Submitted:
20 March 2025
Posted:
20 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Characteristics
3.2. Bivariate Analysis
3.3. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IARC | International Agency for Research on Center |
| IFLS | Indonesia Family Life Survey |
| BSE | Breast-Self Examination |
| LMIC | Low- and Middle-Income Countries |
| aOR | Adjusted Odds Ratio |
| CI | Confidence Interval |
References
- Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians [Internet]. 2024 May [cited 2024 Dec 14];74(3):229–63. [CrossRef]
- de Souza JA, Hunt B, Asirwa FC, Adebamowo C, Lopes G. Global Health Equity: Cancer Care Outcome Disparities in High-, Middle-, and Low-Income Countries. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(1):6–13.
- Lim YX, Lim ZL, Ho PJ, Li J. Breast Cancer in Asia: Incidence, Mortality, Early Detection, Mammography Programs, and Risk-Based Screening Initiatives. Cancers [Internet]. 2022 Aug 30 [cited 2024 Dec 24];14(17):4218. Available from: https://www.mdpi.com/2072-6694/14/17/4218.
- Fu M, Peng Z, Wu M, Lv D, Li Y, Lyu S. Current and future burden of breast cancer in Asia: A GLOBOCAN data analysis for 2022 and 2050. The Breast [Internet]. 2025 Feb [cited 2025 Mar 13];79:103835. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960977624001668. [CrossRef]
- The Global Cancer Observatory. The Global Cancer Observatory - Indonesia [Internet]. 2022. Available from: https://gco.iarc.who.int/media/globocan/factsheets/populations/360-indonesia-fact-sheet.pdf.
- Camacho R, Sepúlveda C, Neves D, Piñeros M, Villanueva M, Dangou JM, Fadhil I, Galea G, Garg R, Luciani S. Cancer control capacity in 50 low- and middle-income countries. Global Public Health [Internet]. 2015 Oct 21 [cited 2024 Aug 9];10(9):1017–31. [CrossRef]
- Diaz A, Kang J, Moore SP, Baade P, Langbecker D, Condon JR, Valery PC. Association between comorbidity and participation in breast and cervical cancer screening: A systematic review and meta-analysis. Cancer Epidemiology [Internet]. 2017 Apr [cited 2025 Mar 19];47:7–19. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877782116302533. [CrossRef]
- Orwat J, Caputo N, Key W, De Sa J. Comparing Rural and Urban Cervical and Breast Cancer Screening Rates in a Privately Insured Population. Social Work in Public Health [Internet]. 2017 Jul 4 [cited 2024 Dec 9];32(5):311–23. [CrossRef]
- Simo RT, Baiguerel EM, Nwabo Kamdje AH, Seke Etet PF, Ahmadou M, Nangue C, Telefo PB. Awareness of Breast Cancer Screening among the Medical and General Population of the North Region of Cameroon. Sahgal P, editor. International Journal of Breast Cancer [Internet]. 2021 Jul 27 [cited 2024 Jul 29];2021:1–7. Available from: https://www.hindawi.com/journals/ijbc/2021/6663195/. [CrossRef]
- Wahidin M, Febrianti R, Susanty F, Hasanah S. Twelve Years Implementation of Cervical and Breast Cancer Screening Program in Indonesia. Asian Pac J Cancer Prev [Internet]. 2022 Mar 1 [cited 2024 Jul 29];23(3):829–37. Available from: http://journal.waocp.org/article_90018.html. [CrossRef]
- Fei X, Wu J, Kong Z, Christakos G. Urban-Rural Disparity of Breast Cancer and Socioeconomic Risk Factors in China. Coleman WB, editor. PLoS ONE [Internet]. 2015 Feb 17 [cited 2024 Dec 9];10(2):e0117572. [CrossRef]
- Nelson HD, Darney BG, Ahrens K, Burgess A, Jungbauer RM, Cantor A, Atchison C, Eden KB, Goueth R, Fu R. Associations of Unintended Pregnancy With Maternal and Infant Health Outcomes: A Systematic Review and Meta-analysis. JAMA [Internet]. 2022 Nov 1 [cited 2022 Dec 9];328(17):1714. Available from: https://jamanetwork.com/journals/jama/fullarticle/2797874. [CrossRef]
- N. Hamajima, K. Hirose, K. Tajima, T. Rohan, C. M. Friedenreich, E. E. Calle, S. M. Gapstur, S. M. Gapstur, S. M. Gapstur, J. M. Liff, R. Talamini, N. Chantarakul, S. Koetsawang, D. Rachawat, Y. Marcou, E. Kakouri, S. W. Duffy, A. Morabia, L. Schuman, W. Stewart, M. Szklo, P. F. Coogan. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. The Lancet Oncology [Internet]. 2012 Nov [cited 2024 Aug 9];13(11):1141–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204512704254.
- Shete S, Deng Y, Shannon J, Faseru B, Middleton D, Iachan R, Bernardo B, Balkrishnan R, Kim SJ, Huang B, Millar MM, Fuemmler B, Jensen JD, Mendoza JA, Hu J, Lazovich D, Robertson L, Demark-Wahnefried W, Paskett ED, Rural Workgroup of the Population Health Assessment in Cancer Center Catchment Areas Initiative, Foulds A, Mrkva A, Bear T, Yuan JM, Ferketich A, Fisher J, Huerta T, McAlearney A, Gray D, Washington C, Fickle D, Aker H, Dickinson S, Lyu C, Kianersi S, Anderson H, Smith K, Ma D, Lillie H, Upshaw S, Dahman B, Wheeler D, Gal T, Ksinan A, Morris B, Miller C, Do E, Fugate-Laus K, Fallavollita W, Ginder G, Winn R, Loughran T, Fouad M, Bae S, Scarinci I, Baskin M, Daniel C, Hardy C, Farris P, Mori M, Zhang Z, McCrea-Robertson S, Greiner A, Doody D, Jensen R, Ellerbeck E, Chen R, Krebill H, Kurz D, Voges N, Batten G, Anderson R, Hauser L, Guterbock T, Desai R, Haaland B. Differences in Breast and Colorectal Cancer Screening Adherence Among Women Residing in Urban and Rural Communities in the United States. JAMA Netw Open [Internet]. 2021 Oct 4 [cited 2024 Dec 9];4(10):e2128000. Available from: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2784628. [CrossRef]
- Gabrielle LeBlanc, Inkoo Lee, Henry Carretta, Yi Luo, Debajyoti Sinha, George Rust1. Rural-Urban Differences in Breast Cancer Stage at Diagnosis. Women’s Health Report. 2022;3(1):207–14. [CrossRef]
- Theodoropoulos, Xie, Wang, Wen, Li. Rural-urban differences in breast and colorectal cancer screening among US women, 2014-2019. RRH [Internet]. 2022 Sep 11 [cited 2024 Dec 9]; Available from: https://www.rrh.org.au/journal/article/7339.
- Frankenberg E, Hamilton P, Polich S, Suriastini W, Thomas D. User’s Guide for the Indonesia Family Life Survey, Wave 2: Volume 2 [Internet]. RAND; 2000. Available from: https://sites.rand.org/labor/family/software_and_data/FLS/IFLS/IFLS2/doc/volume2.zip.
- Ministry of Health. Basic Health Research 2018 (Riskesdas 2018) [Internet]. 2019. Available from: https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/.
- Ministry of Health. Pedoman Nasional Pelayanan Kedokteran Tata Laksana Kanker Payudara [Internet]. 2018. Available from: https://www.kemkes.go.id/id/pnpk-2018---tata-laksana-kanker-payudara.
- Osei-Afriyie S, Addae AK, Oppong S, Amu H, Ampofo E, Osei E. Breast cancer awareness, risk factors and screening practices among future health professionals in Ghana: A cross-sectional study. Laganà AS, editor. PLoS ONE [Internet]. 2021 Jun 24 [cited 2024 Jul 29];16(6):e0253373. [CrossRef]
- Pouryousef S, Pirzadeh Z, Keshavarzi S, Kargar Jahromi M, Rousta A. Breast Cancer Knowledge, Attitude, and Preventive Behaviors and Associated Factors in Women Visiting the Oncology Research and Treatment Center in Southern Fars (City of Gerash). Indian J Gynecol Oncolog [Internet]. 2024 Sep [cited 2024 Aug 13];22(3):98. [CrossRef]
- Løberg M, Lousdal ML, Bretthauer M, Kalager M. Benefits and harms of mammography screening. Breast Cancer Res [Internet]. 2015 Dec [cited 2024 Aug 16];17(1):63. [CrossRef]
- Canelo-Aybar C, Ferreira DS, Ballesteros M, Posso M, Montero N, Solà I, Saz-Parkinson Z, Lerda D, Rossi PG, Duffy SW, Follmann M, Gräwingholt A, Alonso-Coello P. Benefits and harms of breast cancer mammography screening for women at average risk of breast cancer: A systematic review for the European Commission Initiative on Breast Cancer. J Med Screen [Internet]. 2021 Dec [cited 2024 Aug 12];28(4):389–404. [CrossRef]
- Dietze E, Jones V, Seewaldt V. Breast Self-Examination: the Case for a Second Look. Curr Breast Cancer Rep [Internet]. 2020 Jun [cited 2024 Aug 16];12(2):118–24. [CrossRef]
- Coleman C. Early Detection and Screening for Breast Cancer. Seminars in Oncology Nursing [Internet]. 2017 May [cited 2024 Jul 29];33(2):141–55. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749208117300190.
- Icanervilia A, Choridah L, Van Asselt A, Vervoort J, Postma M, Rengganis A, Kardinah K. Early Detection of Breast Cancer in Indonesia: Barriers Identified in a Qualitative Study. Asian Pac J Cancer Prev [Internet]. 2023 Aug 1 [cited 2024 Jul 29];24(8):2749–55. Available from: https://journal.waocp.org/article_90754.html. [CrossRef]
- Majidi A, Majidi S, Salimzadeh S, Khazaee-Pool M, Sadjadi A, Salimzadeh H, Delavari A. Cancer Screening Awareness and Practice in a Middle Income Country; A Systematic Review from Iran. Asian Pac J Cancer Prev [Internet]. 2017 Dec [cited 2024 Jul 29];18(12). [CrossRef]
- Hassan LM, Mahmoud N, Miller AB, Iraj H, Mohsen M, Majid J, Reza SM, Mojgan M. Evaluation of effect of self-examination and physical examination on breast cancer. The Breast [Internet]. 2015 Aug [cited 2024 Aug 13];24(4):487–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960977615001058. [CrossRef]
- Choridah L, Icanervilia AV, De Wit MJM, Van Asselt ADI, Kurniawan WT, Fahmi YI, Rengganis AA. Knowledge and Acceptance Towards Mammography as Breast Cancer Screening Tool Among Yogyakarta Women and Health Care Providers (Mammography Screening in Indonesia). J Canc Educ [Internet]. 2021 Jun [cited 2024 Aug 16];36(3):532–7. [CrossRef]
- Tran L, Tran P. US urban–rural disparities in breast cancer-screening practices at the national, regional, and state level, 2012–2016. Cancer Causes Control [Internet]. 2019 Oct [cited 2024 Dec 9];30(10):1045–55. [CrossRef]
- Ida Bagus Gede Putra Pratama. Diagnostic Reference Level (DRL) dan Status Terkini di Indonesia [Internet]. Nuclear Energy Regulatory Agency; 2020. Available from: https://bapeten.go.id/upload/14/192c8353e1-drl-dan-status-terkini-di-indonesia.pdf.
- Wibowo HR, Ratnaningsih M, Goodwin NJ, Ulum DF, Minnick E. One household, two worlds: Differences of perception towards child marriage among adolescent children and adults in Indonesia. The Lancet Regional Health - Western Pacific [Internet]. 2021 Mar [cited 2024 Dec 25];8:100103. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666606521000122. [CrossRef]
- Lai T, Huang Y, Xiong J. Changes in behavior patterns or demographic structure? Re-estimating the impact of higher education on the average age of the first marriage. Front Psychol [Internet]. 2023 Jan 27 [cited 2024 Dec 22];14:1085293. [CrossRef]
- Jahani MA, Ghasemi B, Soltani SA, Naderi M, Nikbakht HA, Hashemi SN, Yazdani Charati J, Mahmoudi G. The relationship between demographic factors and known risk factors with breast cancer in women aged 30-69. Annals of Medicine & Surgery [Internet]. 2024 May 3 [cited 2024 Dec 22]. [CrossRef]
- Anastasi N, Lusher J. The impact of breast cancer awareness interventions on breast screening uptake among women in the United Kingdom: A systematic review. J Health Psychol [Internet]. 2019 Jan [cited 2024 Jul 29];24(1):113–24. [CrossRef]
- The Lancet Oncology. Awareness campaigns and cancer screening. The Lancet Oncology [Internet]. 2022 Jul [cited 2024 Jul 29];23(7):829. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204522003400.
- Brewer HR, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. Family history and risk of breast cancer: an analysis accounting for family structure. Breast Cancer Res Treat [Internet]. 2017 Aug [cited 2024 Aug 12];165(1):193–200. [CrossRef]
- Ellberg C, Olsson H. Breast cancer patients with lobular cancer more commonly have a father than a mother diagnosed with cancer. BMC Cancer [Internet]. 2011 Dec [cited 2024 Aug 13];11(1):497. [CrossRef]
- Cronin KA, Miglioretti DL, Krapcho M, Yu B, Geller BM, Carney PA, Onega T, Feuer EJ, Breen N, Ballard-Barbash R. Bias Associated With Self-Report of Prior Screening Mammography. Cancer Epidemiology, Biomarkers & Prevention [Internet]. 2009 Jun 1 [cited 2024 Dec 14];18(6):1699–705. Available from: https://aacrjournals.org/cebp/article/18/6/1699/66967/Bias-Associated-With-Self-Report-of-Prior.

| Variables |
Urban (n=6926) | Rural (n=4983) |
|---|---|---|
| Mean+SD (min-max) | Mean+SD (min-max) | |
| Age (2007; years) | 35.86+14.11 (15-94) | 36.92+15.13 (15-88) |
| Age at menarche (years) | 13.88+1.61 (12-41) | 14.05+1.77 (12-64) |
| Age at marriage (years) | 22.08+5.45 (15-70) | 20.97+5.46 (15-55) |
| Menopausal age (years) | 47.17+4.47 (25-58) | 46.45+4.81 (27-57) |
| Risk factors | Urban (n=6926) | Rural (n=4983) | ||||||
|---|---|---|---|---|---|---|---|---|
| Case | Control | Case | Control | |||||
| n (%) | n (%) | p-value | OR (95%CI) | n (%) | n (%) | p-value | OR (95%CI) | |
| Breast self-examination | ||||||||
| Ever | 19 (48.7) | 1375 (20.9) | 0.000* | 3.6 (1.916;6.763) | 7 (50.0) | 429 (9.2) | 0.000* | 9.923 (3.464;28.423) |
| Never | 20 (51.3) | 5210 (79.1) | 7 (50.0) | 4257 (90.8) | ||||
| Have heard about mammograms | ||||||||
| Yes | 14 (35.0) | 611 (9.2) | 0.000* | 5.304 (2.755;10.120) | 3 (20.0) | 198 (4.2) | 0.024* | 5.697 (1.595;20.350) |
| No | 26 (65.0) | 6018 (90.8) | 12 (80.0) | 4512 (95.8) | ||||
| Have a mammogram test in the last 12 months | ||||||||
| Perform | 6 (42.9) | 11 (1.8) | 0.000* | 40.909 (12.139;137.866) | 0 (0.0) | 2 (1.0) | 1.000 | NA |
| Not perform | 8 (57.1) | 600 (98.2) | 3 (100) | 196 (99.0) | ||||
| Have health insurance | ||||||||
| Yes | 17 (40.5) | 1910 (27.7) | 0.096+ | 1.771 (0.954;3.287) | 5 (33.3) | 1009 (20.3) | 0.206 | 1.962 (0.669;5.752) |
| No | 25 (59.5) | 4974 (72.3) | 10 (66.7) | 3959 (79.7) | ||||
| Age | ||||||||
| > 40 years | 12 (28.6) | 2445 (35.5) | 0.438 | 0.726 (0.371;1.421) | 7 (46.7) | 1908 (38.4) | 0.696 | 1.403 (0.508;3.876) |
| < 40 years | 30 (71.4) | 4439 (64.5) | 8 (53.3) | 3060 (61.6) | ||||
| Age at menarche | ||||||||
| < 14 years | 19 (61.3) | 2312 (45.5) | 0.114 | 1.898 (0.920;3.919) | 5 (38.5) | 1509 (40.1) | 1.000 | 0.934 (0.305;2.859) |
| > 14 years | 12 (38.7) | 2772 (54.5) | 8 (61.5) | 2254 (59.9) | ||||
| Age at marriage | ||||||||
| < 19 years | 25 (75.8) | 3089 (55.2) | 0.018* | 2.536 (1.142;5.633) | 8 (61.5) | 1564 (36.9) | 0.084+ | 2.738 (0.894;8.383) |
| > 19 years | 8 (24.2) | 2507 (44.8) | 5 (38.5) | 2676 (63.1) | ||||
| Marital status | ||||||||
| Not married | 4 (9.5) | 448 (6.5) | 0.351 | 1.512 (0.537;4.256) | 1 (6.7) | 169 (3.4) | 0.406 | 2.028 (0.265;15.514) |
| Married | 38 (90.5) | 6436 (93.5) | 14 (93.3) | 4799 (96.6) | ||||
| Occupation status | ||||||||
| Unemployment | 20 (47.6) | 2565 (37.3) | 0.221 | 1.531 (0.834;2.810) | 3 (20.0) | 1592 (32.0) | 0.413 | 0.530 (0.149;1.881) |
| Employment | 22 (52.4) | 4319 (62.7) | 12 (80.0) | 3376 (68.0) | ||||
| Education level | ||||||||
| High school or higher education | 26 (61.9) | 3047 (44.3) | 0.032* | 2.046 (1.096;3.821) | 6 (40.0) | 1087 (21.9) | 0.113 | 2.380 (0.845;6.702) |
| Less than high school | 16 (38.1) | 3837 (55.7) | 9 (60.0) | 3881 (78.1) | ||||
| Tobacco smoking | ||||||||
| Yes | 1 (2.4) | 169 (2.5) | 1.000 | 0.969 (0.133;7.087) | 1 (6.7) | 199 (4.0) | 0.460 | 1.712 (0.224;13.082) |
| No | 41 (97.6) | 6715 (97.5) | 14 (93.3) | 4769 (96.0) | ||||
| Consumption of meat | ||||||||
| 1-7 days/week | 32 (76.2) | 4694 (68.2) | 0.345 | 1.493 (0.733;3.042) | 11 (73.3) | 2518 (50.7) | 0.135 | 2.676 (0.851;8.414) |
| 0 day/week | 10 (23.8) | 2190 (31.8) | 4 (26.7) | 2450 (49.3) | ||||
| Consumption of fruit and vegetable | ||||||||
| < 7 days/week | 15 (37.5) | 2534 (38.2) | 1.000 | 0.969 (0.510;1.842) | 5 (33.3) | 2021 (42.9) | 0.626 | 0.665 (0.227;1.949) |
| >7 days/week | 25 (62.5) | 4094 (61.8) | 10 (66.7) | 2689 (57.1) | ||||
| Consumption of instant food and soda drink | ||||||||
| > 7 days/week | 1 (2.5) | 468 (7.1) | 0.526 | 0.337 (0.046;2.462) | 1 (6.7) | 370 (7.9) | 1.000 | 0.838 (0.110;6.389) |
| <7 days/week | 39 (97.5) | 6160 (92.9) | 14 (93.3) | 4340 (92.1) | ||||
| Body mass index | ||||||||
| > 25 kg/m2 | 15 (35.7) | 3301 (48.0) | 0.151 | 0.602 (0.320;1.133) | 6 (40.0) | 1947 (39.2) | 1.000 | 1.033 (0.367;2.907) |
| < 25 kg/m2 | 27 (64.3) | 3575 (52.0) | 9 (60.0) | 3017 (60.8) | ||||
| Number of births | ||||||||
| > 1 child | 13 (31.7) | 2956 (44.3) | 0.145 | 0.585 (0.302;1.131) | 8 (53.3) | 2252 (47.4) | 0.839 | 1.270 (0.460;3.507) |
| No child | 28 (68.3) | 3722 (55.7) | 7 (46.7) | 2502 (52.6) | ||||
| History of breastfeeding | ||||||||
| Never | 0 (0) | 82 (4.6) | 1.000 | NA | 0 (0.0) | 76 (6.0) | 1.000 | NA |
| Ever | 10 (100) | 1684 (95.4) | 4 (100) | 1183 (94.0) | ||||
| History of stillbirth | ||||||||
| Yes | 0 (0.0) | 87 (1.3) | 1.000 | NA | 0 (0.0) | 85 (1.8) | 1.000 | NA |
| No | 41 (100) | 6591 (98.7) | 15 (100) | 4669 (98.2) | ||||
| History of miscarriage | ||||||||
| Yes | 2 (4.9) | 444 (6.6) | 1.000 | 0.720 (0.173;2.992) | 1 (6.7) | 302 (6.4) | 1.000 | 1.053 (0.138;8.034) |
| No | 39 (95.1) | 6234 (93.4) | 14 (93.3) | 4452 (93.6) | ||||
| History of abortion | ||||||||
| Ever | 0 (0.0) | 47 (1.1) | 1.000 | NA | 0 (0.0) | 18 (0.6) | 1.000 | NA |
| Never | 28 (100) | 4344 (98.9) | 8 (100) | 3140 (99.4) | ||||
| Menopausal status | ||||||||
| Yes | 1 (2.4) | 136 (2.0) | 0.569 | 1.210 (0.165;8.862) | 1 (6.7) | 98 (2.0) | 0.260 | 3.550 (0.462;27.260) |
| No | 41 (97.6) | 6748 (98.0) | 14 (93.3) | 4870 (98.0) | ||||
| Oral contraception | ||||||||
| Ever | 15 (53.6) | 2241 (51.0) | 0.938 | 1.107 (0.526;2.332) | 4 (50.0) | 1474 (46.7) | 1.000 | 1.142 (0.285;4.576) |
| Never | 13 (46.4) | 2150 (49.0) | 4 (50.0) | 1684 (53.3) | ||||
| Injection contraception | ||||||||
| Ever | 18 (64.3) | 3187 (72.6) | 0.443 | 0.680 (0.313;1.477) | 4 (50.0) | 2402 (76.1) | 1.000 | 0.315 (0.079;1.261) |
| Never | 10 (35.7) | 1204 (27.4) | 4 (50.0) | 756 (23.9) | ||||
| Implant contraception | ||||||||
| Ever | 1 (3.6) | 292 (6.6) | 1.000 | 0.520 (0.070;3.840) | 0 (0.0) | 399 (12.6) | 0.607 | NA |
| Never | 27 (96.4) | 4099 (93.4) | 8 (100) | 2759 (87.4) | ||||
| Father died from cancer | ||||||||
| Yes | 1 (2.4) | 97 (1.4) | 0.451 | 1.707 (0.232;12.532) | 2 (13.3) | 38 (0.8) | 0.006* | 19.955 (4.353;91.472) |
| No | 41 (97.6) | 6787 (98.6) | 13 (86.7) | 4929 (99.2) | ||||
| Mother died from cancer | ||||||||
| Yes | 1 (2.4) | 96 (1.4) | 0.448 | 1.725 (0.235;12.666) | 0 (0) | 61 (1.2) | 1.000 | NA |
| No | 41 (97.6) | 6788 (98.6) | 15 (100) | 4906 (98.8) | ||||
| Healthcare accessibility (distance) | ||||||||
| > 5 km | 3 (18.8) | 300 (21.5) | 1.000 | 0.843 (0.239;2.978) | 3 (75.0) | 414 (48.1) | 0.357 | 3.239 (0.336;31.263) |
| < 5 km | 13 (81.3) | 1096 (78.5) | 1 (25.0) | 447 (51.9) | ||||
| Healthcare accessibility (time) | ||||||||
| >10 minutes | 6 (54.5) | 526 (40.0) | 0.364 | 1.802 (0.547;5.936) | 2 (50.0) | 447 (48.4) | 1.000 | 1.065 (0.149;7.592) |
| < 10 minutes | 5 (45.5) | 790 (60.0) | 2 (50.0) | 476 (51.6) | ||||
| Healthcare accessibility (price) | ||||||||
| IDR >16,500 | 0 (0.0) | 156 (10.7) | 0.392 | NA | 3 (75.0) | 444 (49.0) | 0.366 | 3.122 (0.323;30.122) |
| IDR < 16,500 | 15 (100) | 1301 (89.3) | 1 (25.0) | 462 (51.0) | ||||
| Socio-economic status (monthly household expenditure) | ||||||||
| Quintile 1 | 5 (11.9) | 1342 (19.5) | 0.026* | 3.160 (1.145;8.720) | 5 (33.3) | 1576 (31.7) | 0.133 | 2.747 (0.735;10.271) |
| Quintile 2 | 5 (11.9) | 1420 (20.6) | 0.020* | 3.344 (1.212;9.226) | 1 (6.7) | 1233 (24.8) | 0.034* | 10.745 (1.198;96.387) |
| Quintile 3 | 6 (14.3) | 1436 (20.9) | 0.033* | 2.818 (1.090;7.284) | 1 (6.7) | 946 (19.0) | 0.060+ | 8.244 (0.919;73.968) |
| Quintile 4 | 11 (26.2) | 1411 (20.5) | 0.301 | 1.510 (0.691;3.300) | 4 (26.7) | 754 (15.2) | 0.484 | 1.643 (0.409;6.600) |
| Quintile 5 | 15 (35.7) | 1274 (18.5) | 4 (26.7) | 459 (9.2) | ||||
| Variables | Breast cancer | ||
|---|---|---|---|
| p-value | aOR | 95% CI | |
| Urban areasa | |||
| Have a mammogram test in the last 12 months | |||
| Not perform | Ref | 1 | |
| Perform | 0.000* | 48.038 | 10.327;83.453 |
| Breast self-examination | |||
| Never | Ref | 1 | |
| Ever | 0.046* | 10.223 | 1.037;50.809 |
| Age at marriage | |||
| >19 years | Ref | 1 | |
| <19 years | 0.052+ | 4.814 | 1.925;6.049 |
| Rural areasb | |||
| Breast self-examination | |||
| Never | Ref | 1 | |
| Ever | 0.000* | 11.102 | 3.324;37.077 |
| Age at marriage | |||
| >19 years | Ref | 1 | |
| <19 years | 0.010* | 5.345 | 1.498;19.071 |
| Father died from cancer | |||
| No | Ref | 1 | |
| Yes | 0.000* | 30.632 | 6.038;60.406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
