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science. 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Ronquist, G.; Brody, I.; Gottfries, A.; Stegmayr, B. An Mg2+ and Ca2+-Stimulated Adenosine Triphosphatase in Human Prostatic Fluid--Part II. Andrologia. 1978, 10, 427–433. [Google Scholar] [CrossRef]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat Rev Mol Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). J Biol Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef]
- Vojtech, L.; Woo, S.; Hughes, S.; Levy, C.; Ballweber, L.; Sauteraud, R.P.; Strobl, J.; Westerberg, K.; Gottardo, R.; Tewari, M.; et al. Exosomes in Human Semen Carry a Distinctive Repertoire of Small Non-Coding RNAs with Potential Regulatory Functions. Nucleic Acids Res. 2014, 42, 7290–7304. [Google Scholar] [CrossRef]
- Yu, Z.-L.; Liu, X.-C.; Wu, M.; Shi, S.; Fu, Q.-Y.; Jia, J.; Chen, G. Untouched Isolation Enables Targeted Functional Analysis of Tumour-Cell-Derived Extracellular Vesicles from Tumour Tissues. J Extracell Vesicles. 2022, 11, e12214. [Google Scholar] [CrossRef]
- Goss, D.M.; Vasilescu, S.A.; Sacks, G.; Gardner, D.K.; Warkiani, M.E. Microfluidics Facilitating the Use of Small Extracellular Vesicles in Innovative Approaches to Male Infertility. Nat Rev Urol. 2023, 20, 66–95. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, J.F.; Aalberts, M.; Jansen, J.W.A.; van Niel, G.; Wauben, M.H.; Stout, T.A.E.; Helms, J.B.; Stoorvogel, W. Distinct Lipid Compositions of Two Types of Human Prostasomes. Proteomics. 2013, 13, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-H.; Kim, B.-J.; Kang, J.; Nam, T.-S.; Lim, J.M.; Kim, H.T.; Park, J.K.; Kim, Y.G.; Chae, S.-W.; Kim, U.-H. Ca2+ Signaling Tools Acquired from Prostasomes Are Required for Progesterone-Induced Sperm Motility. Sci Signal. 2011, 4, ra31. [Google Scholar] [CrossRef]
- Publicover, S.; Harper, C.V.; Barratt, C. [Ca2+]i Signalling in Sperm--Making the Most of What You’ve Got. Nat Cell Biol. 2007, 9, 235–242. [Google Scholar] [CrossRef]
- Fraser, L.R. The “Switching on” of Mammalian Spermatozoa: Molecular Events Involved in Promotion and Regulation of Capacitation. Mol Reprod Dev. 2010, 77, 197–208. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; Gosálvez, J.; Agarwal, A.; Roy, R.; Johnston, S. DNA Damage and Repair in Human Reproductive Cells. Int J Mol Sci. 2018, 20, 31. [Google Scholar] [CrossRef]
- Zhou, W.; Stanger, S.J.; Anderson, A.L.; Bernstein, I.R.; De Iuliis, G.N.; McCluskey, A.; McLaughlin, E.A.; Dun, M.D.; Nixon, B. Mechanisms of Tethering and Cargo Transfer during Epididymosome-Sperm Interactions. BMC Biol. 2019, 17, 35. [Google Scholar] [CrossRef]
- D’Amours, O.; Frenette, G.; Caron, P.; Belleannée, C.; Guillemette, C.; Sullivan, R. Evidences of Biological Functions of Biliverdin Reductase A in the Bovine Epididymis. J Cell Physiol. 2016, 231, 1077–1089. [Google Scholar] [CrossRef] [PubMed]
- Caballero, J.N.; Frenette, G.; Belleannée, C.; Sullivan, R. CD9-Positive Microvesicles Mediate the Transfer of Molecules to Bovine Spermatozoa during Epididymal Maturation. PLoS One. 2013, 8, e65364. [Google Scholar] [CrossRef]
- Neila-Montero, M.; Alvarez, M.; Riesco, M.F.; Soriano-Úbeda, C.; Montes-Garrido, R.; Palacin-Martinez, C.; de Paz, P.; Anel, L.; Anel-Lopez, L. The Adaptation Time to the Extender as a Crucial Step for an Accurate Evaluation of Ram Sperm Quality during the Liquid Storage. Vet Sci. 2024, 11, 132. [Google Scholar] [CrossRef]
- Del Giudice, F.; Belladelli, F.; Chen, T.; Glover, F.; Mulloy, E.A.; Kasman, A.M.; Sciarra, A.; Salciccia, S.; Canale, V.; Maggi, M.; et al. The Association of Impaired Semen Quality and Pregnancy Rates in Assisted Reproduction Technology Cycles: Systematic Review and Meta-Analysis. Andrologia. 2022, 54, e14409. [Google Scholar] [CrossRef] [PubMed]
- Cannarella, R.; Condorelli, R.A.; Mongioì, L.M.; La Vignera, S.; Calogero, A.E. Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility. Int J Mol Sci. 2020, 21, 1728. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Naqvi, A.R.; Slots, J. Human and Herpesvirus microRNAs in Periodontal Disease. Periodontol 2000. 2021, 87, 325–339. [Google Scholar] [CrossRef]
- Dance, A. Circular Logic: Understanding RNA’s Strangest Form Yet. Nature. 2024, 635, 511–513. [Google Scholar] [CrossRef]
- Liu, C.-X.; Chen, L.-L. Circular RNAs: Characterization, Cellular Roles, and Applications. Cell. 2022, 185, 2016–2034. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ciwang, R.; Wang, L.; Zhang, S.; Liu, N.; Zhao, J.; Zhou, L.; Li, H.; Gao, X.; He, J. CircRNA-5335 Regulates the Differentiation and Proliferation of Sheep Preadipocyte via the miR-125a-3p/STAT3 Pathway. Vet Sci. 2024, 11, 70. [Google Scholar] [CrossRef]
- Pal, A.; Karanwal, S.; Habib, M.A.; Josan, F.; Gaur, V.; Patel, A.; Garg, M.; Bhakat, M.; Datta, T.K.; Kumar, R. Extracellular Vesicles in Seminal Plasma of Sahiwal Cattle Bulls Carry a Differential Abundance of Sperm Fertility-Associated Proteins for Augmenting the Functional Quality of Low-Fertile Bull Spermatozoa. Sci Rep. 2025, 15, 3587. [Google Scholar] [CrossRef]
- Chauhan, V.; Kashyap, P.; Chera, J.S.; Pal, A.; Patel, A.; Karanwal, S.; Badrhan, S.; Josan, F.; Solanki, S.; Bhakat, M.; et al. Differential Abundance of microRNAs in Seminal Plasma Extracellular Vesicles (EVs) in Sahiwal Cattle Bull Related to Male Fertility. Front Cell Dev Biol. 2024, 12, 1473825. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, Y.; Wu, C.; Gu, T.; Zhang, X.; Yang, J.; Yang, H.; Zheng, E.; Huang, S.; Xu, Z.; et al. The Effects of Boar Seminal Plasma Extracellular Vesicles on Sperm Fertility. Theriogenology. 2024, 213, 79–89. [Google Scholar] [CrossRef]
- Chen, W.; Xie, Y.; Xu, Z.; Shang, Y.; Yang, W.; Wang, P.; Wu, Z.; Cai, G.; Hong, L. Identification and Functional Analysis of miRNAs in Extracellular Vesicles of Semen Plasma from High- and Low-Fertility Boars. Animals (Basel). 2024, 15, 40. [Google Scholar] [CrossRef]
- Badrhan, S.; Karanwal, S.; Pal, A.; Chera, J.S.; Chauhan, V.; Patel, A.; Bhakat, M.; Datta, T.K.; Kumar, R. Differential Protein Repertoires Related to Sperm Function Identified in Extracellular Vesicles (EVs) in Seminal Plasma of Distinct Fertility Buffalo (Bubalus Bubalis) Bulls. Front Cell Dev Biol. 2024, 12, 1400323. [Google Scholar] [CrossRef] [PubMed]
- Sakr, O.G.; Gad, A.; Cañón-Beltrán, K.; Cajas, Y.N.; Prochazka, R.; Rizos, D.; Rebollar, P.G. Characterization and Identification of Extracellular Vesicles-Coupled miRNA Profiles in Seminal Plasma of Fertile and Subfertile Rabbit Bucks. Theriogenology. 2023, 209, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Zhang, Y.; Wang, J.; Liu, J.; Zhang, J.; Zhang, C.; Zhou, L.; Cao, J.; Jiang, L. Lipidomic and Transcriptomic Characteristics of Boar Seminal Plasma Extracellular Vesicles Associated with Sperm Motility. Biochim Biophys Acta Mol Cell Biol Lipids. 2025, 1870, 159561. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, N.; Cao, J.; Zhang, J.; Liu, J.; Zhang, C.; Jiang, L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J Proteome Res. 2024, 23, 3764–3779. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, J.; Sun, J.; He, J.; Sun, Y.; Yuan, R.; Li, Z. Motility-Related microRNAs Identified in Pig Seminal Plasma Exosomes by High-Throughput Small RNA Sequencing. Theriogenology. 2024, 215, 351–360. [Google Scholar] [CrossRef]
- Dlamini, N.H.; Nguyen, T.; Gad, A.; Tesfaye, D.; Liao, S.F.; Willard, S.T.; Ryan, P.L.; Feugang, J.M. Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status. Int J Mol Sci. 2023, 24, 3194. [Google Scholar] [CrossRef] [PubMed]
- Y, D.; N, D.; Y, Z.; S, X.; M, H.; X, D.; W, D.; Q, Z.; L, J. MicroRNA-222 Transferred From Semen Extracellular Vesicles Inhibits Sperm Apoptosis by Targeting BCL2L11. Frontiers in cell and developmental biology. 2021, 9. [Google Scholar]
- Ding, N.; Zhang, Y.; Huang, M.; Liu, J.; Wang, C.; Zhang, C.; Cao, J.; Zhang, Q.; Jiang, L. Circ-CREBBP Inhibits Sperm Apoptosis via the PI3K-Akt Signaling Pathway by Sponging miR-10384 and miR-143-3p. Commun Biol. 2022, 5, 1339. [Google Scholar] [CrossRef]
- Yu, K.; Xiao, K.; Sun, Q.-Q.; Liu, R.-F.; Huang, L.-F.; Zhang, P.-F.; Xu, H.-Y.; Lu, Y.-Q.; Fu, Q. Comparative Proteomic Analysis of Seminal Plasma Exosomes in Buffalo with High and Low Sperm Motility. BMC Genomics. 2023, 24, 8. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, S.; Yang, Y.; Li, C.; Zuo, Z.; Zheng, R.; Chai, J.; Jiang, S. GPX5-Enriched Exosomes Improve Sperm Quality and Fertilization Ability. Int J Mol Sci. 2024, 25, 10569. [Google Scholar] [CrossRef]
- Sergeyev, O.; Bezuglov, V.; Soloveva, N.; Smigulina, L.; Denisova, T.; Dikov, Y.; Shtratnikova, V.; Vavilov, N.; Williams, P.L.; Korrick, S.; et al. Intraindividual Variability of Semen Quality, Proteome, and sncRNA Profiles in a Healthy Cohort of Young Adults. Andrology. 2024. [Google Scholar] [CrossRef]
- Oluwayiose, O.A.; Houle, E.; Whitcomb, B.W.; Suvorov, A.; Rahil, T.; Sites, C.K.; Krawetz, S.A.; Visconti, P.; Pilsner, J.R. Altered Non-Coding RNA Profiles of Seminal Plasma Extracellular Vesicles of Men with Poor Semen Quality Undergoing in Vitro Fertilization Treatment. Andrology. 2023, 11, 677–686. [Google Scholar] [CrossRef]
- Oluwayiose, O.A.; Houle, E.; Whitcomb, B.W.; Suvorov, A.; Rahil, T.; Sites, C.K.; Krawetz, S.A.; Visconti, P.E.; Pilsner, J.R. Non-Coding RNAs from Seminal Plasma Extracellular Vesicles and Success of Live Birth among Couples Undergoing Fertility Treatment. Front Cell Dev Biol. 2023, 11, 1174211. [Google Scholar] [CrossRef]
- Larriba, S.; Sánchez-Herrero, J.F.; Pluvinet, R.; López-Rodrigo, O.; Bassas, L.; Sumoy, L. Seminal Extracellular Vesicle sncRNA Sequencing Reveals Altered miRNA/isomiR Profiles as Sperm Retrieval Biomarkers for Azoospermia. Andrology. 2024, 12, 137–156. [Google Scholar] [CrossRef]
- Plata-Peña, L.; López-Rodrigo, O.; Bassas, L.; Larriba, S. Experimental Validation of Seminal miR-31-5p as Biomarker for Azoospermia and Evaluation of the Effect of Preanalytical Variables. Andrology. 2023, 11, 668–676. [Google Scholar] [CrossRef]
- Han, X.; Hao, L.; Shi, Z.; Li, Y.; Wang, L.; Li, Z.; Zhang, Q.; Hu, F.; Cao, Y.; Pang, K.; et al. Seminal Plasma Extracellular Vesicles tRF-Val-AAC-010 Can Serve as a Predictive Factor of Successful Microdissection Testicular Sperm Extraction in Patients with Non-Obstructive Azoospermia. Reprod Biol Endocrinol. 2022, 20, 106. [Google Scholar] [CrossRef]
- Yue, D.; Yang, R.; Xiong, C.; Yang, R. Functional Prediction and Profiling of Exosomal circRNAs Derived from Seminal Plasma for the Diagnosis and Treatment of Oligoasthenospermia. Exp Ther Med. 2022, 24, 649. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xie, Y.; Li, Y.; Zhang, C.; Lv, L.; Yao, J.; Deng, C.; Sun, X.; Zou, X.; Liu, G. Outcome Prediction of Microdissection Testicular Sperm Extraction Based on Extracellular Vesicles piRNAs. J Assist Reprod Genet. 2021, 38, 1429–1439. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A.; Sharma, R.; Samanta, L.; Gupta, S.; Dias, T.R.; Martins, A.D. Protein Fingerprinting of Seminal Plasma Reveals Dysregulation of Exosome-Associated Proteins in Infertile Men with Unilateral Varicocele. World J Mens Health. 2021, 39, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhou, Y.; Xiao, Q.; Zou, S.-S.; Zhu, Y.-C.; Ping, P.; Chen, X.-F. Seminal Exosomal miR-210-3p as a Potential Marker of Sertoli Cell Damage in Varicocele. Andrology. 2021, 9, 451–459. [Google Scholar] [CrossRef]
- Zhang, X.; Vos, H.R.; Tao, W.; Stoorvogel, W. Proteomic Profiling of Two Distinct Populations of Extracellular Vesicles Isolated from Human Seminal Plasma. Int J Mol Sci. 2020, 21, 7957. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, J.; Haas-Neill, S.; Margetts, P.; Al-Nedawi, K. Characterization of Proteins, mRNAs, and miRNAs of Circulating Extracellular Vesicles from Prostate Cancer Patients Compared to Healthy Subjects. Front Oncol. 2022, 12, 895555. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, N.; Xie, S.; Ding, Y.; Huang, M.; Ding, X.; Jiang, L. Identification of Important Extracellular Vesicle RNA Molecules Related to Sperm Motility and Prostate Cancer. Extracell Vesicles Circ Nucl Acids. 2021, 2, 104–126. [Google Scholar] [CrossRef]
- Ferre-Giraldo, A.; Castells, M.; Sánchez-Herrero, J.F.; López-Rodrigo, O.; de Rocco-Ponce, M.; Bassas, L.; Vigués, F.; Sumoy, L.; Larriba, S. Semen sEV tRF-Based Models Increase Non-Invasive Prediction Accuracy of Clinically Significant Prostate Cancer among Patients with Moderately Altered PSA Levels. Int J Mol Sci. 2024, 25, 10122. [Google Scholar] [CrossRef]
- Conine, C.C.; Sun, F.; Song, L.; Rivera-Pérez, J.A.; Rando, O.J. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice. Dev Cell. 2018, 46, 470–480.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; De Iuliis, G.N.; Dun, M.D.; Nixon, B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front Endocrinol (Lausanne). 2018, 9, 59. [Google Scholar] [CrossRef]
- Chen, H.; Pu, L.; Tian, C.; Qi, X.; Song, J.; Liao, Y.; Mo, B.; Li, T. Exploring the Molecular Characteristics and Role of PDGFB in Testis and Epididymis Development of Tibetan Sheep. Vet Sci. 2024, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Nixon, B.; Lin, M.; Koppers, A.J.; Lee, Y.H.; Baker, M.A. Proteomic Changes in Mammalian Spermatozoa during Epididymal Maturation. Asian J Androl. 2007, 9, 554–564. [Google Scholar] [CrossRef]
- Candenas, L.; Chianese, R. Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility. Int J Mol Sci. 2020, 21, 7022. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Greening, D.W.; Bolumar, D.; Balaguer, N.; Salamonsen, L.A.; Vilella, F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev. 2018, 39, 292–332. [Google Scholar] [CrossRef]
- Rejraji, H.; Sion, B.; Prensier, G.; Carreras, M.; Motta, C.; Frenoux, J.-M.; Vericel, E.; Grizard, G.; Vernet, P.; Drevet, J.R. Lipid Remodeling of Murine Epididymosomes and Spermatozoa during Epididymal Maturation. Biol Reprod. 2006, 74, 1104–1113. [Google Scholar] [CrossRef]
- Kirchhoff, C.; Hale, G. Cell-to-Cell Transfer of Glycosylphosphatidylinositol-Anchored Membrane Proteins during Sperm Maturation. Mol Hum Reprod. 1996, 2, 177–184. [Google Scholar] [CrossRef]
- Miller, D.; Brinkworth, M.; Iles, D. Paternal DNA Packaging in Spermatozoa: More than the Sum of Its Parts? DNA, Histones, Protamines and Epigenetics. Reproduction. 2010, 139, 287–301. [Google Scholar] [CrossRef]
- Jones, R. Plasma Membrane Structure and Remodelling during Sperm Maturation in the Epididymis. J Reprod Fertil Suppl. 1998, 53, 73–84. [Google Scholar]
- Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; et al. Biogenesis and Function of tRNA Fragments during Sperm Maturation and Fertilization in Mammals. Science. 2016, 351, 391–396. [Google Scholar] [CrossRef]
- Reilly, J.N.; McLaughlin, E.A.; Stanger, S.J.; Anderson, A.L.; Hutcheon, K.; Church, K.; Mihalas, B.P.; Tyagi, S.; Holt, J.E.; Eamens, A.L.; et al. Characterisation of Mouse Epididymosomes Reveals a Complex Profile of microRNAs and a Potential Mechanism for Modification of the Sperm Epigenome. Sci Rep. 2016, 6, 31794. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, S.; Kang, Y.; Liu, X.; Tan, X.; Zhao, J.; Ding, X.; Li, H. Isolation of CD63-Positive Epididymosomes from Human Semen and Its Application in Improving Sperm Function. J Extracell Vesicles. 2024, 13, e70006. [Google Scholar] [CrossRef] [PubMed]
- Nixon, B.; De Iuliis, G.N.; Hart, H.M.; Zhou, W.; Mathe, A.; Bernstein, I.R.; Anderson, A.L.; Stanger, S.J.; Skerrett-Byrne, D.A.; Jamaluddin, M.F.B.; et al. Proteomic Profiling of Mouse Epididymosomes Reveals Their Contributions to Post-Testicular Sperm Maturation. Mol Cell Proteomics. 2019, 18, S91–S108. [Google Scholar] [CrossRef]
- Guo, H.; Chang, Z.; Zhang, Z.; Zhao, Y.; Jiang, X.; Yu, H.; Zhang, Y.; Zhao, R.; He, B. Extracellular ATPs Produced in Seminal Plasma Exosomes Regulate Boar Sperm Motility and Mitochondrial Metabolism. Theriogenology. 2019, 139, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, M.; Song, D.; Huang, R.; Chen, C.; Liu, X.; Chen, H.; Wang, Q.; Sun, X.; Song, J.; et al. Both Protein and Non-Protein Components in Extracellular Vesicles of Human Seminal Plasma Improve Human Sperm Function via CatSper-Mediated Calcium Signaling. Hum Reprod. 2024, 39, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Naz, R.K.; Rajesh, P.B. Role of Tyrosine Phosphorylation in Sperm Capacitation / Acrosome Reaction. Reprod Biol Endocrinol. 2004, 2, 75. [Google Scholar] [CrossRef]
- Petrunkina, A.M.; Waberski, D.; Günzel-Apel, A.R.; Töpfer-Petersen, E. Determinants of Sperm Quality and Fertility in Domestic Species. Reproduction. 2007, 134, 3–17. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, Z.; Wu, C.; Zhou, C.; Zhang, X.; Gu, T.; Yang, J.; Yang, H.; Zheng, E.; Xu, Z.; et al. Extracellular Vesicle-Encapsulated miR-21-5p in Seminal Plasma Prevents Sperm Capacitation via Vinculin Inhibition. Theriogenology. 2022, 193, 103–113. [Google Scholar] [CrossRef]
- Pons-Rejraji, H.; Artonne, C.; Sion, B.; Brugnon, F.; Canis, M.; Janny, L.; Grizard, G. Prostasomes: Inhibitors of Capacitation and Modulators of Cellular Signalling in Human Sperm. Int J Androl. 2011, 34, 568–580. [Google Scholar] [CrossRef]
- Bechoua, S.; Rieu, I.; Sion, B.; Grizard, G. Prostasomes as Potential Modulators of Tyrosine Phosphorylation in Human Spermatozoa. Syst Biol Reprod Med. 2011, 57, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Murdica, V.; Giacomini, E.; Alteri, A.; Bartolacci, A.; Cermisoni, G.C.; Zarovni, N.; Papaleo, E.; Montorsi, F.; Salonia, A.; Viganò, P.; et al. Seminal Plasma of Men with Severe Asthenozoospermia Contain Exosomes That Affect Spermatozoa Motility and Capacitation. Fertility and Sterility. 2019, 111, 897–908.e2. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Spinaci, M.; Nesci, S.; Mateo-Otero, Y.; Baldassarro, V.A.; Algieri, C.; Bucci, D.; Roca, J. Seminal Extracellular Vesicles Alter Porcine in Vitro Fertilization Outcome by Modulating Sperm Metabolism. Theriogenology. 2024, 219, 167–179. [Google Scholar] [CrossRef]
- Tamessar, C.T.; Anderson, A.L.; Bromfield, E.G.; Trigg, N.A.; Parameswaran, S.; Stanger, S.J.; Weidenhofer, J.; Zhang, H.-M.; Robertson, S.A.; Sharkey, D.J.; et al. The Efficacy and Functional Consequences of Interactions between Human Spermatozoa and Seminal Fluid Extracellular Vesicles. Reprod Fertil. 2024, 5, e230088. [Google Scholar] [CrossRef]
- Veerman, R.E.; Teeuwen, L.; Czarnewski, P.; Gucluler Akpinar, G.; Sandberg, A.; Cao, X.; Pernemalm, M.; Orre, L.M.; Gabrielsson, S.; Eldh, M. Molecular Evaluation of Five Different Isolation Methods for Extracellular Vesicles Reveals Different Clinical Applicability and Subcellular Origin. J Extracell Vesicles. 2021, 10, e12128. [Google Scholar] [CrossRef] [PubMed]
- Nederlof, I.; Meuleman, T.; van der Hoorn, M.L.P.; Claas, F.H.J.; Eikmans, M. The Seed to Success: The Role of Seminal Plasma in Pregnancy. J Reprod Immunol. 2017, 123, 24–28. [Google Scholar] [CrossRef]
- Robertson, S.A.; Care, A.S.; Moldenhauer, L.M. Regulatory T Cells in Embryo Implantation and the Immune Response to Pregnancy. J Clin Invest. 2018, 128, 4224–4235. [Google Scholar] [CrossRef]
- Huang, N.; Chi, H.; Qiao, J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front Immunol. 2020, 11, 1023. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Latifi, Z.; Kusama, K.; Nakamura, K.; Shimada, M.; Imakawa, K. Induction of Immune-Related Gene Expression by Seminal Exosomes in the Porcine Endometrium. Biochem Biophys Res Commun. 2018, 495, 1094–1101. [Google Scholar] [CrossRef]
- Paktinat, S.; Hashemi, S.M.; Ghaffari Novin, M.; Mohammadi-Yeganeh, S.; Salehpour, S.; Karamian, A.; Nazarian, H. Seminal Exosomes Induce Interleukin-6 and Interleukin-8 Secretion by Human Endometrial Stromal Cells. Eur J Obstet Gynecol Reprod Biol. 2019, 235, 71–76. [Google Scholar] [CrossRef]
- Wang, D.; Jueraitetibaike, K.; Tang, T.; Wang, Y.; Jing, J.; Xue, T.; Ma, J.; Cao, S.; Lin, Y.; Li, X.; et al. Seminal Plasma and Seminal Plasma Exosomes of Aged Male Mice Affect Early Embryo Implantation via Immunomodulation. Front Immunol. 2021, 12, 723409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Greve, P.F.; Minh, T.T.N.; Wubbolts, R.; Demir, A.Y.; Zaal, E.A.; Berkers, C.R.; Boes, M.; Stoorvogel, W. Extracellular Vesicles from Seminal Plasma Interact with T Cells in Vitro and Drive Their Differentiation into Regulatory T-Cells. J Extracell Vesicles. 2024, 13, e12457. [Google Scholar] [CrossRef]
- Prins, J.R.; Gomez-Lopez, N.; Robertson, S.A. Interleukin-6 in Pregnancy and Gestational Disorders. J Reprod Immunol. 2012, 95, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Aldo, P.; Alvero, A.B. The Unique Immunological and Microbial Aspects of Pregnancy. Nat Rev Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Blois, S.M.; Alba Soto, C.D.; Tometten, M.; Klapp, B.F.; Margni, R.A.; Arck, P.C. Lineage, Maturity, and Phenotype of Uterine Murine Dendritic Cells throughout Gestation Indicate a Protective Role in Maintaining Pregnancy. Biol Reprod. 2004, 70, 1018–1023. [Google Scholar] [CrossRef]
- Moldenhauer, L.M.; Diener, K.R.; Thring, D.M.; Brown, M.P.; Hayball, J.D.; Robertson, S.A. Cross-Presentation of Male Seminal Fluid Antigens Elicits T Cell Activation to Initiate the Female Immune Response to Pregnancy. J Immunol. 2009, 182, 8080–8093. [Google Scholar] [CrossRef]
- Tarazona, R.; Delgado, E.; Guarnizo, M.C.; Roncero, R.G.; Morgado, S.; Sánchez-Correa, B.; Gordillo, J.J.; Dejulián, J.; Casado, J.G. Human Prostasomes Express CD48 and Interfere with NK Cell Function. Immunobiology. 2011, 216, 41–46. [Google Scholar] [CrossRef]
- Craciunas, L.; Gallos, I.; Chu, J.; Bourne, T.; Quenby, S.; Brosens, J.J.; Coomarasamy, A. Conventional and Modern Markers of Endometrial Receptivity: A Systematic Review and Meta-Analysis. Hum Reprod Update. 2019, 25, 202–223. [Google Scholar] [CrossRef]
- Rodriguez-Caro, H.; Dragovic, R.; Shen, M.; Dombi, E.; Mounce, G.; Field, K.; Meadows, J.; Turner, K.; Lunn, D.; Child, T.; et al. In Vitro Decidualisation of Human Endometrial Stromal Cells Is Enhanced by Seminal Fluid Extracellular Vesicles. J Extracell Vesicles. 2019, 8, 1565262. [Google Scholar] [CrossRef]
- Gholipour, H.; Amjadi, F.S.; Zandieh, Z.; Mehdizadeh, M.; Ajdary, M.; Delbandi, A.A.; Akbari Sene, A.; Aflatoonian, R.; Bakhtiyari, M. Investigation of the Effect of Seminal Plasma Exosomes from the Normal and Oligoasthenoteratospermic Males in the Implantation Process. Rep Biochem Mol Biol. 2023, 12, 294–305. [Google Scholar] [CrossRef]
- Gholipour, H.; Bakhtiyari, M.; Amjadi, F.S.; Mehdizadeh, M.; Aflatoonian, R.; Zandieh, Z. Evaluation of the Effect of Seminal Plasma Exosomes from Unexplained Infertile Men on the Expression of Implantation-Related Genes. Hum Reprod. 2022, 37. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y.; Chen, R.; Zhu, Y.; Wang, H.; Li, S.; Yu, L.; Zhang, K.; Liu, Y.; Jing, T.; et al. Human Seminal Extracellular Vesicles Enhance Endometrial Receptivity Through Leukemia Inhibitory Factor. Endocrinology. 2024, 165, bqae035. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
