Submitted:
11 March 2025
Posted:
11 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Raw Materials
2.3. APC Treatment
2.4. Proximate Analysis
2.5. Mineral Content
2.6. Phytic Acid Content
2.7. Saponin Content
2.8. Fluorescence Spectroscopy
2.9. Infrared Spectroscopy Measurements
2.10. Breadmaking
2.11. Technological Quality Parameters
2.12. Mixograph
2.13. Loaf Volume
2.14. Image Analysis for Crumb Characteristics
2.15. Statistical Analysis
3. Results and Discussion
3.1. Characterization of APC
3.2. Characterization of Flour Blends
3.3. Characterization of Bread
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Filière de l’argane - Fellah Trade Available online: https://www.fellah-trade.com/fr/filiere-vegetale/chiffres-cles-arganier (accessed on 21 March 2024).
- El Monfalouti, H.; Guillaume, D.; Denhez, C.; Charrouf, Z. Therapeutic Potential of Argan Oil: A Review. J. Pharm. Pharmacol. 2010, 62, 1669–1675. [CrossRef]
- Moutik, S.; Benali, A.; Bendaou, M.; Maadoudi, E.H.; Kabbour, M.R.; El Housni, A.; Es-Safi, N.E. The Effect of Using Diet Supplementation Based on Argane (Argania Spinosa) on Fattening Performance, Carcass Characteristics and Fatty Acid Composition of Lambs. Heliyon 2021, 7, e05942. [CrossRef]
- Zeghlouli, J.; Guendouz, A.; Duchez, D.; El Modafar, C.; Michaud, P.; Delattre, C. Valorization of Co-Products Generated by Argan Oil Extraction Process: Application to Biodiesel Production. Biofuels 2022, 13, 771–777. [CrossRef]
- Demnati, D.; Sánchez, S.; Pacheco, R.; Zahar, M.; Martínez, L. Comparative Study of Argan and Olive Fruits and Oils. Actes Prem. Congrès Int. L’Arganier 2011, 7, 435–441.
- El Monfalouti, H.; Charrouf, Z.; Belviso, S.; Ghirardello, D.; Scursatone, B.; Guillaume, D.; Denhez, C.; Zeppa, G. Analysis and Antioxidant Capacity of the Phenolic Compounds from Argan Fruit ( Argania Spinosa (L.) Skeels). Eur. J. Lipid Sci. Technol. 2012, 114, 446–452. [CrossRef]
- Rahib, Y.; Sarh, B.; Chaoufi, J.; Bonnamy, S.; Elorf, A. Physicochemical and Thermal Analysis of Argan Fruit Residues (AFRs) as a New Local Biomass for Bioenergy Production. J. Therm. Anal. Calorim. 2020, 145, 2405–2416. [CrossRef]
- Zouhair, F.Z.; Benali, A.; Kabbour, M.R.; EL Kabous, K.; El Maadoudi, E. haj; Bouksaim, M.; Essamri, A. Typical Characterization of Argane Pulp of Various Moroccan Areas: A New Biomass for the Second Generation Bioethanol Production. J. Saudi Soc. Agric. Sci. 2020, 19, 192–198. [CrossRef]
- Hilali, M.; Bey, M.; Oubarka, S.; Lebkiri, A. Effects of Argan Cake (Argania Spinosa (L.,) Saptaceae) Substitution on the Growth Performance, Nutritional Value, and Economic Efficacy of Broiler Chickens. J. Glob. Innov. Agric. Sci. 2022, 10, 55–60. [CrossRef]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed Proteins – Properties and Application as a Food Ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [CrossRef]
- El Abbassi, A.; Khalid, N.; Zbakh, H.; Ahmad, A. Physicochemical Characteristics, Nutritional Properties, and Health Benefits of Argan Oil: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1401–1414. [CrossRef]
- Charrouf, Z.; Wieruszeski, J.M.; Fkih-Tetouani, S.; Y, L.; Charrouf, M.; Fournet, B. Triterpenoid Saponins from Argania Spinosa. Phytochemistry 1992, 31, 2079–2086. [CrossRef]
- Ali, H.; Houghton, P.J.; Soumyanath, A. α-Amylase Inhibitory Activity of Some Malaysian Plants Used to Treat Diabetes; with Particular Reference to Phyllanthus Amarus. J. Ethnopharmacol. 2006, 107, 449–455. [CrossRef]
- Wang, N.; Daun, J. Effects of Variety and Crude Protein Content on Nutrients and Anti-Nutrients in Lentils (). Food Chem. 2006, 95, 493–502. [CrossRef]
- Thavarajah, P.; Thavarajah, D.; Vandenberg, A. Low Phytic Acid Lentils (Lens Culinaris L.): A Potential Solution for Increased Micronutrient Bioavailability. J. Agric. Food Chem. 2009, 57, 9044–9049. [CrossRef]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical Constituents of Some Nigerian Medicinal Plants. Afr. J. Biotechnol. 2005, 4, 685–688. [CrossRef]
- Bosmali, I.; Kotsiou, K.; Matsakidou, A.; Irakli, M.; Madesis, P.; Biliaderis, C.G. Fortification of Wheat Bread with an Alternative Source of Bean Proteins Using Raw and Roasted Phaseolus Coccineus Flours: Impact on Physicochemical, Nutritional and Quality Attributes. Food Hydrocoll. 2025, 158, 110527. [CrossRef]
- International Organization for Standardization. ISO 5529:2007 Wheat—Determination of the Sedimentation Index—Zeleny Test; International Organization for Standardization: Geneva, Switzerland, 2007.
- Hussain, M.; Saeed, F.; Niaz, B.; Afzaal, M.; Ikram, A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Biochemical and Nutritional Profile of Maize Bran-Enriched Flour in Relation to Its End-Use Quality. Food Sci. Nutr. 2021, 9, 3336–3345. [CrossRef]
- Kumar, A.; Singh, M.; Singh, G. Effect of Different Pretreatments on the Quality of Mushrooms during Solar Drying. J. Food Sci. Technol. 2013, 50, 165–170. [CrossRef]
- Shinta, Y.C.; Zaman, B.; Sumiyati, S. Citric Acid and EDTA as Chelating Agents in Phytoremediation of Heavy Metal in Polluted Soil: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012023. [CrossRef]
- Urbano, G.; López-Jurado, M.; Aranda, P.; Vidal-Valverde, C.; Tenorio, E.; Porres, J. The Role of Phytic Acid in Legumes: Antinutrient or Beneficial Function? J. Physiol. Biochem. 2000, 56, 283–294. [CrossRef]
- Mahgoub, S.E.O.; Elhag, S.A. Effect of Milling, Soaking, Malting, Heat-Treatment and Fermentation on Phytate Level of Four Sudanese Sorghum Cultivars. Food Chem. 1998, 61, 77–80. [CrossRef]
- Khan, N.; Zaman, R.; Elahi, M. Effect of Heat Treatments on the Phytic Acid Content of Maize Products. J. Sci. Food Agric. 1991, 54, 153–156. [CrossRef]
- Beal, L.; Mehta, T. Zinc and Phytate Distribution in Peas. Influence of Heat Treatment, Germination, pH, Substrate, and Phosphorus on Pea Phytate and Phytase. J. Food Sci. 1985, 50, 96–100. [CrossRef]
- Lakram, N.; Zouhair, F.Z.; Ennahli, Y.; Moutik, S.; Mohamed, B.; Naciri, M.; ELMAADOUDI, El.; Housni, A.; Kabbour, M. The Impact of Optimizing the Detoxification of Argane (Argania Spinosa) Press Cake on Nutritional Quality and Saponin Levels. 2019, 9, 235–246.
- Sharma, S.; Goyal, R.; Barwal, S. Domestic Processing Effects on Physicochemical, Nutritional and Anti-Nutritional Attributes in Soybean (Glycine Max L. Merill). Int. Food Res. J. 2013, 20.
- Effect of Different Processing Methods, on Nutrient Composition, Antinutrional Factors, and in Vitro Protein Digestibility of Dolichos Lablab Bean [Lablab Purpuresus (L.) Sweet]. Pak. J. Nutr. 2007.
- Wanjekeche, E.; Wakasa, V.; Mureithi, J.G. Effect of Germination, Alkaline and Acid Soaking and Boiling on the Nutritional Value of Mature and Immature Mucuna (Mucuna Pruriens) Beans. Trop. Subtrop. Agroecosystems 2003, 1, 183–192.
- Kuyu, C.G.; Tola, Y.B.; Mohammed, A.; Ramaswamy, H.S. Determination of Citric Acid Pretreatment Effect on Nutrient Content, Bioactive Components, and Total Antioxidant Capacity of Dried Sweet Potato Flour. Food Sci. Nutr. 2018, 6, 1724–1733. [CrossRef]
- ALAJAJI, S.A.; EL-ADAWY, T.A. Nutritional Composition of Chickpea (Cicer Arietinum L.) as Affected by Microwave Cooking and Other Traditional Cooking Methods. Nutr. Compos. Chickpea Cicer Arietinum Affect. Microw. Cook. Tradit. Cook. Methods 2006, 19, 806–812.
- Tonfack Djikeng, F.; Selle, E.; Morfor, A.T.; Tiencheu, B.; Hako Touko, B.A.; Teboukeu Boungo, G.; Ndomou Houketchang, S.; Karuna, M.S.L.; Linder, M.; Ngoufack, F.Z.; et al. Effect of Boiling and Roasting on Lipid Quality, Proximate Composition, and Mineral Content of Walnut Seeds (Tetracarpidium Conophorum) Produced and Commercialized in Kumba, South-West Region Cameroon. Food Sci. Nutr. 2018, 6, 417–423. [CrossRef]
- Platel, K.; Srinivasan, K. Bioavailability of Micronutrients from Plant Foods: An Update. Crit. Rev. Food Sci. Nutr. 2016, 56, 1608–1619. [CrossRef]
- Porres, J. m.; Etcheverry, P.; Miller, D. d.; Lei, X. g. Phytase and Citric Acid Supplementation in Whole-Wheat Bread Improves Phytate-Phosphorus Release and Iron Dialyzability. J. Food Sci. 2001, 66, 614–619. [CrossRef]
- Zhang, K.-P.; Chen, G.-F.; Zhao, L.; Liu, B.; Xu, X.-B.; Tian, J.-C. Molecular Genetic Analysis of Flour Color Using a Doubled Haploid Population in Bread Wheat (Triticum Aestivum L.). Euphytica 2009, 165, 471–484. [CrossRef]
- Ngoma, K.; Mashau, M.E.; Silungwe, H. Physicochemical and Functional Properties of Chemically Pretreated Ndou Sweet Potato Flour. Int. J. Food Sci. 2019, 2019, 1–9. [CrossRef]
- Ameny, M.A.; Wilson, P.W. Relationship between Hunter Color Values and β-Carotene Contents in White-Fleshed African Sweetpotatoes (Ipomoea Batatas Lam). J. Sci. Food Agric. 1997, 73, 301–306. [CrossRef]
- Akyıldız, A.; Öcal, N.D. Effects of Dehydration Temperatures on Colour and Polyphenoloxidase Activity of Amasya and Golden Delicious Apple Cultivars. J. Sci. Food Agric. 2006, 86, 2363–2368. [CrossRef]
- Singh, K.; Tripathi, S.; Chandra, R. Maillard Reaction Product and Its Complexation with Environmental Pollutants: A Comprehensive Review of Their Synthesis and Impact. Bioresour. Technol. Rep. 2021, 15, 100779. [CrossRef]
- Wani, A.A.; Sogi, D.S.; Singh, P.; Khatkar, B.S. Influence of Watermelon Seed Protein Concentrates on Dough Handling, Textural and Sensory Properties of Cookies. J. Food Sci. Technol. 2015, 52, 2139–2147. [CrossRef]
- Ortolan, F.; Urbano, K.; Netto, F.M.; Steel, C.J. Chemical and Structural Characteristics of Proteins of Non-Vital and Vital Wheat Glutens. Food Hydrocoll. 2022, 125, 107383. [CrossRef]
- Bock, J.E.; Connelly, R.K.; Damodaran, S. Impact of Bran Addition on Water Properties and Gluten Secondary Structure in Wheat Flour Doughs Studied by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Cereal Chem. 2013, 90, 377–386. [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Application of FT-IR and Raman Spectroscopy for the Study of Biopolymers in Breads Fortified with Fibre and Polyphenols. Food Res. Int. 2013, 50, 574–585. [CrossRef]
- Nawrocka, A.; Krekora, M.; Niewiadomski, Z.; Miś, A. FTIR Studies of Gluten Matrix Dehydration after Fibre Polysaccharide Addition. Food Chem. 2018, 252, 198–206. [CrossRef]
- He, X.; Wang, B.; Zhao, B.; Meng, Y.; Chen, J.; Yang, F. Effect of Hydrothermal Treatment on the Structure and Functional Properties of Quinoa Protein Isolate. Foods 2022, 11, 2954. [CrossRef]
- Meziani, S.; Jasniewski, J.; Ribotta, P.; Arab-Tehrany, E.; Muller, J.-M.; Ghoul, M.; Desobry, S. Influence of Yeast and Frozen Storage on Rheological, Structural and Microbial Quality of Frozen Sweet Dough. J. Food Eng. 2012, 109, 538–544. [CrossRef]
- Liu, G.; Li, J.; Shi, K.; Wang, S.; Chen, J.; Liu, Y.; Huang, Q. Composition, Secondary Structure, and Self-Assembly of Oat Protein Isolate. J. Agric. Food Chem. 2009, 57, 4552–4558. [CrossRef]
- Peng, Q.; Khan, N.A.; Wang, Z.; Yu, P. Moist and Dry Heating-Induced Changes in Protein Molecular Structure, Protein Subfractions, and Nutrient Profiles in Camelina Seeds. J. Dairy Sci. 2014, 97, 446–457. [CrossRef]
- Wang, M.; Li, Y.; Ma, C.; Zhang, Z.; Guo, L.; Huang, M.; Sun, J. Stability of Native/Thermally Denatured Myofibrillar Protein Particles: Improvement with Decreasing pH. Food Hydrocoll. 2023, 140, 108628. [CrossRef]
- Uranga, J.; Puertas, A.I.; Etxabide, A.; Dueñas, M.T.; Guerrero, P.; de la Caba, K. Citric Acid-Incorporated Fish Gelatin/Chitosan Composite Films. Food Hydrocoll. 2019, 86, 95–103. [CrossRef]
- Ramirez, D.O.S.; Carletto, R.A.; Tonetti, C.; Giachet, F.T.; Varesano, A.; Vineis, C. Wool Keratin Film Plasticized by Citric Acid for Food Packaging. Food Packag. Shelf Life 2017, 12, 100–106. [CrossRef]
- Locquet, N.; Aït-Kaddour, A.; Cordella, C.B.Y. 3D Fluorescence Spectroscopy and Its Applications. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd, 2018; pp. 1–39 ISBN 978-0-470-02731-8.
- Gorokhov, V.V.; Knox, P.P.; Korvatovsky, B.N.; Lukashev, E.P.; Goryachev, S.N.; Paschenko, V.Z.; Rubin, A.B. Comparison of Spectral and Temporal Fluorescence Parameters of Aqueous Tryptophan Solutions Frozen in the Light and in the Dark. Chem. Phys. 2023, 571, 111919. [CrossRef]
- Najib, M.; Botosoa, E.P.; Hallab, W.; Hallab, K.; Hallab, Z.; Hamze, M.; Delaplace, G.; Karoui, R.; Chihib, N.-E. Utilization of Front-Face Fluorescence Spectroscopy for Monitoring Lipid Oxidation during Lebanese Qishta Aging. LWT 2020, 130, 109693. [CrossRef]
- Miriani, M.; Keerati-u-rai, M.; Corredig, M.; Iametti, S.; Bonomi, F. Denaturation of Soy Proteins in Solution and at the Oil–Water Interface: A Fluorescence Study. Food Hydrocoll. 2011, 25, 620–626. [CrossRef]
- Rahimi Yazdi, S.; Corredig, M. Heating of Milk Alters the Binding of Curcumin to Casein Micelles. A Fluorescence Spectroscopy Study. Food Chem. 2012, 132, 1143–1149. [CrossRef]
- Ji, W.; Yang, F.; Yang, M. Effect of Change in pH, Heat and Ultrasound Pre-Treatments on Binding Interactions between Quercetin and Whey Protein Concentrate. Food Chem. 2022, 384, 132508. [CrossRef]
- Abdollahi, M.; Rezaei, M.; Jafarpour, A.; Undeland, I. Dynamic Rheological, Microstructural and Physicochemical Properties of Blend Fish Protein Recovered from Kilka (Clupeonella Cultriventris) and Silver Carp (Hypophthalmichthys Molitrix) by the pH-Shift Process or Washing-Based Technology. Food Chem. 2017, 229, 695–709. [CrossRef]
- Pezeshk, S.; Rezaei, M.; Hosseini, H.; Abdollahi, M. Impact of pH-Shift Processing Combined with Ultrasonication on Structural and Functional Properties of Proteins Isolated from Rainbow Trout by-Products. Food Hydrocoll. 2021, 118, 106768. [CrossRef]
- Chang, C.; Wang, T.; Hu, Q.; Luo, Y. Caseinate-Zein-Polysaccharide Complex Nanoparticles as Potential Oral Delivery Vehicles for Curcumin: Effect of Polysaccharide Type and Chemical Cross-Linking. Food Hydrocoll. 2017, 72, 254–262. [CrossRef]
- Wang, S.; Yang, J.; Shao, G.; Liu, J.; Wang, J.; Yang, L.; Li, J.; Liu, H.; Zhu, D.; Li, Y.; et al. pH-Induced Conformational Changes and Interfacial Dilatational Rheology of Soy Protein Isolated/Soy Hull Polysaccharide Complex and Its Effects on Emulsion Stabilization. Food Hydrocoll. 2020, 109, 106075. [CrossRef]
- Ikpeme, C.; Eneji, C.; Igile, G. Nutritional and Organoleptic Properties of Wheat (Triticum Aestivum) and Beniseed (Sesame Indicum) Composite Flour Baked Foods. J. Food Res. 2012, 1, 84.
- Chinma, C. e.; Gbadamosi, K. b.; Ogunsina, B. s.; Oloyede, O. o.; Salami, S. o. Effect of Addition of Germinated Moringa Seed Flour on the Quality Attributes of Wheat-Based Cake. J. Food Process. Preserv. 2014, 38, 1737–1742. [CrossRef]
- Ogunronbi, O.; Jooste, P.J.; Abu, J.O.; Van Der Merwe, B. Chemical Composition, Storage Stability and Effect of Cold-Pressed Flaxseed Oil Cake Inclusion on Bread Quality. J. Food Process. Preserv. 2011, 35, 64–79. [CrossRef]
- Sharma, S.; Prabhasankar, P. Effect of Whole Hempseed Flour Incorporation on the Rheological, Microstructural and Nutritional Characteristics of Chapati – Indian Flatbread. LWT 2021, 137, 110491. [CrossRef]
- Soares, N.F.F.; Rutishauser, D.M.; Melo, N.; Cruz, R.S.; Andrade, N.J. Inhibition of Microbial Growth in Bread through Active Packaging. Packag. Technol. Sci. 2002, 15, 129–132. [CrossRef]
- Shongwe, S.G.; Kidane, S.W.; Shelembe, J.S.; Nkambule, T.P. Dough Rheology and Physicochemical and Sensory Properties of Wheat–Peanut Composite Flour Bread. Legume Sci. 2022, 4. [CrossRef]
- Gupta, S.; Shimray, C.A.; Venkateswara Rao, G. Influence of Organic Acids on Rheological and Bread-Making Characteristics of Fortified Wheat Flour. Int. J. Food Sci. Nutr. 2012, 63, 411–420. [CrossRef]
- Bora, P.; Ragaee, S.; Abdel-Aal, E.-S.M. Effect of Incorporation of Goji Berry By-Product on Biochemical, Physical and Sensory Properties of Selected Bakery Products. LWT 2019, 112, 108225. [CrossRef]
- Hussain, A.; Kausar, T.; Aslam, J.; Quddoos, M.Y.; Ali, A.; Kauser, S.; Zerlasht, M.; Rafique, A.; Noreen, S.; Iftikhar, K.; et al. Physical and Rheological Studies of Biscuits Developed with Different Replacement Levels of Pumpkin (Cucurbita Maxima) Peel, Flesh, and Seed Powders. J. Food Qual. 2023, 2023, e4362094. [CrossRef]
- Hussain, M.; Saeed, F.; Niaz, B.; Afzaal, M.; Ikram, A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Biochemical and Nutritional Profile of Maize Bran-enriched Flour in Relation to Its End-use Quality. Food Sci. Nutr. 2021, 9, 3336–3345. [CrossRef]
- Shilbi, A.Z.N.A.; Murtini, E.S. Optimization of Ginger (Zingiber Officinale) and Cinnamon (Cinnamomum Verum) on Total Phenolics, Antioxidant Activity and Loaf Volume of Bread. Adv. Food Sci. Sustain. Agric. Agroindustrial Eng. AFSSAAE 2022, 5, 102–110. [CrossRef]
- Bhatt, S.M.; Gupta, R.K. Bread (Composite Flour) Formulation and Study of Its Nutritive, Phytochemical and Functional Properties. J. Pharmacogn. Phytochem. 2015, 4, 254–268.
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting Properties of Starch and Protein in Selected Cereals and Quality of Their Food Products. Food Chem. 2006, 95, 9–18. [CrossRef]
- Ikegwu, O.J.; Okechukwu, P.E.; Ekumankana, E.O. Physico-Chemical and Pasting Characteristics of Flour and Starch from Achi Brachystegia Eurycoma Seed. J. Food Technol. 2010, 8, 58–66.
- Julianti, E.; Rusmarilin, H.; Ridwansyah; Yusraini, E. Functional and Rheological Properties of Composite Flour from Sweet Potato, Maize, Soybean and Xanthan Gum. J. Saudi Soc. Agric. Sci. 2017, 16, 171–177. [CrossRef]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Fortification of Wheat Bread with Agroindustry By-Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure. J. Food Sci. 2017, 82, 2183–2191. [CrossRef]
- Fenn, D.; Lukow, O.M.; Humphreys, G.; Fields, P.G.; Boye, J.I. Wheat-Legume Composite Flour Quality. Int. J. Food Prop. 2010, 13, 381–393.
- Jafari, M.; Koocheki, A.; Milani, E. Effect of Extrusion Cooking of Sorghum Flour on Rheology, Morphology and Heating Rate of Sorghum–Wheat Composite Dough. J. Cereal Sci. 2017, 77, 49–57. [CrossRef]
- Sun, X.; Ma, L.; Zhong, X.; Liang, J. Potential of Raw and Fermented Maize Gluten Feed in Bread Making: Assess of Dough Rheological Properties and Bread Quality. LWT 2022, 162, 113482. [CrossRef]




| Traits | UAPC | APC-CA | APC-DW |
| Saponin (mg/g) | 4.71 ± 0.10 a | 0.80±0.12b | 1.20± 0.10c |
| Lipid (%) | 20.30 ± 0.20a | 15.30 ± 0.10 b | 13.20 ± 0.20 c |
| Ash (%) | 5.09 ± 0.02a | 3.18 ± 0.05 b | 4.66 ± 0.03 c |
| Fiber (%) | 17.83 ± 0.20 a | 14.13 ± 0.10 b | 15.82 ± 0.20c |
| Protein (%) | 47.70 ± 0.10a | 47.40 ± 0.10a | 46.88 ± 0.06 b |
| Moisture (%) | 9.00 ± 0.02a | 7.33 ± 0.03b | 8.01 ± 0.25c |
| Ca (mg/100g) | 690.5± 0.13a | 553.4± 0.10b | 464.7± 0.11c |
| Fe (mg/100g) | 8.7 ± 0.04a | 11.6 ± 0.02b | 13.2 ± 0.01c |
| Zn (mg/100g) | 6.3 ± 0.00 a | 3.1 ± 0.01b | 9.3 ± 0.00c |
| Pythic acid (mg/100g) | 1.63 ± 0.10a | 1.05 ± 0.01b | 1.03 ± 0.01b |
| Phytic Acid/Iron | 15.98 ± 0.67a | 7.73 ± 0.18b | 6.58 ± 0.6b |
| Phytic Acid/Zinc | 25.74 ± 0.06a | 33.71 ± 0.87b | 10.95 ± 0.06c |
| L* | 80.21 ± 0.02a | 78.18 ± 0.05b | 79.53 ± 0.10c |
| a* | 1.70 ± 0.01a | 1.64 ± 0.01b | 1.58 ± 0.01c |
| b* | 12.21 ± 0.02a | 12.28 ± 0.03a | 12.24 ± 0.50a |
| Traits | WWF | 5%APC-CA | 10%APC-CA | 15%APC-CA | 20%APC-CA | 5%APC-DW | 10%APC-DW | 15%APC-DW | 20%APC-DW |
| Lipid (%) | 1.71 ± 0.03a | 2.69 ± 0.01b | 3.37 ± 0.04c | 3.92 ± 0.03d | 4.89 ± 0.04e | 2.17 ± 0.06ab | 3.31 ± 0.03c | 4.02 ± 0.06d | 4.36 ± 0.05d |
| Ash (%) | 1.54 ± 0.03a | 1.55 ± 0.03ab | 1.63 ± 0.02ab | 1.72 ± 0.01ac | 1.77 ± 0.01c | 1.67 ± 0.01b | 1.90 ± 0.01d | 1.94 ± 0.01de | 2.04 ± 0.02e |
| Fiber (%) | 2.60 ± 0.10a | 3.27± 0.05b | 4.73 ± 0.03c | 5.22 ± 0.05de | 5.35 ± 0.06ef | 3.38 ± 0.02b | 4.90 ± 0.01cd | 5.36 ± 0.04ef | 5.69 ± 0.03f |
| Protein (%) | 13.56 ± 0.03a | 14.51 ± 0.02b | 15.15 ± 0.01c | 15.85 ± 0.01de | 16.62 ± 0.01ef | 14.17 ± 0.01f | 15.13 ± 0.03c | 15.62 ± 0.03d | 16.33 ± 0.03f |
| Moisture (%) | 11.40 ± 0.10a | 11.25 ± 0.02a | 10.92 ± 0.02ab | 10.87 ± 0.01ab | 10.64 ± 0.01bc | 10.91 ± 0.01ab | 10.55 ± 0.01bc | 10.33 ± 0.01cd | 10.11 ± 0.01d |
| Ca (mg/100g) | 15.15 ± 0.01a | 15.24 ± 0.04a | 16.48 ± 0.03b | 17.28 ± 0.03bd | 17.75 ± 0.09bd | 15.92 ± 0.03a | 17.28 ± 0.03c | 18.71 ± 0.06d | 19.88 ± 0.03d |
| Fe (mg/100g) | 3.92 ± 0.01a | 4.51 ± 0.02b | 5.42 ± 0.03cd | 5.60 ± 0.02cd | 5.65 ± 0.03d | 5.01 ± 0.02bc | 5.63 ± 0.01d | 5.80 ± 0.01d | 5.92 ± 0.01d |
| Zn (mg/100g) | 2.40 ± 0.02a | 2.41 ± 0.01a | 2.60 ± 0.03a | 2.63 ± 0.02a | 2.81 ± 0.03ab | 3.42 ± 0.01abc | 3.74 ± 0.02abc | 3.93 ± 0.01c | 4.12 ± 0.02c |
| Pythic acid (mg/100g) | 0.62 ± 0.01a | 0.73 ± 0.01bc | 0.81 ± 0.02cd | 0.88 ± 0.01de | 0.95 ± 0.02e | 0.69 ± 0.01ab | 0.74 ± 0.02bc | 0.83 ± 0.02 d | 0.92 ± 0.02ef |
| Phytic Acid/Iron | 13.76 ± 0.20ab | 13.69 ± 0.19abc | 12.65 ± 0.31bcd | 13.67 ± 0.16ab | 14.39 ± 0.30a | 11.86 ± 0.24cd | 11.40 ± 0.31d | 12.32 ± 0.31bcd | 13.39 ± 0.29ae |
| Phytic Acid/Zinc | 27.83 ± 0.42a | 29.98 ± 0.51a | 33.26 ± 0.71b | 33.35 ± 0.38b | 33.14 ± 0.70b | 20.13 ± 0.30d | 19.48 ± 0.52d | 21.81 ± 0.52cd | 22.88 ± 0.50c |
| L*(Flour) | 77.14 ± 0.08a | 85.31 ± 0.09d | 85.27 ± 0.02cd | 85.20 ± 0.57cd | 84.29 ± 0.02bc | 83.68 ± 0.08b | 85.26 ± 0.11cd | 84.60 ± 0.06bcd | 84.17 ± 0.05b |
| a*(Flour) | 1.79 ± 0.05a | 0.69 ± 0.01 bd | 0.56±0.01c | 0.57 ± 0.02c | 0.68 ± 0.01bd | 0.69 ± 0.00bd | 0.62 ± 0.01bc | 0.73 ± 0.02d | 0.76 ± 0.01d |
| b*(Flour) | 12.56 ± 0.03a | 12.78 ± 0.05g | 12.10 ± 0.02bd | 12.10 ± 0.01bd | 11.97 ± 0.02bc | 11.83 ± 0.03c | 12.41 ± 0.07aef | 12.65 ± 0.04g | 12.46 ± 0.02af |
| WWF | 5%APC-CA | 10%APC-CA | 15%APC-CA | 20%APC-CA | 5%APC-DW | 10%APC-DW | 15%APC-DW | 20%APC-DW | |
| Gluten straight (mL) | 56.46±0.1a | 51.55±0.2b | 44.19±0.1c | 42.71 ±0.5cd | 39.28 ±0.2e | 47.62±0.5f | 41.73 ±0.1cde | 40.75 ±0.5de | 39.28±0.0c |
| Mixing time (min) | 4.72 ±0.2a | 3.98 ±0.1b | 2.96±0.2c | 3.96±0.1d | 4.40±0.0e | 4.12±0.2f | 3.08±0.1c | 3.06±0.1c | 3.16±0.2g |
| Peak Height | 43.8 ±0.0a | 47.6 ±0.1b | 50.0±0.0c | 47.6±0.0b | 50.7±0.1bc | 45.32 ±0.0e | 43.04±0.0a | 43.00±0.0a | 43.0±0.0a |
| Water absorption | 63.4 ±0.0a | 64.4±0.1b | 65.0±0.0c | 66.0±0.1d | 66.9±0.1e | 64.5±0.2b | 65.4±0.0f | 66.4±0.0g | 67.6±0.2h |
| WWF | 5%APC-CA | 10%APC-CA | 5%APC-DW | 10%APC-DW | 15%APC-DW | 20%APCDW | |
| Cells Numbers | 66.6±0.03a | 35.20±0.0b | 75.25±0.0c | 54.33±0.02d | 84.75±0.03 e | 84.25±0.03e | 107.5±0.03 f |
| Total Area | 288.09±0.02a | 265.31±0.01a | 113.98±0.01b | 272.88±0.02a | 305.03±0.02c | 236.52±0.0d | 247.55±0.02e |
| Average size (mm2) | 4.4±0.02a | 7.83±0.01b | 1.53±0.01c | 5.01±0.02d | 3.59±0.02e | 2.81±0.0f | 2.32±0.02g |
| Porosity (%) | 32.01±0.02a | 29.47±0.01ab | 12.66±0.01c | 30.32±0.02a | 33.89±0.02a | 26.28±0.0b | 27.50±0.02b |
| L*(Bread) | 64.03±0.02a | 62.86±0.01b | 60.44±0.02c | 58.87±0.02d | 58.20±0.02d | 57.27±0.03d | 56.90±0.03 d |
| a*(Bread) | 4.21±0.02a | 4.35±0.01a | 4.61±0.02b | 5.35±0.03c | 5.53±0.03d | 5.69±0.02e | 5.71±0.02e |
| b*(Bread) | 25.37±0.03a | 24.25±0.03b | 23.72±0.01c | 24.98±0.01d | 24.27±0.02b | 22.63±0.02e | 21.44±0.02f |
| Loaf volume (cm3) | 1150.00 ±2.00a | 1150.00 ±1.00a | 750.00 ±2.00b | 850.00 ±1.00c | 700.00 ±1.00d | 670.00 ±1.00e | 650.00±2.00f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
