Submitted:
17 April 2025
Posted:
18 April 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. RNAi
2.1. History of Discovery
2.2. How RNAi Works in Insect Pests
2.3. Perspectives and Limitations of RNAi For Insect Pest Control
3. CUAD Biotechnology
3.1. History of Discovery
3.2. How It Works on Insect Pests
3.3. Perspectives and Limitations of CUAD for Insect Pest Control
4. CRISPR/Cas
4.1. History of Discovery
4.2. How It Works on Insect Pests
4.3. Perspectives and Limitations of CRISPR/Cas for Insect Pest Control
5. Conclusion
Funding
Conflicts of Interest
References
- Ahmed S, Roy MC, Al Baki MA, Jung JK, Lee D, Kim Y (2021) CRISPR/Cas9 mutagenesis against sex pheromone biosynthesis leads to loss of female attractiveness in Spodoptera exigua, an insect pestt. PLoS One 16(11):e0259322. [CrossRef]
- Alaa AA, Aljabali, Mohamed El-Tanani, Murtaza, M. Tambuwala (2024) Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. Journal of Drug Delivery Science and Technology 92:105338. [CrossRef]
- Anu CN, Ashok K, Bhargava CN, Dhawane Y, Manamohan M, Jha GK, Asokan R (2024) CRISPR/Cas9 mediated validation of spermatogenesis-related gene, tssk2 as a component of genetic pest management of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Archives of Insect Biochemistry and Physiology, 116(1):e22121. [CrossRef]
- Araújo MF, Castanheira EMS, Sousa SF (2023) The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 28(8):3641. [CrossRef]
- Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect biochemistry and molecular biology 36(9):683-693. [CrossRef]
- Arya SK, Singh S, Upadhyay SK, Tiwari V, Saxena G, Verma PC (2021) RNAi-based gene silencing in Phenacoccus solenopsis and its validation by in planta expression of a double-stranded RNA. Pest Management Science 77(4):1796-1805. [CrossRef]
- Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, Manamohan M, Rai A (2023b) CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). International Journal of Biological Macromolecules 253:126557. [CrossRef]
- Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, Rai A, Manamohan M (2023a) First report on the utility of pupal case for early determination of CRISPR/Cas9 ribonucleoprotein mediated genomic edits in the oriental fruit fly, Bactrocera dorsalis (Hendel)(Tephritidae: Diptera). Archives of Insect Biochemistry and Physiology 113(4):e22024. [CrossRef]
- Ashok K, Bhargava CN, Asokan R, Pradeep C, Pradhan SK, Kennedy JS, Balasubramani V, Murugan M, Jayakanthan M, Geethalakshmi V, Manamohan M (2023c) CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide (PBAN) gene disrupts mating in the Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). 3 Biotech 13(11):370. [CrossRef]
- Ashok K, Bhargava CN, Babu KP, Rohan W, Manamohan M, Rai A, Sanjay KP, Parvathy MS, Kennedy JS, Asokan R (2023d) First report on CRISPR/Cas9 mediated editing of the eye colour gene, tryptophan 2, 3-dioxygenase in egg plant shoot and fruit borer Leucinodes orbonalis Guenée (Lepidoptera: Crambidae). Journal of Asia-Pacific Entomology 26(1):102031. [CrossRef]
- Ashok K, Bhargava CN, Venkatesh R, Balasubramani V, Murugan M, Geethalakshmi V, Manamohan M, Jha GK, Asokan R (2025) Molecular characterization and CRISPR/Cas9 validation of the precursor of egg yolk protein gene, vitellogenin of Leucinodes orbonalis Guenée (Lepidoptera: Crambidae). Gene 933:148925. [CrossRef]
- Asokan R, Rai A, Dash S, Manamohan M, Ashok K, Bhargava CN, Wishard R, Pradhan SK, Parvathy MS (2022) Application of genome editing in entomology. Indian Journal of Entomology 96-103. [CrossRef]
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes, Science 315(5819):1709–1712. [CrossRef]
- Belikova A, Zarytova V, Grineva N (1967) Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett 37:3557–62. [CrossRef]
- Bera P, Suby SB, Dixit S, Vijayan V, Kumar N, Sekhar JC, Vadassery J (2025) Identification of novel target genes for RNAi mediated management of the pest, Fall Armyworm (Spodoptera frugiperda, JE Smith). Crop Protection 187:106972. [CrossRef]
- Bhargava CN, Ashok K, Asokan R, Prasad Babu K, Parvathy MS, Yogi D, Shashikala T, Chiranth RK, Ashok U, Harsha CG (2024) CRISPR/Cas9 Mediated Editing of the white (wh) locus Affects Body Size and Reproduction of the Oriental Fruit Fly, Bactocera dorsalis (Hendel). Agricultural Research 1-8. [CrossRef]
- Bhatia S, Yadav SK (2023) CRISPR-Cas for genome editing: classification, mechanism, designing and applications. International Journal of Biological Macromolecules 238:124054. [CrossRef]
- Bi H, Merchant A, Gu J, Li X, Zhou X, Zhang Q (2022a) CRISPR/Cas9-mediated mutagenesis of abdominal-A and ultrabithorax in the Asian corn borer, Ostrinia furnacalis. Insects 13(4):384. [CrossRef]
- Bi H, Xu X, Li X, Wang Y, Zhou S, Huang Y (2022) CRISPR/Cas9-mediated Serine protease 2 disruption induces male sterility in Spodoptera litura. Frontiers in physiology 13:931824. [CrossRef]
- Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551-2561. [CrossRef]
- Bulle M, Sheri V, Aileni M, Zhang B (2023) Chloroplast Genome Engineering: A Plausible Approach to Combat Chili Thrips and Other Agronomic Insect Pests of Crops. Plants 12(19):3448. [CrossRef]
- Camargo RA, Barbosa GO, Possignolo IP, Peres LE, Lam E, Lima JE, Figueira A, Marques-Souza H (2016) RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum). PeerJ, 4:e2673. [CrossRef]
- Cedden D, Bucher G (2024) The quest for the best target genes for RNAi-mediated pest control. Insect Mol Biol. [CrossRef]
- Cerio RJ, Vandergaast R, Friesen PD (2010) Host insect inhibitor-of-apoptosis SfIAP functionally replaces baculovirus IAP but is differentially regulated by its N-terminal leader. J. Virol 84:11448–11460. [CrossRef]
- Cheema HMN, Khan AA, Khan MA, Pervez MA, Ghouri MZ, Ahmad A, Khan SH (2022) Breeding Cotton for Insect/Pests Resistance. In: Khan Z, Ali Z, Khan AA (ed) Cotton Breeding and Biotechnology, 1st edn. CRC Press, pp 199-232.
- Chen J, Peng Y, Zhang H, Wang K, Zhao C, Zhu G, Reddy Palli S, Han Z (2021a) Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA. RNA Biol 18(11):1747-1759. [CrossRef]
- Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology 19(6):777-786. [CrossRef]
- Chen JZ, Jiang YX, Li MW, Li JW, Zha BH, Yang G (2021b) Double-stranded RNA-degrading enzymes reduce the efficiency of RNA interference in Plutella xylostella. Insects 12(8):712. [CrossRef]
- Christiaens O, Tardajos MG, Martinez Reyna ZL, Dash M, Dubruel P, Smagghe G (2018) Increased RNAi Efficacy in via the Formulation of dsRNA With Guanylated Polymers. Front. Physiol 9:316. [CrossRef]
- Cooper AM, Silver K, Zhang J, Park Y, Zhu KY (2019) Molecular mechanisms influencing efficiency of RNA interference in insects. Pest management science 75(1):18-28. [CrossRef]
- Cooper AM, Song H, Yu Z, Biondi M, Bai J, Shi X, Weerasekara SM, Hua DH, Silver K, Zhang J, Zhu KY (2021) Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis. Pest management science 77(2):635-645. [CrossRef]
- Darweesh AF, Fahmy I, Ali M, Elwahy A (2025) RNA interference of cysteine protease genes for the management of whitefly (Bemisia tabaci) by oral route. Egyptian Journal of Botany 65(1):43-56. [CrossRef]
- Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602-607. [CrossRef]
- Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. [CrossRef]
- Du Q, Thonberg H, Wang J, Wahlestedt C, Liang ZA (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33:1671–1677. [CrossRef]
- Fang C, James B, Williams M, Bachler A, Tay WT, Walsh T, Frese M (2025) Cry1 resistance in a CRISPR/Cas9-mediated HaCad1 gene knockout strain of the Australian cotton bollworm Helicoverpa armigera conferta (Lepidoptera: Noctuidae). Pest Management Science 81(2):959-965. [CrossRef]
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806-11. [CrossRef]
- Fu D, Dai L, Gao H, Sun Y, Liu B, Chen H (2019) Identification, expression patterns and RNA interference of aquaporins in Dendroctonus armandi (Coleoptera: Scolytinae) larvae during overwintering. Front. Physiol 10:967. [CrossRef]
- Fu X, Li R, Qiu Q, Wang M, Zhao T, Zhou L (2022) Study on the function of Helicoverpa armigera Wnt1 gene using CRISPR/Cas9 system. Journal of Asia-Pacific Entomology 25(1):101869. [CrossRef]
- Gal’chinsky N, Useinov R, Yatskova E, Laikova K, Novikov I, Gorlov M, Trikoz N, Sharmagiy A, Plugatar Y, Oberemok V (2020) A breakthrough in the efficiency of contact DNA insecticides: rapid high mortality rates in the sap-sucking insects Dynaspidiotus britannicus Comstock and Unaspis euonymi Newstead. J Plant Prot Res 60(2):220–223. [CrossRef]
- Gal'chinsky NV, Yatskova EV, Novikov IA, Sharmagiy AK, Plugatar YV, Oberemok VV (2024) Mixed insect pest populations of Diaspididae species under control of oligonucleotide insecticides: 3′-end nucleotide matters. Pesticide Biochem. Physiol 200:105838. [CrossRef]
- Gal’chinsky NV, Yatskova EV, Novikov IA, Useinov RZ, Kouakou NJ, Kouame KF, Kra KD, Sharmagiy AK, Plugatar YV, Laikova KV, Oberemok VV (2023). Icerya purchasi Maskell (Hemiptera: Monophlebidae) control using low carbon footprint oligonucleotide insecticides. Int J Mol Sci 24(14):11650. [CrossRef]
- Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences 112(49):E6736-E6743. [CrossRef]
- Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579-86. [CrossRef]
- Gavrilova D, Grizanova E, Novikov I, Laikova E, Zenkova A, Oberemok V, Dubovskiy I (2025) Antisense DNA acaricide targeting pre-rRNA of two-spotted spider mite Tetranychus urticae as efficacy-enhancing agent of fungus Metarhizium robertsii. Journal of Invertebrate Pathology 108297. [CrossRef]
- Gouda MR, Jeevan H, Shashank HG (2024) CRISPR/Cas9: a cutting-edge solution for combatting the fall armyworm, Spodoptera frugiperda. Molecular Biology Reports 51(1):13. [CrossRef]
- GreenLight Biosciences (2025). Available online: https://www.greenlightbiosciences.com/international-crop- network-validates-ledprona-as-a-new-mode-of-action-group/ (accessed on 20 January 2025).
- Gu J, Wang J, Bi H, Li X, Merchant A, Zhang P, Zhang Q, Zhou X (2022) CRISPR/Cas9-mediated mutagenesis of sex-specific doublesex splicing variants leads to sterility in Spodoptera frugiperda, a global invasive pest. Cells 11(22):3557. [CrossRef]
- Gul H, Gadratagi BG, Güncan A, Tyagi S, Ullah F, Desneux N, Liu X (2023) Fitness costs of resistance to insecticides in insects. Front. Physiol 14:1238111. [CrossRef]
- Guo PP, Yang XB, Yang H, Zhou C, Long GY, Jin DC (2025) Knockdown of the β-N-acetylhexosaminidase genes by RNA interference inhibited the molting and increased the mortality of the white-backed planthopper, Sogatella furcifera. Pesticide Biochemistry and Physiology 207:106216. [CrossRef]
- Han J, Klobasa W, de Oliveira L, Rotenberg D, Whitfield AE, Lorenzen MD (2024) CRISPR/Cas9-mediated genome editing of Frankliniella occidentalis, the western flower thrips, via embryonic microinjection. Insect Molecular Biology. [CrossRef]
- Han WK, Yang YL, Si YX, Wei ZQ, Liu SR, Liu XL, Yan Q, Dong SL (2022) Involvement of GOBP2 in the perception of a sex pheromone component in both larval and adult Spodoptera litura revealed using CRISPR/Cas9 mutagenesis. Insect Biochemistry and Molecular Biology 141:103719. [CrossRef]
- Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 94(1):135-155. [CrossRef]
- Hossain MA (2021) CRISPR-Cas9: A fascinating journey from bacterial immune system to human gene editing. Progress in Molecular Biology and Translational Science 178:63-83. [CrossRef]
- Huynh N, Wang S, King-Jones K (2020) Spatial and temporal control of gene manipulation in Drosophila via drug-activated Cas9 nucleases. Insect biochemistry and molecular biology 120:103336. [CrossRef]
- Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429-33. [CrossRef]
- IZ (2025). Available online: https://en.iz.ru/en/1870413/maria-neduk-denis-gricenko/agrarian-evolution-dna-drug-will-destroy-main-enemy-greenhouse-crops (accessed on 16 April 2025).
- Jain RG, Robinson KE, Asgari S, Mitter, N (2021) Current scenario of RNAi-based hemipteran control. Pest Manag Sci 77(5):2188-2196. [CrossRef]
- Jansen R, Embden JDA, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol 43(6):1565–1575. [CrossRef]
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier EA (2012) Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816-21. [CrossRef]
- Kaplanoglu E, Kolotilin I, Menassa R, Donly C (2022) Plastid Transformation of Micro-Tom Tomato with a Hemipteran Double-Stranded RNA Results in RNA Interference in Multiple Insect Species. Int. J. Mol. Sci 23:3918. [CrossRef]
- Khan AM, Ashfaq M, Khan AA, Naseem MT, Mansoor S (2018) Evaluation of potential RNA-interference-target genes to control cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcuidae). Insect science 25(5):778-786. [CrossRef]
- Khan MD, Ahmad B, Ahmed SF, Ijaz M, Abdin ZU, Ghafoor I, Siddiqui GM, Adrees T, Ali S, Shahzadi N, Rafa HU (2023) CRISPR-Cas genome editing in crops: A promising frontier for climate-smart agriculture. Phytopathogenomics and Disease Control 2:71-77. [CrossRef]
- Konu M, Kulmuni J, Viljakainen L (2023) Genetic modification of the ant Lasius niger using CRISPR-Cas9 technology. Insect Molecular Biology 32(1):11-25. [CrossRef]
- Koo J, Palli SR (2024) Recent advances in understanding of the mechanisms of RNA interference in insects. Insect Molecular Biology. [CrossRef]
- Lander ES (2016) The Heroes of CRISPR. Cell 164(1-2):18-28. [CrossRef]
- Li L, Zhang D, Zhang Z, Zhang B (2024c) CRISPR/Cas: a powerful tool for designing and improving oil crops. Trends in biotechnology. [CrossRef]
- Li N, Xu X, Li J, Hull JJ, Chen L, Liang G (2024a) A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. International Journal of Biological Macromolecules 281:136503. [CrossRef]
- Li S, Yang H, Wang Y, Wei L, Lyu J, Shan Z, Zhang X, Fan D (2024b) RNA Interference Reveals the Impacts of CYP6CY7 on Imidacloprid Resistance in Aphis glycines. Insects 15(3):188. [CrossRef]
- Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li P-f, Yu T (2023) CRISPR/Cas9 therapeutics: progress and prospects. Sig Transduct Target Ther., 8:36. [CrossRef]
- Li Z, Rana TM (2012) Molecular mechanisms of RNA-triggered gene silencing machineries. Acc Chem Res. 45(7):1122-31. [CrossRef]
- Liao C, Beisel CL (2021) The tracrRNA in CRISPR biology and technologies. Annual review of genetics 55(1):161-181. [CrossRef]
- Liu J, Yang Y, Yang Q, Lin X, Liu Y, Li Z, Swevers L (2025) Successful oral RNA interference efficiency in the silkworm Bombyx mori through nanoparticle-shielded dsRNA delivery. Journal of Insect Physiology 104749. [CrossRef]
- Lotfy P, Hsu PD (2022) Genome Editing with CRISPR-Cas Systems. CRISPR: Biology and Applications 165.
- Lu J, Shen J (2024) Target genes for RNAi in pest control: A comprehensive overview. Entomologia Generalis 44(1). [CrossRef]
- Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS (2022) Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 23(24):15836. [CrossRef]
- Luige O, Karalė K, Bose PP, Bollmark M, Tedebark U, Murtola M, Strömberg R (2022) Influence of sequence variation on the RNA cleavage activity of Zn2+-dimethyl-dppz-PNA-based artificial enzymes. RSC Adv 12:5398–5406. [CrossRef]
- Ma X, Zuo Z, Shao W, Jin Y, Meng Y (2018) The expanding roles of Argonautes: RNA interference, splicing and beyond. Brief Funct Genomics 17(3):191-197. [CrossRef]
- Ma YF, Liu TT, Zhao YQ, Luo J, Feng HY, Zhou, Gong LL, Zhang MQ, He YY, Hull JJ, Dewer Y, He M, He P (2024) RNA interference-screening of potentially lethal gene targets in the white-backed planthopper Sogatella furcifera via a spray-induced and nanocarrier-delivered gene silencing system. Journal of Agricultural and Food Chemistry 72(2):1007-1016. [CrossRef]
- Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1:7. [CrossRef]
- Malakondaiah S, Julius A, Ponnambalam D, Gunthoti SS, Ashok J, Krishana PS, Rebecca J (2024) Gene silencing by RNA interference: a review. Genome Instability & Disease 5(5):225-241. [CrossRef]
- Manju M, Nirosha V, Tullika T, Mankhanniang G (2022) DNA insecticides: an emerging tool in pest management. AGRIALLIS 4(9).
- Matranga C, Pyle AM (2010) Double-stranded RNA-dependent ATPase DRH-3: Insight into its role in RNA silencing in Caenorhabditis elegans. Journal of Biological Chemistry 285(33):25363-25371. [CrossRef]
- Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607-620. [CrossRef]
- Matsuoka Y, Nakamura T, Watanabe T, Barnett AA, Tomonari S, Ylla G, Whittle CA, Noji S, Mito T, Extavour CG (2025) Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus. Development 152(1). [CrossRef]
- Minchin S, Lodge J (2019) Understanding biochemistry: structure and function of nucleic acids. Essays Biochem 63(4):433-456. [CrossRef]
- Mojica MJ, Juez G, Rodríguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9:613–621. [CrossRef]
- Mun S, Young Noh M, Dittmer NT, Muthukrishnan S, Kramer KJ, Kanost MR, Arakane Y (2015) Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Sci. Rep 5:10484. [CrossRef]
- Narva K, Toprak U, Alyokhin A, Groves R, Jurat-Fuentes JL, Moar W, Nauen R, Whipple S, Head G (2025) Insecticide resistance management scenarios differ for RNA-based sprays and traits. Insect Mol Biol. [CrossRef]
- Nie HY, Liang LQ, Li QF, Zhu YN, Guo YK, Zheng QL, Lin Y, Yang DL, Li ZG, Su SK (2021) CRISPR/Cas9 mediated knockout of Amyellow-y gene results in melanization defect of the cuticle in adult Apis mellifera. Journal of insect physiology 132:104264. [CrossRef]
- Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, Arora N (2021) Next generation dsRNA-based insect control: Success so far and challenges. Frontiers in Plant Science 12:673576. [CrossRef]
- Novikov A, Yatskova E, Bily A, Puzanova Y, Sharmagiy A, Oberemok V (2023) Efficient control of the obscure mealybug Pseudococcus viburni with DNA insecticides. In vitro cellular & developmental biology-animal. Springer, New York, USA, pp 92–108.
- Oberemok V, Laikova K, Shumskykh M, Kenyo I, Kasich I, Deri K, Seidosmanova E, Krasnodubets A, Bekirova V, Gal'chinsky N (2018) A primary attempt of Leptinotarsa decemlineata control using contact DNA insecticide based on short antisense oligonucleotide of its CYP6B gene. J. Plant Prot. Res 58:106–108. [CrossRef]
- Oberemok VV (2008) Method of Elimination of Phyllophagous Insects from Order Lepidoptera. Ukraine Patent UA No. 36, 445, 27.
- Oberemok VV (2011) DNA markers in investigation of interaction between Lymantria dispar multiple nucleopolyhedrovirus and its host gypsy moth. Dissertation, Taurida National VI Vernadsky University.
- Oberemok VV, Gal’chinsky NV (2024) Oligonucleotide insecticides (contact unmodified antisense DNA biotechnology) and RNA biocontrols (double-stranded RNA technology): newly born fraternal twins in plant protection. bioRxiv [Preprint], 584797. [CrossRef]
- Oberemok VV, Gal’chinsky NV, Novikov IA, Sharmagiy AK, Yatskova EV, Laikova EV, Plugatar Yu (2024d) rRNA-specific antisense DNA and dsDNA trigger rRNA biogenesis and cause potent insecticidal effect on insect pest Coccus hesperidum L. biorXiv. [CrossRef]
- Oberemok VV, Gal'chinsky NV, Useinov RZ, Novikov IA, Puzanova YV, Filatov RI, Kouakou NJ, Kouame KF, Kra KD, Laikova KV (2023) Four Most Pathogenic Superfamilies of Insect Pests of Suborder Sternorrhyncha: Invisible Superplunderers of Plant Vitality. Insects 14(5):462. [CrossRef]
- Oberemok VV, Laikova KV, Andreeva OA, Gal'chinsky NV (2024b) Oligonucleotide insecticides and RNA-based insecticides: 16 years of experience in contact using of the next generation pest control agents. J Plant Dis Prot 131:1837–1852. [CrossRef]
- Oberemok VV, Laikova KV, Gal’chinsky NV (2024a). Contact unmodified antisense DNA (CUAD) biotechnology: list of pest species successfully targeted by oligonucleotide insecticides. Front. Agron 6:1415314. [CrossRef]
- Oberemok VV, Laikova KV, Gal'chinsky NV, Useinov RZ, Novikov IA, Temirova ZZ, Shumskykh MN, Krasnodubets AM, Repetskaya AI, Dyadichev VV, Fomochkina II, Bessalova EY, Makalish TP, Gninenko YI, Kubyshkin AV (2019) DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection. Sci Rep 9(1):6197. [CrossRef]
- Oberemok VV, Laikova KV, Useinov RZ, Gal’chinsky NV, Novikov IA, Gorlov MV, Balykina EV, Trikoz NN, Yatskova EV, Sharmagiy AK (2020) High mortality of sap-sucking insects one week after topical application of DNA insecticides. In Vitro Cell Dev Biol Anim 56:39.
- Oberemok VV, Laikova KV, Zaitsev AS, Gushchin VA, Skorokhod OA (2016) The RING for gypsy moth control: Topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide. Pestic Biochem Physiol 131:32-9. [CrossRef]
- Oberemok VV, Laikova KV, Zaitsev AS, Shumskykh MN, Kasich IN, Gal'chinsky NV, Bekirova VV, Makarov VV, Agranovsky AA, Gushchin VA, Zubarev IV, Kubyshkin AV, Fomochkina II, Gorlov MV, Skorokhod OA (2017) Molecular Alliance of Lymantria dispar Multiple Nucleopolyhedrovirus and a Short Unmodified Antisense Oligonucleotide of Its Anti-Apoptotic IAP-3 Gene: A Novel Approach for Gypsy Moth Control. Int J Mol Sci 18(11):2446. [CrossRef]
- Oberemok VV, Novikov IA, Yatskova EV, Bilyk AI, Sharmagiy AK, Gal'chinsky NV (2024e) Potent and selective ‘genetic zipper’ method for DNA-programmable plant protection: innovative oligonucleotide insecticides against Trioza alacris Flor. Chem. Biol. Technol. Agric 11:144. [CrossRef]
- Oberemok VV, Puzanova YV, Gal’chinsky NV (2024c) The 'genetic zipper' method offers a cost-effective solution for aphid control. Front. Insect Sci 4:1467221. [CrossRef]
- Oberemok VV, Skorokhod OA (2014) Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control. Pestic Biochem Physiol 113:1-7. [CrossRef]
- Oberemok VV, Useinov RZ, Skorokhod OA, Gal’chinsky NV, Novikov IA, Makalish TP, Yatskova EV, Sharmagiy AK, Golovkin IO, Gninenko YI, Puzanova YV, Andreeva OA, Alieva EE, Eken E, Laikova KV, Plugatar YV (2022) Oligonucleotide insecticides for green agriculture: regulatory role of contact DNA in plant- insect interactions. Int J Mol Sci 23(24):15681. [CrossRef]
- Ortolá B, Daròs JA (2024) RNA interference in insects: From a natural mechanism of gene expression regulation to a biotechnological crop protection promise. Biology 13(3):137. [CrossRef]
- Palli SR (2023) RNAi turns 25: contributions and challenges in insect science. Frontiers in Insect Science 3:1209478. [CrossRef]
- Pallis S, Alyokhin A, Manley B, Rodrigues T, Barnes E, Narva K (2023) Effects of Low Doses of a Novel dsRNA-based Biopesticide (Calantha) on the Colorado Potato Beetle. J Econ Entomol 116(2):456-461. [CrossRef]
- Plugatar YV, Chichkanova ES, Yatskova EV, Sharmagii AK, Oberemok VV (2021) An innovative method of Diaspis echinocacti Bouche control using DNA insecticide on Opuntia ficus-indica (L.) Mill. in the Nikitsky Botanical Garden, Crimea. South Russia: ecology Dev 16:119–128. [CrossRef]
- Pradhan SK, Karuppannasamy A, Sujatha PM, Nagaraja BC, Narayanappa AC, Chalapathi P, Dhawane Y, Bynakal S, Riegler M, Maligeppagol M, Ramasamy A (2023) Embryonic microinjection of ribonucleoprotein complex (Cas9+ sgRNA) of white gene in melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) produced white eye phenotype.Archives of Insect Biochemistry and Physiology 114(4):e22059. [CrossRef]
- Prentice K, Christiaens O, Pertry I, Bailey A, Niblett C, Ghislain M, Gheysen G, Smagghe G (2017) RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest management science 73(1):44-52. [CrossRef]
- Puzanova YV, Novikov IA, Bilyk AI, Sharmagiy AK, Plugatar YV, Oberemok VV (2023) Perfect complementarity mechanism for aphid control: oligonucleotide insecticide macsan-11 selectively causes high mortality rate for Macrosiphoniella sanborni gillette. Int J Mol Sci 24(14):11690. [CrossRef]
- Ranian K, Zahoor MK, Zulhussnain M, Ahmad A (2022) CRISPR/Cas9 mediated sex-ratio distortion by sex specific gene editing in Aedes aegypti. Saudi Journal of Biological Sciences 29(4):3015-3022. [CrossRef]
- Saberi E, Mondal M, Paredes-Montero JR, Nawaz K, Brown JK, Qureshi JA (2024) Optimal dsRNA Concentration for RNA Interference in Asian Citrus Psyllid. Insects 15(1):58. [CrossRef]
- Schellens S, Lenaerts C, Pérez Baca MDR, Cools D, Peeters P, Marchal E, Vanden Broeck J (2022) Knockdown of the Halloween genes Spook, Shadow and Shade influences oocyte development, egg shape, oviposition and hatching in the desert locust. International journal of molecular sciences 23(16):9232. [CrossRef]
- Shang F, Xiong Y, Xia WK, Wei DD, Wei D, Wang JJ (2016) Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, Toxoptera citricida (Hemiptera, Aphididae). Insect Molecular Biology 25(4):422-430. [CrossRef]
- Sheu-Gruttadauria J, MacRae IJ (2017) Structural foundations of RNA silencing by Argonaute. Journal of molecular biology 429(17):2619-2639. [CrossRef]
- Shimomura K, Sakita K, Terajima T, Tomizawa M (2025) Gene Silencing of Olfactory Receptor Coreceptor by Systemic RNA Interference in Callosobruchus maculatus. Journal of Chemical Ecology 51(1):5. [CrossRef]
- Shirk BD, Shirk PD, Furlong RB, Scully ED, Wu K, Siegfried BD (2023) Gene editing of the ABC Transporter/White locus using CRISPR/Cas9-mediated mutagenesis in the Indian Meal Moth. Journal of Insect Physiology 145:104471. [CrossRef]
- Shmakova AA, Shmakova OP, Karpukhina AA, Vassetzky YS (2022) CRISPR/Cas: History and Perspectives. Russ J Dev Bio 53:272–282. [CrossRef]
- Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X (2023) Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 13:1112278. [CrossRef]
- Silver K, Cooper AM, Zhu KY (2021) Strategies for enhancing the efficiency of RNA interference in insects. Pest Management Science 77(6):2645-2658. [CrossRef]
- Sioud M (2021) RNA interference: story and mechanisms. Design and Delivery of SiRNA Therapeutics 1-15. [CrossRef]
- Socha W, Kwasnik M, Larska M, Rola J, Rozek W (2022) Vector-borne viral diseases as a current threat for human and animal health—One Health perspective. Journal of Clinical Medicine 11(11):3026. [CrossRef]
- Sujatha PM, Karuppannasamy A, Chalapathi P, Dhawane Y, Narasimhappa NS, Narayanappa AC, Munikrishnappa VKT, Chikmagalur Nagaraja B, Thalooru S, Kesavan S, Maligeppagol M (2024) CRISPR/Cas9 Ribo nucleoprotein complex-mediated editing of the OBP13 gene affected the response of male Bactrocera dorsalis (Diptera: Tephritidae) to methyl eugenol. Journal of Applied Entomology. [CrossRef]
- Sun Z, Liu J, Chen Y, Zhang J, Zhong, G (2023) RNAi-mediated knockdown of α-Spectrin depresses reproductive performance in female Bactrocera dorsalis. Pesticide Biochemistry and Physiology 196:105611. [CrossRef]
- Svoboda P (2020) Key mechanistic principles and considerations concerning RNA interference. Front. Plant Sci 11:1237. [CrossRef]
- Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol 57:231-245. [CrossRef]
- Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PloS One 4(7):e6225. [CrossRef]
- Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9 (1):R10. [CrossRef]
- Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature reviews Molecular cell biology 20(1):5-20. [CrossRef]
- Useinov RZ, Galchinsky N, Yatskova E, Novikov I, Puzanova Y, Trikoz N, Sharmagiy A, Plugatar Y, Laikova K, Oberemok V (2020) To bee or not to bee: creating DNA insecticides to replace non-selective organophosphate insecticides for use against the soft scale insect Ceroplastes Japonicus green. J Plant Prot Res 60:406–409. [CrossRef]
- Verdonckt TW, Vanden Broeck J (2022) Methods for the Cost-Effective Production of Bacteria-Derived Double-Stranded RNA for in vitro Knockdown Studies. Front Physiol 13:836106. [CrossRef]
- Vogel E, Santos D, Mingels L, Verdonckt T, Broeck JV (2019) RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Frontiers in Physiology 9:434563. [CrossRef]
- Wang C, Zhao T, Liu X, Li T, He L, Wang Q, Wang L, Zhou L (2023) CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda. Insects 15(1):16. [CrossRef]
- Wang CX, Bao HQ, Yan ZC, Wang J, Wang S, Li YX (2024) Knockdown of vitellogenin receptor based on minute insect RNA interference methods affects the initial mature egg load in the pest natural enemy Trichogramma dendrolimi. Insect Science. [CrossRef]
- Wang J, Zhang H, Wang H, Zhao S, Zuo Y, Yang Y, Wu Y (2016) Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochemistry and Molecular Biology 76:11-17. [CrossRef]
- Wang JY, Doudna JA (2023) CRISPR technology: A decade of genome editing is only the beginning. Science 379(6629):eadd8643. [CrossRef]
- Wang JY, Pausch P, Doudna JA (2022) Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nature Reviews Microbiology 20(11):641-656. [CrossRef]
- Wang X, Ma Y, Wang F, Yang Y, Wu S, Wu Y (2020) Disruption of nicotinic acetylcholine receptor α6 mediated by CRISPR/Cas9 confers resistance to spinosyns in Plutella xylostella. Pest management science 76(5):1618-1625. [CrossRef]
- Wang Y, Zhang H, Li H, Miao X (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PloS One, 6, e18644. [CrossRef]
- Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440. [CrossRef]
- Westhof E, Yusupov M, Yusupova G (2014) Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000Prime Rep 6:19. [CrossRef]
- Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331-338. [CrossRef]
- Wiles MV, Qin W, Cheng AW, Wang H (2015) CRISPR-Cas9-mediated genome editing and guide RNA design. Mamm Genome 26(9-10):501-10. [CrossRef]
- Xu J, Xu X, Zhan S, Huang Y (2019) Genome editing in insects: current status and challenges. National Science Review 6(3):399-401. [CrossRef]
- Xu X, Harvey-Samuel T, Yang J, You M, Alphey L (2021) CRISPR/Cas9-based functional characterization of the pigmentation gene ebony in Plutella xylostella. Insect Molecular Biology 30(6):615-623. [CrossRef]
- Xu Y, Li Z (2020) CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and structural biotechnology journal 18:2401-2415. [CrossRef]
- Yadav AK, Butler C, Yamamoto A, Patil AA, Lloyd AL, Scott MJ (2023) CRISPR/Cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest Drosophila suzukii. Proceedings of the National Academy of Sciences 120(25):e2301525120. [CrossRef]
- Yang J, Cho WC, Zheng Y (2020) Argonaute proteins: Structural features, functions and emerging roles. Journal of Advanced Research 24:317-324. [CrossRef]
- Yang W, Wang B, Lei G, Chen G, Liu D (2022) Advances in nanocarriers to improve the stability of dsRNA in the environment. Frontiers in Bioengineering and Biotechnology 10, 974646. [CrossRef]
- Ying YAN, Aumann RA, Häcker I, Schetelig MF (2023) CRISPR-based genetic control strategies for insect pests. Journal of Integrative Agriculture 22(3):651-668. [CrossRef]
- Zahoor MK, Ahmad A, Zahoor MA, Majeed HN, Zulhussnain M, Ranian K (2021) CRISPR/Cas-based insect resistance in crops. CRISPR Crops: The Future of Food Security 117-149. [CrossRef]
- Zahoor MK, Ahmad A, Zulhussnain M 2024 Genome Editing in Insects: CRISPR Technology and its Prospects. Science Reviews. Biology 3(3):22. [CrossRef]
- Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75:280–4. [CrossRef]
- Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PloS One 6(5):e20504. [CrossRef]
- Zhao Y, Shu R, Liu J (2021) The development and improvement of ribonucleic acid therapy strategies. Mol Ther Nucleic Acids 26:997-1013. [CrossRef]
- Zhu GH, Chereddy SC, Howell JL, Palli SR (2020) Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. Insect biochemistry and molecular biology 122:103373. [CrossRef]
- Zhu KY, Palli SR (2020) Mechanisms, applications, and challenges of insect RNA interference. Annual review of entomology 65(1):293-311. [CrossRef]
- Zulhussnain M, Zahoor MK, Ranian K, Ahmad A, Jabeen F (2023) CRISPR Cas9 mediated knockout of sex determination pathway genes in Aedes aegypti. Bulletin of Entomological Research 113(2):243-252. [CrossRef]




| Sl. No. | Names of model insects | Targeted gene(s) | Affected processes | References |
|---|---|---|---|---|
| 1. | Beet armyworm, Spodoptera exigua | Chitin synthase gene A (SeCHSA) | Chitin synthesis | Tian et al. 2009 |
| 2. | Brown planthopper, Nilaparvata lugens | NlHT1, Nlcar, Nltry | Digestive system | Zha et al. 2011 |
| 3. | African sweet potato weevil, Cylas puncticollis | Snf7 | Digestive system | Prentice et al. 2017 |
| 4. | Tomato pinworm, Tuta absoluta | Vacuolar ATPase-A and Arginine kinase | High mortality | Camargo et al. 2016 |
| 5. | Oriental fruit fly, Bactrocera dorsalis | α-Spectrin | Oviposition and ovary size | Sun et al. 2023 |
| 6. | Cotton mealybug, Phenacoccus solenopsis | Krüppel homologue-1, ADP-ATP/Translocase, IDGF-1 | Not specified | Arya et al. 2021 |
| 7. | Diamond back moth, Plutella xylostella | PxCht | Chitin synthesis | Chen et al. 2021b |
| 8. | Fall armyworm, Spodoptera frugiperda | Met, EcR, USP genes | Reproductive system, fertility | Li et al. 2024a |
| 9. | White-backed planthopper, Sogatella furcifera | hsc70-3, PP-α | Insect metamorphosis | Ma et al. 2024 |
| 10. | Soybean aphid, Aphis glycines | Cytochrome P450 monooxygenases (CYP450s) | Insect resistance | Li et al. 2024b |
| 11. | Asian citrus psyllid, Diaphorina citri | CHC, vATPase-A, Snf7 | Transmembrane system | Saberi et al. 2024 |
| 12. | Trichogramma dendrolimi | Vitellogenin receptor (VgR) | Female reproductive system | Wang et al. 2024 |
| 13. | Domestic silk moth, Bombyx mori | BmToll9-2 gene | Chitin synthesis | Liu et al. 2025 |
| 14. | Silverleaf whitefly, Bemisia tabaci | Cysteine protease | Digestive system | Darweesh et al. 2025 |
| 15. | Cowpea weevil, Callosobruchus maculatus | Olfactory receptor coreceptor (Cmac\Orco) | Insect sensory system | Shimomura et al. 2025 |
| 16. | White-backed planthopper, S. furcifera | β-N-acetylhexosaminidase genes | Insect metamorphosis | Guo et al. 2025 |
| 17. | Fall armyworm, S. frugiperda | COPIα, COPIβ, GSTU1 | Insect reproduction | Bera et al. 2025 |
| 18. | Desert locust, Schistocerca gregaria | Cytochrome P450 | Ecdysteroid pathway | Schellens et al. 2022 |
| 19. | Red flour beetle, Tribolium castaneum | CPAPs | Cuticular proteins | Mun et al. 2015 |
| 20. | Chinese white pine beetle, Dendroctonus armandi | Aquaporin | Osmoregulation | Fu et al. 2019 |
| 21. | Cotton mealybug, P. solenopsis | Bursicon, V-ATPase | Cuticle hardening and V-ATPases act as proton pumps | Khan et al. 2018 |
| 22 | Kissing bug, Rhodnius prolixus | Nitrophorin 2 (NP2) | Anticoagulant and apyrase activities in saliva | Araujo et al. 2006 |
| 23 | Brown plant hopper, N. lugens | NlTPS | Enzymatic activity | Chen et al. 2010 |
| 24 | Citrus aphid, Toxoptera citricida | TCiCHS | Chitin synthesis | Shang et al. 2016 |
| 25 | Potato psyllid, Bactericera cockerelli | SUC1, ST4 | Osmoregulatory | Lu et al. 2024 |
| Sl. No. | Insects name | Targeted Gene(s) | Affected System | References |
|---|---|---|---|---|
| 1. | Euonymous scale, Unaspis euonymi | 28S rRNA | Protein biosynthesis | Gal'chinsky et al. 2020; Oberemok et al. 2020 |
| 2. | Holly scale, Dynaspidiotus Britannicus | 28S rRNA | Protein biosynthesis | Gal'chinsky et al., 2020, 2024 |
| 3. | Japanese wax scale, Ceroplastes japonicus | 28S rRNA | Protein biosynthesis | Useinov et al. 2020 |
| 4. | Cactus scale, Diaspis echinocacti | 28S rRNA | Protein biosynthesis | Plugatar et al. 2021 |
| 5. | Bay sucker, Trioza alacris | ITS2 of pre-rRNA and 28S rRNA | Protein biosynthesis | Oberemok et al. 2024e |
| 6. | Cottony cushion scale, Icerya purchase | 28S rRNA | Protein biosynthesis | Gal'chinsky et al. 2023 |
| 7. | Chrysanthemum aphid, Macrosiphoniella sanborni | ITS2 of pre-rRNA | Protein biosynthesis | Puzanova et al. 2023 |
| 8. | Mealybug, Pseudococcus viburni | 5.8S and 28S rRNA | Protein biosynthesis | Novikov et al. 2023 |
| 9. | Laureal scale, Aonidia lauri | 28S rRNA | Protein biosynthesis | Gal'chinsky et al. 2024 |
| 10. | Soft scale, Coccus hesperidum | 28S rRNA | Protein biosynthesis | Oberemok et al. 2022 |
| 11. | Two-spotted spider mite, Tetranychus urticae | ITS2 of pre-rRNA | Protein biosynthesis | Gavrilova et al. 2025 |
| 12. | Grey pine aphid, Schizolachnus pineti | ITS2 of pre-rRNA | Protein biosynthesis | Oberemok et al. 2024c |
| 13. | Large pine aphid, Cinara pinea |
ITS2 of pre-rRNA | Protein biosynthesis | Oberemok et al. 2024c |
| 14. | Pine needle aphid, Eulachnus rileyi | ITS2 of pre-rRNA | Protein biosynthesis | Oberemok et al. 2024c |
| Sl. No. | Insect name | Target gene(s) | Affected system | Reference |
|---|---|---|---|---|
| 1. | Mosquito, Anopheles stephensi | Kynurenine hydroxylase | Parasite-resistance | Gantz et al. 2015 |
| 2. | Fall armyworm, S. frugiperda | Ebony gene Doublesex (dsx) (Sfdsx) Antennapedia (Antp) Spermatogenesis-related gene, tssk2 |
Melanin biosynthesis Sex differentiation Insect thorax and wing development Male reproductive system |
Zhu et al. 2020 Gu et al. 2022 Wang et al. 2023 Anu et al. 2024 |
| 3. | Diamondback moth, P. xylostella | Yellow gene Ebony gene LW-opsin |
Body pigmentation Body pigmentation Efficiency of phototaxis |
Wang et al. 2020 Xu et al. 2021 Chen et al. 2021b |
| 4. | European bee, Apis mellifera | Amyellow-y gene | Melanization in cuticle | Nie et al. 2021 |
| 5. | Beet armyworm, S. exigua | Desaturase (SexiDES5) | Sex pheromone biosynthesis | Ahmed et al. 2021 |
| 6. | Brown planthopper, N. lugens | Cysteine sulfinic acid decarboxylase (CSAD) | Melanin metabolism | Chen et al. 2021c |
| 7. | Chickpea pod borer, H. armigera | Wnt1 gene | Segmentation, appendage development, and pigmentation | Fu et al. 2022 |
| 8. | Asian corn borer, Ostrinia furnacalis | Abdominal-A (Abd-A) and Ultrabithorax (Ubx) | Anatomical structure formation | Bi et al. 2022a |
| 9. | Black garden ant, Lasius niger | Cinnabar gene | Eye pigmentation | Konu et al. 2023 |
| 10. | Common cutworm, S. litura | Serine protease 2 Odorant-binding proteins gene |
Male sterility Perception of a sex pheromone |
Bi et al. 2022b Han et al. 2022 |
| 11. | Indian meal moth, Plodia interpunctella | ATP binding cassette (ABC) proteins | Eye pigmentation | Shirk et al. 2023 |
| 12. | Eggplant shoot and fruit borer, Leucinodes orbonalis | Tryptophan 2, 3-dioxygenase Vitellogenin (Vg) |
Eye pigmentation Female reproductive system |
Ashok et al. 2023d Ashok et al. 2025 |
| 13. | Mango fruit fly, B. dorsalis | White gene White locus OBP13 gene |
Eye pigmentation Eye pigmentation Methyl eugenol |
Ashok et al. 2023a Bhargava et al. 2024, Pradhan et al. 2023 Sujatha et al. 2024 |
| 14. | Pomace fly, Drosophila suzukii | Doublesex gene | Population suppression | Yadav et al. 2023 |
| 15. | Australian cotton bollworm, H. armigera conferta | Cadherin gene | Cry1Ac resistance | Fang et al. 2025 |
| 16. | Cricket, Gryllus bimaculatus | Laccase 2 (Gb-lac2) gene | Cuticle system pigmentation | Matsuoka et al. 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
