Submitted:
28 March 2025
Posted:
31 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Genetic Groups Under B. tabaci Species-Complex
1.2. Life-Cycle and Biology
1.3. Virus Transmission, Damage and Economic Impact
1.4. Critical Role of Endosymbionts
1.5. Formulating Suitable Management Strategies
2. Conclusions
Data Availability
Code Availability
Authors’ Contributions
Funding
Acknowledgement
Conflict of Interest
References
- Gennadius, P. Disease of tobacco plantations in the Trikonia. The Aleurodid of tobacco. Ellenike Georgia 1889, 5, 1–3. [Google Scholar]
- Quaintance, A.L. Contribution towards a monograph of the American Aleurodidae. US Dept. Agric. Tech. Ser. Bureau. Entomol. 1900, 8, 9–64. [Google Scholar]
- Mound, L.A.; Halsey, S.H. Whiteflies of the World A systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. Bull Br Mus. 1978, 340. [Google Scholar]
- Russell, L.M. Synonyms of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Bull. Brooklyn Entomol. Soc. 1957, 52, 122–123. [Google Scholar]
- Bird, J.A. Whitefly-transmitted mosaic of Jatropha gossypifolia. Agric. Exp. Stn. Univ. P. R. 1957, 22, 1–35. [Google Scholar]
- Brown, J.K.; Frohlich, D.E.; Rosell, R.C. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol. 1995, 40, 511–534. [Google Scholar] [CrossRef]
- Perring, T.M.; Cooper, A.D.; Rodriguez, R.J.; Farrar, C.A.; Bellows Jr, T.S. Identification of a whitefly species by genomic and behavioral studies. Science 1993, 259, 74–77. [Google Scholar] [CrossRef]
- Bellows Jr, T.S.; Perring, T.M.; Gill, R.J.; Headrick, D.H. Description of a species of Bemisia (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 1994, 87, 195–206. [Google Scholar] [CrossRef]
- Campbell, B.C.; Duffus, J.E.; Baumann, P. Determining whitefly species. Science 1993, 261, 1333–1334. [Google Scholar] [CrossRef]
- Rosell, R.C.; Bedford, I.D.; Frohlich, D.R.; Gill, R.J.; Brown, J.K.; Markham, P.G. Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 1997, 90, 575–589. [Google Scholar] [CrossRef]
- De Barro, P.J.; Driver, F.; Trueman, J.W.; Curran, J. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol Phylogenet Evol 2000, 16, 29–36. [Google Scholar] [CrossRef] [PubMed]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 2011, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.H. An identification guide to common whitefly pest species of the world (Homopt Aleyrodidae). Int. J. Pest. Manag. 1987, 33, 298–322. [Google Scholar] [CrossRef]
- Mound, L.A. Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Proc R Entomol Soc Series A, General Entomology 1963, 38, 171–180. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Basu, A.N. Effect of host plants and seasonal factors on intraspecific variations in pupal morphology of the whitefly vector, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae). J. Entomol. Res. 1986, 10, 19–26. [Google Scholar]
- Perring, T.M.; Cooper, A.; Kazmer, O.J. Identification of the poinsettia strain of Bemisia tabaci (Homoptera: Aleyrodidae) on broccoli by electrophoresis. J. Econ. Entomol. 1992, 85, 1278–1284. [Google Scholar] [CrossRef]
- Costa, H.S.; Brown, J.K. Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci, and the association of one population with silverleaf symptom induction. Entomol. Exp. Appl. 1991, 61, 211–219. [Google Scholar] [CrossRef]
- Costa, H.S.; Brown, J.K.; Sivasupramaniam, S.; Bird, J. Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Int. J. Trop. Insect Sci. 1993, 14, 255–266. [Google Scholar] [CrossRef]
- Bedford, I.D.; Briddon, R.W.; Brown, J.K.; Rosell, R.C.; Markham, P.G. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann. Appl. Biol. 1994, 125, 311–325. [Google Scholar] [CrossRef]
- Pascual, S.; Callejas, C. Intra-and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull. Entomol. Res. 2004, 94, 369–375. [Google Scholar] [CrossRef]
- Chen, W.; Hasegawa, D.K.; Kaur, N.; Kliot, A.; Pinheiro, P.V.; Luan, J.; Stensmyr, M.C.; Zheng, Y.; Liu, W.; Sun, H.; Xu, Y. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016, 14, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ally, H.M.; Hamss, H.E.; Simiand, C.; Maruthi, M.N.; Colvin, J.; Delatte, H. Genetic diversity, distribution, and structure of Bemisia tabaci whitefly species in potential invasion and hybridization regions of East Africa. PLoS One 2023, 18, e0285967. [Google Scholar] [CrossRef] [PubMed]
- Thesnim, P.; Jangra, S.; Kumar, M.; Ghosh, A. Effect of silencing Bemisia tabaci TLR3 and TOB1 on fitness and begomovirus transmission. Front. Plant Sci. 2023, 14, 1136262. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, D.R.; Torres-Jerez, I.; Bedford, I.D.; Markham, P.G.; Brown, J.K. A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol. Ecol. 1999, 8, 1683–1691. [Google Scholar] [CrossRef]
- Cervera, M.T.; Cabezas, J.A.; Simon, B.; Martínez-Zapater, J.M.; Beitia, F.; Cenis, J.L. Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bull. Entomol. Res. 2000, 90, 391–396. [Google Scholar] [CrossRef]
- Boykin, L.M.; Shatters Jr, R.G.; Rosell, R.C.; McKenzie, C.L.; Bagnall, R.A.; De Barro, P.; Frohlich, D.R. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol. Phylogenet Evol. 2007, 44, 1306–1319. [Google Scholar] [CrossRef]
- Ueda, S.; Kitamura, T.; Kijima, K.; Honda, K.I.; Kanmiya, K. Distribution and molecular characterization of distinct Asian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in Japan. J. Appl. Entomol. 2009, 133, 355–366. [Google Scholar] [CrossRef]
- Dinsdale, A.; Cook, L.; Riginos, C.; Buckley, Y.M.; De Barro, P. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 2010, 103, 196–208. [Google Scholar] [CrossRef]
- Brown, J.K.; Paredes-Montero, J.R.; Stocks, I.C. Reassessment of the Bemisia tabaci cryptic species group-imperative for a taxonomic reassessment. Curr Opin Insect Sci 2023, 101032. [Google Scholar] [CrossRef]
- Hu, J.; De Barro, P.; Zhao, H.; Wang, J.; Nardi, F.; Liu, S.S. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One 2011, 6, e16061. [Google Scholar] [CrossRef]
- Alemandri, V.; De Barro, P.; Bejerman, N.; Caro, E.A.; Dumón, A.D.; Mattio, M.F.; Rodriguez, S.M.; Truol, G. Species within the Bemisia tabaci (Hemiptera: Aleyrodidae) complex in soybean and bean crops in Argentina. J. Econ. Entomol. 2012, 105, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Chowda-Reddy, R.V.; Kirankumar, M.; Seal, S.E.; Muniyappa, V.; Valand, G.B.; Govindappa, M.R.; Colvin, J. Bemisia tabaci phylogenetic groups in India and the relative transmission efficacy of Tomato leaf curl Bangalore virus by an indigenous and an exotic population. J. Integr. Agric. 2012, 11, 235–248. [Google Scholar] [CrossRef]
- Firdaus, S.; Vosman, B.; Hidayati, N.; Jaya Supena, E.D.; GFVisser, R.; van Heusden, A.W. The Bemisia tabaci species complex: additions from different parts of the world. Insect Sci. 2013, 20, 723–733. [Google Scholar] [CrossRef]
- Parrella, G.; Scassillo, L.; Giorgini, M. Evidence for a new genetic variant in the Bemisia tabaci species complex and the prevalence of the biotype Q in southern Italy. J. Pest. Sci. 2012, 85, 227–238. [Google Scholar] [CrossRef]
- Lee, W.; Park, J.; Lee, G.S.; Lee, S.; Akimoto, S.I. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 2013, 8, e63817. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, Z.L.; Nardi, F.; Liu, Y.Y.; Luo, X.R.; Li, H.X.; Zhang, Z.K. Members of Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species and the status of two invasive alien species in the Yunnan province (China). J. Insect Sci. 2014, 14, 281. [Google Scholar] [CrossRef]
- Roopa, H.K.; Asokan, R.; Rebijith, K.B.; Hande, R.H.; Mahmood, R.; Kumar, N.K. Prevalence of a new genetic group, MEAM-K, of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Karnataka, India, as evident from mtCOI sequences. Fla. Entomol. 2015, 1, 1062–1071. [Google Scholar] [CrossRef]
- Ellango, R.; Singh, S.T.; Rana, V.S.; Gayatri Priya, N.; Raina, H.; Chaubey, R.; Naveen, N.C.; Mahmood, R.; Ramamurthy, V.V.; Asokan, R.; Rajagopal, R. Distribution of Bemisia tabaci genetic groups in India. Environ. Entomol. 2015, 44, 1258–1264. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Jiang, Z.; Zhang, F.; Liu, Y.; Li, Z.; Zhang, Z. New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hempitera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondrial DNA A 2018, 29, 474–484. [Google Scholar] [CrossRef]
- Mugerwa, H.; Seal, S.; Wang, H.L.; Patel, M.V.; Kabaalu, R.; Omongo, C.A.; Alicai, T.; Tairo, F.; Ndunguru, J.; Sseruwagi, P.; Colvin, J. African ancestry of New World, Bemisia tabaci-whitefly species. Sci. Rep. 2018, 8, 2734. [Google Scholar] [CrossRef]
- Kanakala, S.; Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS One 2019, 14, e0213946. [Google Scholar] [CrossRef] [PubMed]
- Naga, K.C.; Siddappa, S.; Kumar, R.; Tiwari, R.K.; Subhash, S.; Verma, G.; Buckseth, T.; Bairwa, A.; Sharma, S.; Katare, S.; Srivastava, R.M.; Bansode, G.M.; Sarkar, A.; Patel, J.K. A new record of Asia II 5 genetic group of Bemisia tabaci (Gennadius) in the major potato growing areas of India and its relationship with tomato leaf curl New Delhi virus infecting potato. 3 Biotech 2021, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K. Phylogenetic Biology of the Bemisia tabaci Sibling Species Group. In Bemisia: Bionomics and Management of a Global Pest; Stansly, P.A., Naranjo, S.E., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 31–67. ISBN 978-90-481-2460-2. [Google Scholar]
- de Moya, R.S.; Brown, J.K.; Sweet, A.D.; Walden, K.K.; Paredes-Montero, J.R.; Waterhouse, R.M.; Johnson, K.P. Nuclear orthologs derived from whole genome sequencing indicate cryptic diversity in the Bemisia tabaci (Insecta: Aleyrodidae) complex of whiteflies. Diversity (Basel) 2019, 11, 151. [Google Scholar] [CrossRef]
- Byrne, D.N.; Bellows TSJr Parrella, M.P. Whiteflies in agricultural systems. In Whiteflies: their bionomics, pest status and management; Gerling, D., Ed.; Intercept: Andover, UK, 1990; pp. 227–261. [Google Scholar]
- Curnutte, L.B.; Simmons, A.M.; Abd-Rabou, S. Climate change and Bemisia tabaci (Hemiptera: Aleyrodidae): Impacts of temperature and carbon dioxide on life history. Ann. Entomol. Soc. Am. 2014, 107, 933–943. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Zhang, S.; Fan, Y.; Liu, T. Effect of elevated CO2 concentration and temperature on antioxidant capabilities of multiple generations of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae). J. Insect Physiol. 2017, 103, 91–97. [Google Scholar] [CrossRef]
- Fekrat, L.; Shishehbor, P. Some biological features of cotton whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) on various host plants. Pak. J. Biol. Sci. 2007, 10, 3180–3184. [Google Scholar]
- Sani, I.; Ismail, S.I.; Abdullah, S.; Jalinas, J.; Jamian, S.; Saad, N. A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 2020, 11, 619. [Google Scholar] [CrossRef]
- Kedar, S.C.; Saini, R.K.; Kumaranag, K.M. Biology of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) on cotton. J. Entomol. Res. 2014, 38, 135–139. [Google Scholar]
- Husain, M.A.; Trehan, K.N. Observations on the life-history, bionomics and control of the whitefly of cotton (Bemisia gossypiperda M. & L.). Indian J Agric Sci 1933, 3, 731–753. [Google Scholar]
- Khodke, S.M.; Dagaonkar, V.S. Study on biology and seasonal incidence of whitefly, Bemisia tabaci (Genn). J. Cotton. Res. Dev. 1992, 6, 166–172. [Google Scholar]
- Gangwar, R.K.; Gangwar, C. Lifecycle, distribution, nature of damage and economic importance of whitefly, Bemisia tabaci (Gennadius). Acta Sci. Agric. 2018, 2, 36–39. [Google Scholar]
- Solanki, R.D.; Jha, S. Population dynamics and biology of whitefly (Bemisia tabaci Gennadius) on sunflower (Helianthus annuus L. ). J. Pharmacogn. Phytochem. 2018, 7, 3055–3058. [Google Scholar]
- Ghelani, M.K.; Kabaria, B.B.; Ghelani, Y.H.; Shah, K.D.; Acharya, M.F. Biology of whitefly, Bemisia tabaci (Gennadius) on tomato. J. Entomol. Zool. Stud. 2020, 8, 1596–1599. [Google Scholar]
- Bhardwaj, S.C.; Kushwaha, K.S. Whitefly, Bemisia tabaci (Gennadius), infesting tomato in Rajasthan. Bull. Entomol. Res. 1984, 25, 76–97. [Google Scholar]
- Patel, H.M.; Jhala, R.C.; Pandya, H.V.; Patel, C.B. Biology of the whitefly (Bemisia tabaci) on okra (Hibiscus esculentus). Indian. J. Agric. Sci. 1992, 62, 497–499. [Google Scholar]
- Martin, J.H.; Mifsud, D.; Rapisarda, C. The whiteflies (Hemiptera: Aleyrodidae) of Europe and the Mediterranean basin. Bull. Entomol. Res. 2000, 90, 407–448. [Google Scholar] [CrossRef]
- Greathead, A.H. Host plants. In Bemisia tabaci- A literature survey on the cotton whitefly with an annotated bibliography; Cock, M.J.W., Ed.; CAB Intern, Inst Biol Control, 1986; Silwood Park, Ascot, England, pp. 17–25. [Google Scholar]
- Oliveira, M.R.; Henneberry, T.E.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot. 2001, 20, 709–723. [Google Scholar] [CrossRef]
- Maynard, D.N.; Cantliffe, D.J. Squash silverleaf and tomato irregular ripening: new vegetable disorders in Florida. Vegetable Crops Fact Sheet VC-37, Gainesville, FL University of Florida United States 1989.
- Hogenhout, S.A.; Ammar, E.D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef]
- Zeidan, M.; Czosnek, H. Acquisition of tomato yellow leaf curl virus by the whitefly Bemisia tabaci. J. Gen. Virol. 1991, 72, 2607–2614. [Google Scholar] [CrossRef]
- Mehta, P.; Wyman, J.A.; Nakhla, M.K.; Maxwell, D.P. Transmission of tomato yellow leaf curl Geminivirns by Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entomol. 1994, 87, 1291–1297. [Google Scholar] [CrossRef]
- Govindan, K.; Nagarajan, P.; Angappan, K. Molecular studies on transmission of mung bean yellow mosaic virus (MYMV) by Bemisia tabaci Genn. in mungbean. Afr. J. Agril Res. 2014, 9, 2874–2879. [Google Scholar]
- Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Al-Musa, A. Cucumber vein yellowing virus; host range and virus vector relationships. J. Phytopathol. 1993, 137, 73–78. [Google Scholar] [CrossRef]
- Jones, D.R. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 2003, 109, 195–219. [Google Scholar] [CrossRef]
- Wisler, G.C.; Li, R.H.; Liu, H.Y.; Lowry, D.S.; Duffus, J.E. Tomato chlorosis virus: a new whitefly-transmitted, phloem-limited, bipartite closterovirus of tomato. Phytopathology 1998, 88, 402–409. [Google Scholar] [CrossRef]
- Iwaki, M.; Thongmeearkom, P.; Prommin, M.; Honda, Y.; Hibi, T. Whitefly transmission and some properties of cowpea mild mottle virus on soybean in Thailand. Plant Dis. 1982, 66, 365–368. [Google Scholar] [CrossRef]
- Nagata, T.; Alves, D.M.; Inoue-Nagata, A.K.; Tian, T.Y.; Kitajima, E.W.; Cardoso, J.E.; De Ávila, A.C. A novel melon flexivirus transmitted by whitefly. Arch. Virol. 2005, 150, 379–387. [Google Scholar] [CrossRef]
- Akram, M.; Naimuddin, K.; Agnihotri, A.K.; Gupta, S.; Singh, N.P. Characterization of full genome of Dolichos yellow mosaic virus based on sequence comparison, genetic recombination and phylogenetic relationship. Ann. Appl. Biol. 2015, 167, 354–363. [Google Scholar] [CrossRef]
- Malathi, V.G.; John, P. Geminiviruses infecting legumes. In: Rao GP, Kumar PL, Holguin-Pena RJ, editors. Characterization, Diagnosis & Management of Plant Viruses, Volume 3: Vegetables and Pulse Crops, Stadium Press LLC, Texas, 2008. pp 97-123.
- Idris, A.M.; Bird, J.; Rogan, D.M.; Brown, J.K. Molecular characterization of Rhynchosia mosaic virus-Puerto Rico associated with symptomatic Rhynchosia minima and Cajanus cajan in Puerto Rico. Plant Dis. 2002, 86, 558. [Google Scholar] [CrossRef]
- Ilyas, M.; Qazi, J.; Mansoor, S.; Briddon, R.W. Molecular characterization and infectivity of a “Legumovirus” (genus Begomovirus: family Geminiviridae) infecting the leguminous weed Rhynchosia minima in Pakistan. Virus Res. 2009, 145, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W.; Bassett, M.J.; Abouzids, A.M.; Hiebert, E.; Polston, J.E.; McMillan RTJr Graves, W.; Lamberts, M. Occurrence of bean golden mosaic virus in Florida. Plant Dis 1995, 79, 529–533. [Google Scholar] [CrossRef]
- Garrido-Ramirez, E.R.; Sudarshana, M.R.; Gilbertson, R.L. Bean golden yellow mosaic virus from Chiapas, Mexico: characterization, pseudorecombination with other bean-infecting geminiviruses and germ plasm screening. Phytopathology 2000, 90, 1224–1232. [Google Scholar] [CrossRef]
- Diaz, M.; Maxwell, D.P.; Karkashian, J.P.; Ramírez, P. Calopogonium golden mosaic virus identified in Phaseolus vulgaris from western and northern regions of Costa Rica. Plant Dis. 2002, 86, 188. [Google Scholar] [CrossRef]
- Potter, J.L.; Roca de Doyle, M.M.; Nakhla, M.K.; Maxwell, D.P. First report and characterization of Rhynchosia golden mosaic virus in Honduras. Plant Dis 2000, 84, 1045. [Google Scholar] [CrossRef]
- Naimuddin, K.; Akram, M.; Agnihotri, A.K. Molecular Evidence for the Association of Tomato leaf curl Gujarat virus with a Leaf Curl Disease of Phaseolus vulgaris L. J Phytopathol 2015, 163, 58–62. [Google Scholar]
- Naimuddin, K.; Akram, M.; Agnihotri, A.K. Molecular characterization of a first begomovirus associated with lentil (Lens culinaris) from India. Acta Virol. 2016, 560, 217–223. [Google Scholar] [CrossRef]
- Varma, A.; Malathi, V.G. Emerging geminivirus problems: a serious threat to crop production. Ann. Appl. Biol. 2003, 142, 145–164. [Google Scholar] [CrossRef]
- Czosnek, H.; Laterrot, H. A worldwide survey of tomato yellow leaf curl viruses. Arch. Virol. 1997, 142, 1391–1406. [Google Scholar] [CrossRef]
- Marchant, W.G.; Gautam, S.; Hutton, S.F.; Srinivasan, R. Tomato yellow leaf curl virus-resistant and-susceptible tomato genotypes similarly impact the virus population genetics. Front. Plant Sci. 2020, 11, 599697. [Google Scholar] [CrossRef]
- Pakkianathan, B.C.; Kontsedalov, S.; Lebedev, G.; Mahadav, A.; Zeidan, M.; Czosnek, H.; Ghanim, M. Replication of Tomato yellow leaf curl virus in its whitefly vector, Bemisia tabaci. J. Virol. 2015, 89, 9791–9803. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Campos, S.; Rodríguez-Negrete, E.A.; Cruzado, L.; Grande-Pérez, A.; Bejarano, E.R.; Navas-Castillo, J.; Moriones, E. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Mou, D.F.; Hsieh, C.K.; Weng, S.H.; Tsai, W.S.; Tsai, C.W. Vector Transmission of Tomato Yellow Leaf Curl Thailand Virus by the Whitefly Bemisia tabaci: Circulative or Propagative? Insects 2021, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Z.; Wang, Y.M.; Yin, T.Y.; Fiallo-Olivé, E.; Liu, Y.Q.; Hanley-Bowdoin, L.; Wang, X.W. A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proc. Natl. Acad. Sci. USA 2020, 117, 16928–16937. [Google Scholar] [CrossRef]
- Becker, N.; Rimbaud, L.; Chiroleu, F.; Reynaud, B.; Thébaud, G.; Lett, J.M. Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, X.; Dai, H.; Zhang, X.; Zhang, D.; Zhu, X. Changes in Gene Expression of Whiteflies, Bemisia tabaci MED Feeding on Tomato Plants Infected by One of the Criniviruses, Tomato Chlorosis Virus through Transcriptome Analysis. Int J Genomics 2023. [CrossRef]
- Thresh, J.M.; Cooter, R.J. Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol. 2005, 54, 587–614. [Google Scholar] [CrossRef]
- Legg, J.P. African cassava mosaic disease. In: Mahy BWJ, Van Regenmortel MHV, editors. Encyclopaedia of Virology, Elsevier, Oxford, UK, 2008.
- Leiva, A.M.; Chittarath, K.; Lopez-Alvarez, D.; Vongphachanh, P.; Gomez, M.I.; Sengsay, S.; Wang, X.W.; Rodriguez, R.; Newby, J.; Cuellar, W.J. Mitochondrial genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) associated with cassava in Lao PDR. Insects 2022, 13, 861. [Google Scholar] [CrossRef]
- Varma, A.; Dhar, A.K.; Mandal, B. MYMV transmission and control in India; International Workshop on Mungbean Yellow Mosaic Disease: Bangkok, Thailand, 1992; pp. 8–27. [Google Scholar]
- Padilha, G.; Pozebon, H.; Patias, L.S.; Ferreira, D.R.; Castilhos, L.B.; Forgiarini, S.E.; Donatti, A.; Bevilaqua, J.G.; Marques, R.P.; Moro, D.; Rohrig, A. Damage assessment of Bemisia tabaci and economic injury level on soybean. Crop Prot. 2021, 143, 105542. [Google Scholar] [CrossRef]
- Rao, N.V.; Reddy, A.S.; Ankaiah, R.; Mukundan, S. Effects of whitefly, Bemisia tabaci Genn. on cotton yield and associated components. Int. J. Trop. Insect Sci. 1989, 10, 685–690. [Google Scholar]
- Fiallo-Olivé, E.; Pan, L.L.; Liu, S.S.; Navas-Castillo, J. Transmission of Begomoviruses and other whitefly-borne viruses: Dependence on the vector species. Phytopathology 2020, 110, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Mugerwa, H.; Buck, J.W.; Dutta, B.; Coolong, T.; Adkins, S.; Srinivasan, R. Differential transmission of old and new world begomoviruses by middle East-Asia minor 1 (MEAM1) and Mediterranean (MED) cryptic species of Bemisia tabaci. Viruses 2022, 14, 1104. [Google Scholar] [CrossRef]
- Sánchez-Campos, S.; Navas-Castillo, J.; Camero, R.; Soria, C.; Diaz, J.A.; Moriones, E. Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 1999, 89, 1038–43. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, J.J.; Zhang, T.; Li, F.F.; Ghanim, M.; Zhou, X.P.; Ye, G.Y.; Liu, S.S.; Wang, X.W. Specific cells in the primary salivary glands of the whitefly Bemisia tabaci control retention and transmission of Begomoviruses. J. Virol. 2014, 88, 13460–13468. [Google Scholar] [CrossRef] [PubMed]
- Baumann, L.; Thao, M.L.; Funk, C.J.; Falk, B.W.; Ng, J.C.; Baumann, P. Sequence analysis of DNA fragments from the genome of the primary endosymbiont of the whitefly Bemisia tabaci. Curr. Microbiol. 2004, 48, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Marchi, R.D.B.; Smith, H.A. Bacterial endosymbiont diversity among Bemisia tabaci (Hemiptera: Aleyrodidae) populations in Florida. Insects 2020, 11, 179. [Google Scholar] [CrossRef]
- Andreason, S.A.; Shelby, E.A.; Moss, J.B.; Moore, P.J.; Moore, A.J.; Simmons, A.M. Whitefly endosymbionts: Biology, evolution, and plant virus interactions. Insects 2020, 11, 775. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, Y.; Zchori-Fein, E.; Mozes-Daube, N.; Kontsedalov, S.; Skaljac, M.; Brumin, M.; Sobol, I.; Czosnek, H.; Vavre, F.; Fleury, F.; Ghanim, M. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol. 2010, 84, 9310–9317. [Google Scholar] [CrossRef]
- Rana, V.S.; Singh, S.T.; Priya, N.G.; Kumar, J.; Rajagopal, R. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS ONE 2012, 7, e42168. [Google Scholar] [CrossRef]
- Chiel, E.; Gottlieb, Y.; Zchori-Fein, E.; Mozes-Daube, N.; Katzir, N.; Inbar, M.; Ghanim, M. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull. Entomol. Res. 2007, 97, 407–413. [Google Scholar] [CrossRef]
- Subramanian, S.; Sagar, D.; Rajna, S. Genotyping of whitefly species complex and its associated Endosymbionts- A workshop Manual, ICAR-Indian Agricultural Research Institute, New Delhi 2019.
- Horowitz, A.R.; Antignus, Y.; Gerling, D. Management of Bemisia tabaci Whiteflies. In: Thompson W, editors. The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants. Springer, Dordrecht, 2011. pp 293-322.
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest. Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Palumbo, J.C.; Horowitz, A.R.; Prabhaker, N. Insecticidal control and resistance management for Bemisia tabaci. Crop Prot. 2001, 20, 739–765. [Google Scholar] [CrossRef]
- Hilje, L.; Costa, H.S.; Stansly, P.A. Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot. 2001, 20, 801–812. [Google Scholar] [CrossRef]
- Chandra, A.; Sujayanand, G.K.; Kumar, R. Influence of Sowing Dates and Host Crops on Population Incidence of Whitefly, Bemisia tabaci (Gennadius) in Greengram and Blackgram. Natl. Acad. Sci. Lett. 2021, 44, 389–391. [Google Scholar] [CrossRef]
- Faria, M.; Wraight, S.P. Biological control of Bemisia tabaci with fungi. Crop Prot. 2001, 20, 767–778. [Google Scholar] [CrossRef]
- Sumalatha, B.V.; Selvaraj, K.; Poornesha, B.; Ramanujam, B. Pathogenicity of entomopathogenic fungus Isaria fumosorosea on rugose spiralling whitefly Aleurodicus rugioperculatus and its effect on parasitoid Encarsia guadeloupae. Biocontrol Sci. Technol. 2020, 30, 1150–1161. [Google Scholar] [CrossRef]
- Ghongade, D.S.; Sangha, K.S. Efficacy of biopesticides against the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on parthenocarpic cucumber grown under protected environment in India. Egypt. J. Biol. Pest. Control 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Gerling, D.; Alomar, Ò.; Arnò, J. Biological control of Bemisia tabaci using predators and parasitoids. J. Crop Prot. 2001, 20, 779–799. [Google Scholar] [CrossRef]
- Zeilstra-Ryalls, J.; Fayet, O.; Georgopoulos, C. The universally conserved GroE (Hsp60) chaperonins. Annu. Rev. Microbiol. 1991, 45, 301–325. [Google Scholar] [CrossRef]
- Morin, S.; Ghanim, M.; Sobol, I.; Czosnek, H. The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and non-transmissible begomoviruses in the yeast two-hybrid system. Virology 2000, 276, 404–416. [Google Scholar] [CrossRef]
- Edelbaum, D.; Gorovits, R.; Sasaki, S.; Ikegami, M.; Czosnek, H. Expressing a whitefly GroEL protein in Nicotiana benthamiana plants confers tolerance to tomato yellow leaf curl virus and cucumber mosaic virus, but not to grapevine virus A or tobacco mosaic virus. Arch. Virol. 2009, 154, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Kanakala, S.; Ghanim, M. Implication of the whitefly Bemisia tabaci Cyclophilin B protein in the transmission of Tomato yellow leaf curl virus. Front. Plant Sci. 2016, 7, 1702. [Google Scholar] [CrossRef] [PubMed]
- Kanakala, S.; Kontsedalov, S.; Lebedev, G.; Ghanim, M. Plant-mediated silencing of the whitefly Bemisia tabaci cyclophilin B and heat shock protein 70 impairs insect development and virus transmission. Front. Physiol. 2019, 10, 557. [Google Scholar] [CrossRef]
- Brown, J.K.; Perring, T.M.; Cooper, A.D.; Bedford, I.D.; Markham, P.G. Genetic analysis of Bemisia (Hemiptera: Aleyrodidae) populations by isoelectric focusing electrophoresis. Biochem. Genet. 2000, 38, 13–25. [Google Scholar] [CrossRef]
- Bethke, J.A.; Byrne, F.J.; Hodges, G.S.; McKenzie, C.L.; Shatters Jr, R.G. First record of the Q biotype of the sweetpotato whitefly, Bemisia tabaci, in Guatemala. Phytoparasitica 2009, 37, 61–64. [Google Scholar] [CrossRef]
- McKenzie, C.L.; Bethke, J.A.; Byrne, F.J.; Chamberlin, J.R.; Dennehy, T.J.; Dickey, A.M.; Gilrein, D.; Hall, P.M.; Ludwig, S.; Oetting, R.D.; Osborne, L.S. Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J. Econ. Entomol. 2012, 105, 753–766. [Google Scholar] [CrossRef]
- Mugerwa, H.; Rey, M.E.; Alicai, T.; Ateka, E.; Atuncha, H.; Ndunguru, J.; Sseruwagi, P. Genetic diversity and geographic distribution of Bemisia tabaci (Gennadius) (Hemiptera: A leyrodidae) genotypes associated with cassava in East Africa. Ecol. Evol. 2012, 2, 2749–2762. [Google Scholar] [CrossRef]
- Islam, W.; Lin, W.; Qasim, M.; Islam, S.U.; Ali, H.; Adnan, M.; Arif, M.; Du, Z.; Wu, Z. A nation-wide genetic survey revealed a complex population structure of Bemisia tabaci in Pakistan. Acta Trop. 2018, 183, 119–125. [Google Scholar] [CrossRef]
- Misaka, B.C.; Wosula, E.N.; Marchelo-d’Ragga, P.W.; Hvoslef-Eide, T.; Legg, J.P. Genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) colonizing sweet potato and cassava in South Sudan. Insects 2020, 11, 58. [Google Scholar] [CrossRef]
- Paredes-Montero, J.R.; Ibarra, M.A.; Arias-Zambrano, M.; Peralta, E.L.; Brown, J.K. Phylo-biogeographical distribution of whitefly Bemisia tabaci (Insecta: Aleyrodidae) mitotypes in Ecuador. Ecosphere 2020, 11, e03154. [Google Scholar] [CrossRef]
- Mugerwa, H.; Wang, H.L.; Sseruwagi, P.; Seal, S.; Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in Sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. 2020, 28, 1553–1566. [Google Scholar] [CrossRef] [PubMed]
- Mugerwa, H.; Colvin, J.; Alicai, T.; Omongo, C.A.; Kabaalu, R.; Visendi, P.; Sseruwagi, P.; Seal, S.E. Genetic diversity of whitefly (Bemisia spp.) on crop and uncultivated plants in Uganda: Implications for the control of this devastating pest species complex in Africa. J. Pest. Sci. 2021, 94, 1307–1330. [Google Scholar] [CrossRef]
| S. No. | Location of sample collection | Name of the biotypes/genetic groups reported | References | Remarks |
|---|---|---|---|---|
| 1. | Arizona and Floida | (1) A biotype and (2) B biotype | [17] | Population distinguished in to A and B biotypes based on esterase banding pattern |
| 2. | World-wide | (1) Benin (2) India (3) Sudan (4) Israel-Yemen, (5) New world type | [24] | 1. First molecular evidence that B-biotype was introduced from Old world to New world 2. Provided MtCO1 sequences as a baseline set to which other sequences could be compared |
| 3. | World-wide | (1) Type A from California (US) and a population from Culiacan, Mexico (2) B. tabaci (type B) and B. argentifolii (3) A single population from Benin, Africa. | [123] | |
| 4. | India, Pakistan, Turkey, Arizona, Nigeria, Spain | (1) Near East and Indian subcontinent biotypes (2) B and Q biotypes including a Nigerian population from cowpea (3) New World A biotype and (4) S biotype and a Nigerian population from cassava | [25] | Used Amplified Fragment Length Polymorphism (AFLP) markers for assessing genetic variations |
| 5. | World-wide | (1) Mediterranean/Asia Minor/Africa invasive (B, B2 biotypes) (2) Mediterranean (MED) invasive (Q, J, L biotypes) (3) Indian Ocean (MS biotype) (4) Sub-Saharan Africa silverleafing (Q-related biotypes) (5) Asia I (M biotype), (6) Australia (AN biotype), (7) China (Non-B biotype), (8) Asia II (H, K, P biotypes), (9) Italy (T biotype), (10) New world (A, C, D, G, N, R biotypes), (11) Sub-Saharan Africa non-silverleafing (E, S biotypes), (12) Uganda Sweetpotato | [26] | Phylogenetic analysis was done first time through Bayesian technique using large scale world-wide sampling |
| 6. | Japan | (1) JpL, (2) Asia I, (3) Asia II (4) China, (5) MED/Asia Minor/Africa | [27] | JpL genetic group was reported distinct from rest of the groups |
| 7. | Guatemala | (1) New World, (2) B-biotype, (3) Q-biotype | [124] | First report of Q-biotype in Guatemala |
| 8. | World-wide | (1) Asia I (H, M, NA biotypes), (2) Australia/Indonesia, (3) Australia (AN biotype), (4) China 1 (ZHJ3 biotype), (5) China 2, (6) Asia II 1 (K, P, ZHJ2 biotypes), (7) Asia II 3, (8) Asia II 4, (9) Asia II 2 (ZHJ1 biotype), (10) Asia II 5 (G biotype), (11) Asia II 6, (12) Asia II 7 (Cv bioytpe), (13) Asia II 8, (14) Italy (T biotype), (15) Sub-Saharan Africa 1 (SabSahAf1), (16) SubSahAf2 (S biotype), (17) SubSahAf3, (18) SubSahAf4, (19) Uganda, (20) New world (A, C, D, F, Jat, N, R, Sida biotypes), (21) Mediterranean (MED) (Q, J, L, SubSaharan Africa Silverleaf biotypes), (22) Middle East-Asia Minor (MEAM) 1 (B, B2 biotypes), (23) MEAM 2, (24) Indian Ocean (IO) (MS biotype) | [28] | 1. Defined B. tabaci as a species complex of 11 groups containing 24 distinct genetic species 2. Generated new consensus sequences which was followed for new species identification |
| 9. | China | (1) Asia I, (2) Asia II 1, (3) Asia II 2, (4) Asia II 3, (5) Asia II 4, (6) Asia II 6, (7) Asia II 7, (8) Asia II 9, (9) Asia II 10, (10) Asia III, (11) China 1, (12) China 2, (13) China 3, (14) MEAM 1, (15) MED | [30] | Four genetic groups viz., Asia II 9, Asia II 10, China 3, and Asia III were reported for the first time |
| 10. | Argentina | Two distinct genetic species | [31] | One indigenous group from Argentina found as a separate species (New World 2) |
| 11. | India, Indonesia, Thailand and China | (1) Asia I, (2) Asia IV, (3) Asia III, (4) Australia, (5) Australia/Indonesia, (6) China 1, (7) China 2, (8) China 3, (9) Japan 1, (10) Asia II 1, (11) Asia II 7, (12) Asia II 5, (13) Asia II 6, (14) Asia II 2, (15) Asia II 3, (16) Asia II 4, (17) Asia II 9, (18) Asia II 10, (19) Asia II 12, (20) Asia II 8, (21) Asia II 11, (22) Africa, (23) Italy, (24) MEAM 1, (25) MEAM 2, (26) MED, (27) IO, (28) New world, (29) New world 2, (30) SubSahAf1, (31) SubSahAf5, (32) SubSahAf2, (33) SubSahAf3, (34) SubSahAf4, (35) Japan 2, (36) Uganda | [33] | Seven new genetic groups viz., Asia IV, Japan 1, Asia II 12, Asia II 11, Africa, SubSahAf5 and Japan 2 were added to the list |
| 12. | India | (1) Asia I, (2) Asia II 5, (3) Asia II 7, (4) Asia II 8, (5) MEAM 1, (6) Asia 1-India | [32] | Asia I-India was reported for the first time |
| 13. | Italy | (1) Q-biotype, (2) B-biotype, (3) Ru biotype | [34] | Ru genetic group was reported for the first time |
| 14. | North America, Bermuda, Canada, Mexico | (1) New world, (2) B-biotypes, and (3) Q biotypes | [125] | Q-biotype detected for the first time in Canada and Bermuda |
| 15. | East Africa (Kenya, Tanzania, and Uganda) | (1) Sub-Saharan Africa 1 (SSA1), comprising of two sub-clades (I and II), and a (2) South West Indian Ocean Islands (SWIO) |
[126] |
SSA1 sub-clade I found widely distributed in East Africa |
| 16. | World-wide | (1) MED, (2) MEAM 1, (3) MEAM 2, (4) IO, (5) New World, (6) New World 2, (7) Asia II 5, (8) Asia I-India (9) Asia II 6, (10) Asia II 1, (11) Asia II 2, (12) Asia II 7, (13) Asia II 3, (14) Asia II 4, (15) Asia II 9, (16) Asia II 10, (17) Asia II 8, (18) Asia I, (19) Asia III, (20) Australia/Indonesia, (21) Australia, (22) China 1, (23) China 2, (24) China 3, (25) Italy, (26) Sub Saharan Africa 1 (SSA1), (27) SSA2, (28) SSA3, (29) SSA4, (30) Uganda, (31) JpL | [35] | Proposed minimum genetic divergence should be 4% to demarcate genetic groups |
| 17. | Yunnan, China | (1) MEAM1, (2) MED (3) China 2, (4) China 3, (5) China 4, (6) Asia I, (7) Asia II 1, (8) Asia II 6 | [30] | China 4 genetic group was reported for the first time |
| 18. | Karnataka, India | (1) Asia-I, (2) Asia-II-7, (3) Asia-II-8, (4) MEAM-1, (5) MEAM-K | [37] | MEAM-K was reported for the first time |
| 19. | India | (1) Asia I, (2) Asia I India, (3) Asia II 1, (4) Asia II 5, (5) Asia II 7, (6) Asia II 8, (7) Asia II 11, (8) China 3, (9) MEAM 1 | [38] | China 3 recorded for first time in India |
| 20. | South West China | (1) Asia II 1-12, (13) China 1-5, (18) Asia III, (19) Asia IV, (20) Asia V, (21) Asia I | [39] | China 5 and Asia V; two new genetic groups were reported for the first time |
| 21. | Pakistan | (1) Asia II-1, (2) Asia II-5, (3) Asia II-7, (4) Asia II-8, and (5) MEAM-1 | [127] | Asia II 1 found prevalent all over the country |
| 22. | Uganda | (1) SSA1, (2) SSA2, (3) SSA6 (4) SSA9, (5) SSA10, (6) SSA11, (7) SSA12, (8) SSA13, (9) MEAM 1, (10) MEAM 2, (11) MED, (12) IO | [40] | SSA 9-13 were discovered in this study |
| 23. | Israel | (1) MED, (2) MEAM 1 | [41] | 1. A total of 44 distinct genetic group was reported in the study based on 2903 sequences selected world-wide, out of which two genetic groups, Asia II 13 and Spain 1 were discovered for the first time |
| 24. | Samples represented major geographical regions | (1) SSA (Uganda, Tanzania, and Democratic Republic of The Congo), (2) NAF–MED–ME (“B” reference genome and Sudan), (3) ASIA (India), (4) AS–PAC–AU (China), and (5) AM-TROP (Arizona, Puerto Rico, Ecuador) (Grouping done into major clades [(Brown, 2010)] rather than numerous genetic species) |
[44] | This grouping was done through Automatic Barcode Gap Discovery (ABGD) analyses based on Nuclear Orthologs and CO1 data |
| 25. | South Sudan | (1) MED, (2) IO, (3) Uganda, (4) Sub-Saharan Africa 1 sub-group 1 (SSA1-SG1), (5) SSA1-SG3, and (6) SSA2 | [128] | |
| 26. | Ecuador | (1) AM-TROP, (2) NAF-MED-ME |
[129] | Grouping done in to major clades [(Brown, 2010; de Moya et al, 2019)] |
| 27. | Uganda and Tanzania | (1) SSA1 (SSA1-SG1, SSA1-SG2, SSA1-SG3), and (2) SSA2 | [130] | |
| 28. | Uganda | (1) SSA1, (2) SSA2, (3) SSA6, (4) SSA9, (5) SSA10, (6) SSA11, (7) SSA12, (8) SSA13, (9) SSA14, (10) SSA15, (11) SSA16, (12) MED, (13) MEAM 1, (14) MEAM 2, (15) IO, (16) EA1 | [131] | SSA14, SSA 15 and SSA 16 were discovered in this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
