Submitted:
09 April 2025
Posted:
10 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Overarching Theory
3. Propagation of Tensor Perturbations
4. Conclusions and Discussions
5. Data Availability Statement: No Data Associated in the Manuscript
- The datasets generated during and/or analysed during the current study are available in the arxiv repository, https://arxiv.org/abs/2401.03558.
- The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
- All data generated or analysed during this study are included in this published article (and its supplementary information files).
- The datasets generated during and/or analysed during the current study are publicly available. Data sharing not applicable to this article as no datasets were generated or analysed during the current study
Declarations
- This manuscript is available in the repository https://arxiv.org/abs/2401.03558.
- Have no competing interests between the authors.
- The author contributed equally to this manuscript.
Data availability Statement
- The data are in he repository https://arxiv.org/abs/2401.03558.
- All original data for this work can be found at https://arxiv.org/abs/2401.03558.
Author Contributions
References
- S. Haco, S. W. Hawking, M. J. Perry and A. Strominger, Black Hole Entropy and Soft Hair, JHEP 12, 098 (2018) [arXiv:1810.01847 [hep-th]]. [CrossRef]
- S. Haco, M. J. Perry and A. Strominger, Kerr-Newman Black Hole Entropy and Soft Hair, [arXiv:1902.02247 [hep-th]].
- S. Haco, Large Gauge Transformations and Black Hole Entropy. [CrossRef]
- E. P. Hubble, Proc. Nat. Acad. Sci. 15 (1927) 168.
- A. A. Penzias and R. W. Wilson, A Measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J. 142, 419-421 (1965). [CrossRef]
- M. Gasperini, Elements of string cosmology, Cambridge University Press, 2007, ISBN 978-0-511-33229-6, 978-0-521-18798-5, 978-0-521-86875-4.
- N. Aghanim et al. [Planck], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] [arXiv:1807.06209 [astro-ph.CO]]. [CrossRef]
- Y. Akrami et al. [Planck], Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020) [arXiv:1807.06211 [astro-ph.CO]]. [CrossRef]
- P. Auclair, J. J. Blanco-Pillado, D. G. Figueroa, A. C. Jenkins, M. Lewicki, M. Sakellariadou, S. Sanidas, L. Sousa, D. A. Steer and J. M. Wachter, et al. Probing the gravitational wave background from cosmic strings with LISA, JCAP 04, 034 (2020) [arXiv:1909.00819 [astro-ph.CO]]. [CrossRef]
- M. Gasperini, On the initial regime of pre-big bang cosmology, JCAP 09, 001 (2017) [arXiv:1707.05763 [gr-qc]]. [CrossRef]
- I. Y. Rybak and L. Sousa, CMB anisotropies generated by cosmic string loops, Phys. Rev. D 104, no.2, 023507 (2021) [arXiv:2104.08375 [astro-ph.CO]]. [CrossRef]
- L. Sousa, Probing the Nature of Cosmic Strings with Gravitational Waves, Lect. Notes Phys. 1022, 213-235 (2023). [CrossRef]
- L. Sberna, Early-universe cosmology in Einstein-scalar-Gauss-Bonnet gravity, [arXiv:1708.01150 [gr-qc]].
- G. Papallo, Causality and the initial value problem in Modified Gravity. [CrossRef]
- F. F. Santos, O. Sokoliuk and A. Baransky, Holographic Complexity of Braneworld in Horndeski Gravity, Fortsch. Phys. 71, no.2-3, 2200141 (2023) [arXiv:2210.11596 [hep-th]]. [CrossRef]
- F. F. Santos, B. Pourhassan and E. Saridakis, de Sitter versus anti-de Sitter in Horndeski-like gravity, [arXiv:2305.05794 [hep-th]].
- F. F. Santos and F. A. Brito, Domain walls in Horndeski gravity, [arXiv:2105.00343 [hep-th]].
- F. F. Santos, Rotating black hole with a probe string in Horndeski Gravity, Eur. Phys. J. Plus 135, no.10, 810 (2020) [arXiv:2005.10983 [hep-th]]. [CrossRef]
- F. F. Santos, R. M. P. Neves and F. A. Brito, Modeling dark sector in Horndeski gravity at first-order formalism, Adv. High Energy Phys. 2019, 3486805 (2019) [arXiv:1906.11821 [hep-th]]. [CrossRef]
- T. Harko, F. S. N. Lobo, E. N. Saridakis and M. Tsoukalas, Cosmological models in modified gravity theories with extended nonminimal derivative couplings,” Phys. Rev. D 95, no.4, 044019 (2017) [arXiv:1609.01503 [gr-qc]]. [CrossRef]
- G. W. Horndeski and A. Silvestri, 50 Years of Horndeski Gravity: Past, Present and Future, Int. J. Theor. Phys. 63, no.2, 38 (2024) [arXiv:2402.07538 [gr-qc]]. [CrossRef]
- van Goethem, A., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sondag, M., Wulms, J. (2017, September). The painter’s problem: covering a grid with colored connected polygons. In International Symposium on Graph Drawing and Network Visualization (pp. 492-505). Cham: Springer International Publishing.
- Arhab, S., Anagnostou, D., Joelson, M. (2018). High-order functional derivatives of the diffracted field according to the permittivity-contrast function. arXiv preprint arXiv:1803.00002.
- Nasser, M. M., Kalmoun, E. M., Mityushev, V., Rylko, N. (2022). Simulating local fields in carbon nanotube-reinforced composites for infinite strip with voids. Journal of Engineering Mathematics, 134(1), 8.
- N. Aghanim et al. [Planck], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] [arXiv:1807.06209 [astro-ph.CO]]. [CrossRef]
- A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout, S. Casertano, D. O. Jones, Y. Murakami, L. Breuval and T. G. Brink, et al. Astrophys. J. Lett. 934, no.1, L7 (2022) [arXiv:2112.04510 [astro-ph.CO]]. [CrossRef]
- T. M. C. Abbott et al. [DES], Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 105, no.2, 023520 (2022) [arXiv:2105.13549 [astro-ph.CO]]. [CrossRef]
- C. T. Byrnes and D. Wands, Curvature and isocurvature perturbations from two-field inflation in a slow-roll expansion, Phys. Rev. D 74, 043529 (2006) [arXiv:astro-ph/0605679 [astro-ph]]. [CrossRef]
- A. D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5, 1-362 (1990) [arXiv:hep-th/0503203 [hep-th]].
- M. Rinaldi, Mimicking dark matter in Horndeski gravity, Phys. Dark Univ. 16, 14 (2017) [arXiv:1608.03839 [gr-qc]]. [CrossRef]
- F. A. Brito and F. F. Santos, Braneworlds in Horndeski gravity, Eur. Phys. J. Plus 137, no.9, 1051 (2022) [arXiv:1810.08196 [hep-th]]. [CrossRef]
- T. Namikawa, A. Naruko, R. Saito, A. Taruya and D. Yamauchi, Unified approach to secondary effects on the CMB B-mode polarization, JCAP 10, 029 (2021) [arXiv:2103.10639 [astro-ph.CO]]. [CrossRef]
- T. Kobayashi, Horndeski theory and beyond: a review, Rept. Prog. Phys. 82, no.8, 086901 (2019), [arXiv:1901.07183 [gr-qc]].
- C. Armendariz-Picon, M. Fontanini, R. Penco and M. Trodden, Where does Cosmological Perturbation Theory Break Down?, Class. Quant. Grav. 26, 185002 (2009) [arXiv:0805.0114 [hep-th]]. [CrossRef]
- E. E. Flanagan and S. A. Hughes, The Basics of gravitational wave theory, New J. Phys. 7, 204 (2005) [arXiv:gr-qc/0501041 [gr-qc]]. [CrossRef]
- K. i. Kubota, S. Arai and S. Mukohyama, Propagation of scalar and tensor gravitational waves in Horndeski theory, Phys. Rev. D 107, no.6, 064002 (2023) [arXiv:2209.00795 [gr-qc]]. [CrossRef]
- W. Hu, N. Sugiyama and J. Silk, The Physics of microwave background anisotropies, Nature 386, 37-43 (1997) [arXiv:astro-ph/9604166 [astro-ph]]. arXiv:10.1038/386037a0 .
- D. N. Page, No superluminal expansion of the universe, Class. Quant. Grav. 26, 127001 (2009) [arXiv:gr-qc/9303008 [gr-qc]]. [CrossRef]
- L. Perivolaropoulos and F. Skara, Challenges for ΛCDM: An update, New Astron. Rev. 95, 101659 (2022) [arXiv:2105.05208 [astro-ph.CO]]. [CrossRef]
- B. P. Abbott et al. [LIGO Scientific, Virgo, Fermi-GBM and INTEGRAL], Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. Lett. 848, no.2, L13 (2017) [arXiv:1710.05834 [astro-ph.HE]]. [CrossRef]
- T. L. Smith, V. Poulin and M. A. Amin, Oscillating scalar fields and the Hubble tension: a resolution with novel signatures, Phys. Rev. D 101, no.6, 063523 (2020) [arXiv:1908.06995 [astro-ph.CO]]. [CrossRef]
- J. J. Givans and C. M. Hirata, Redshift-space streaming velocity effects on the Lyman-α forest baryon acoustic oscillation scale, Phys. Rev. D 102, no.2, 023515 (2020) [arXiv:2002.12296 [astro-ph.CO]]. [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
