Submitted:
05 March 2025
Posted:
06 March 2025
You are already at the latest version
Abstract
Both natural gas production and fossil fuels production are the main sources to most of the energy consumption, this gas presented a series of impurities, i.e. CO2, which needed to be eliminated in order to prevent several concerns as the corrosion of equipments, greenhouse gas emissions and others. It is thus clear, that the development of efficient CO2 capture and storage processes are important to reduce both CO2 production and its contribution to global warming. CO2 can be capture from gas streams by three technologies: absorption, adsorption and membranes, however, they have some challenges in its utilization to be resolved, and some groups of scientist try to resolve it by the inclusion of deep eutectic solvents in them. In the present work, the most recent developments (2024 year) in CO2 capture using deep eutectic solvents (DESs) jointly to absorption, adsorption or membrane-based technologies have been reviewed.
Keywords:
1. Introduction
2. DESs and Absorption
3. DESs and Adsorption
4. DESs and Mixed Matrix Membranes
5. Conclusions
Supplementary Materials
Author Contributions
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Yuan, B.; Zhan, G.; Li, Y.; Li, J.; Chen, J.; Peng, Y.; Wang, L.; You, C.; Li, J. Energy-efficient biphasic solvents for industrial carbon capture: role of physical solvents on CO2 absorption and phase splitting. Environ. Sci. Technol. 2022, 56, 13305–13313. [CrossRef]
- Xing, L.; Wei, K.X.; Li, Q.W.; Wang, R.J.; Zhang, S.H.; Wang, L.D. One-step synthesized SO42-/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture. Environ. Sci. Technol. 2020, 54, 13944–13952. [CrossRef]
- Yuan, B.; Zhan, G.; Chen, Z.; Li, Y.; Wang, L.; You, C.; Li, J. Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent: effect of mass transfer and solvent regeneration. Int. J. Greenhouse Gas Control 2022, 118, 103673. [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2002, 19, 2010-2011. [CrossRef]
- Lomba, L.; García, C.B.; Ribate, M.P.; Giner, G.; Zuriaga, E. Applications of deep eutectic solvents related to health, synthesis, and extraction of natural based chemicals. Appl. Sci. 2021, 11, 10156. [CrossRef]
- Omar, K.A.; Sadeghi, R. Database of deep eutectic solvents and their physical properties: a review. J. Mol. Liq. 2023, 384, 121899. DOI. 10.1016/j.molliq.2023.121899.
- Długosz, O. Natural deep eutectic solvents in the synthesis of inorganic nanoparticles. Materials 2023, 16, 627. [CrossRef]
- Luo, Y.; Yin, C.; Ou, L. Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent. Sci. Total Environ. 2023, 902, 166095. [CrossRef]
- Mjalli, F.S.; Shakourian-Fard, M.; Kamath, G.; Murshid, G.; Naser, J.; Al Ma’awali, S. Experimental and theoretical study of the physicochemical properties of the novel imidazole-based eutectic solvent. J. Mol. Graph. Modell. 2023, 118, 108319. [CrossRef]
- Ahmadi, R.; Hemmateenejad, B.; Safavi, A.; Shojaeifard, Z.; Mohabbati, M.; Firuzi, O. Assessment of cytotoxicity of choline chloride-based natural deep eutectic solvents against human HEK-293 cells: a QSAR analysis. Chemosphere 2018, 209, 831-838. DOI: 0.1016/j.chemosphere.2018.06.103.
- Martínez Martínez, G.; Guillena Townley, G.; Martínez-Espinosa, R.M. Controversy on the toxic nature of deep eutectic solvents and their potential contribution to environmental pollution. Heliyon 2022, 8, e12567. [CrossRef]
- Inayat, S., Ahmad, S.R., Awan, S.J.; Nawshad, M-; Ali, Q. In vivo and in vitro toxicity profile of tetrabutylammonium bromide and alcohol-based deep eutectic solvents. Sci Rep 2023, 13, 1777. [CrossRef]
- Cao, Y.; Li, Y., Sun, M.; Xu, Y., Chen, L. Unexpectedly superhigh toxicity of superbase-derived deep eutectic solvents albeit high efficiency for CO2 capture and conversión. Ind. Eng. Chem. Res. 2023, 62, 3338–3347. [CrossRef]
- Shah, B.M.; Owyeung, R.E.; Sonkusale, S. Development of deep eutectic solvent systems and their formulation: assessment of solubilization potential on poorly water-soluble drugs. MRS Commun. 2024, 14, 388-396. [CrossRef]
- Sharma, A.; Park, Y.R.; Garg, A.; Lee, B.-S. Deep eutectic solvents enhancing drug solubility and its delivery. J. Med. Chem. 2024, 67, 14807-14819. [CrossRef]
- Marco-Velasco, G.; Gálvez-Subiela, A.; Jiménez-Robles, R.; Izquierdo, M.; Cháfer, A.; Badia, J.D. A review on the application of deep eutectic solvents in polymer-based membrane preparation for environmental separation technologies. Polymers 2024, 16, 2604. [CrossRef]
- Zhou, K.; Dai, X.; Li, P.; Zhang, L.; Zhang, X.; Wang, C.; Wen, J.; Huang, G.; Xu, S. Recent advances in deep eutectic solvents for next-generation lithium batteries: safer and greener. Prog. Mater. Sci. 2024, 146, 101338. [CrossRef]
- Ruan, J.; Liu, C.; Su, Z.; Ma, Y.; Zhu, Z.; Wang, Y.; Cui, P. Applications and microscopic mechanism analysis of deep eutectic solvents in liquid–liquid extraction. J. Ind. Eng. Chem. 2024. [CrossRef]
- Alguacil, F.J. Utilizing deep eutectic solvents in the recycle, recovery, purification and miscellaneous uses of rare earth elements. Molecules 2024, 29, 1356. [CrossRef]
- Yu, H.; Li, Z.-Y.; Zhang, Y.-P.; Chai, J.; Men, L.; Gong, X.-J.; Li, K.-K. Efficient biocatalytic conversion of ginsenoside Rd to M1 in a deep eutectic solvent system. Ind. Crops Prod. 2024, 222, 119828. [CrossRef]
- Sugiarto, S.; Aloka Weerasinghe, U.; Kinyanjui Muiruri, J.; Yu Qing Chai, A.; Chee Chuan Yeo, J.; Wang, G.; Zhu, Q.; Jun Loh, X.; Li, Z.; Kai, D. Nanomaterial synthesis in deep eutectic solvents. Chem. Eng. J. 2024, 499, 156177. [CrossRef]
- González-Campos, J. B.; Pérez-Nava, A.; Valle-Sánchez, M.; Delgado-Rangel, L.H. Deep eutectic solvents applications aligned to 2030 United Nations agenda for sustainable development. Chem. Eng. Process. 2024, 199, 109751. [CrossRef]
- Kumar, P.; Banerjee, K.; Kumar, Y. Tailoring novel glycerol-potassium iodide deep eutectic solvents: a comprehensive investigation of physical, structural, and electrochemical properties. J. Mol. Liq. 2024, 414, 126031. [CrossRef]
- Biswas, R. Physicochemical properties and applications of deep eutectic solvents for CO2 capture. Chem. Eng. Technol. 2024, 47, 20-35. [CrossRef]
- Zhang, K.; Wang, R. A critical review on new and efficient adsorbents for CO2 capture. Chem. Eng. J. 2024, 485, 149495. [CrossRef]
- Halim, S.A.; Hatta, N.M.; Razali, N. Deep eutectic solvents vs biomass as carbon precursors: to respond to the need of CO2 capture and energy storage system. J. Anal. Appl. Pyrol. 2024, 181, 106614. [CrossRef]
- Hernández Morales, G.; Sanchez Medina, E.I.; Jiménez-Gutiérrez, A.; Zavala, V.M. Graph neural networks for CO2 solubility predictions in deep eutectic solvents. Comput. Chem. Eng. 2024, 187, 108750. [CrossRef]
- Mohan, M.; Demerdash, O.N.; Simmons, B.A.; Singh, S.; Kidder, M.K.; Smith, J.C. Physics-based machine learning models predict carbon dioxide solubility in chemically reactive deep eutectic solvents. ACS Omega 2024, 9, 19548-19559. [CrossRef]
- Santra, M.; Kunzru, D.; Rabari, D. Understanding the interactions between CO2 and selected choline-based deep eutectic solvents using density functional theory. Fluid Ph.Equilib. 2024, 580, 114038. [CrossRef]
- Krestyaninov M.A.; Kolker A.M. Structure and interactions of CO2 with reline (a 1:2 choline chloride–urea mixture) according to quantum chemical calculations and molecular dynamics simulation. J. Mol. Liq. 2024, 410, 125603. [CrossRef]
- Leal-Duaso, A.; Adjez, Y.; Sánchez-Sánchez, C.M. Role of ionic solvents in the electrocatalytic CO2 conversion and H2 evolution suppression: from ionic liquids to deep eutectic solvents. ChemElectroChem 2024, 11, e202300771. [CrossRef]
- Wang, B.; Zhang, W.; Lv, F.; Dai, Y.; Ren, S.; Wu, W. Advances in CO2 absorption by deep eutectic solvents. J. Chem. Eng. Data 2024. [CrossRef]
- Oke, E.A. Sustainable advancements in hazardous gases capture: harnessing the potential of deep eutectic solvents. Sust. Chem. Environ. 2024, 6, 100083. [CrossRef]
- Bera, N.; Sardar, P.; Hazra, R.; Samanta, A.N.; Sarkar, N. Direct air capture of CO2 by amino acid-functionalized ionic liquid-based deep eutectic solvents. ACS Sust. Chem. Eng. 2024, 12, 14288-14295. [CrossRef]
- Brettfeld, E.G.; Popa, D.G.; Dobre, T.; Moga, C.I.; Constantinescu-Aruxandei, D.; Oancea, F. CO2 capture using deep eutectic solvents integrated with microalgal fixation. Clean Technol. 2024, 6, 32-48. [CrossRef]
- Chen, M.; Zhou, Y.; Lu, Q.; Yang, D. CO2 capture by imidazolium-based deep eutectic solvents: the effect of steric hindrance of N-heterocyclic carbenes. Chem. Comm. 2024, 60, 7061-7064. [CrossRef]
- Chen, M.; Xiong, W.; Chen, W.; Li, S.; Zhang, F.; Wu, Y. Synergy of carbanion siting and hydrogen bonding in super-nucleophilic deep eutectic solvents for efficient CO2 capture. AIChE J. 2024, 70, e18319. [CrossRef]
- Coronel-Muñoz, M.; Romero-García, A.G.; Huerta-Rosas, B.; Sánchez-Ramírez, E.; Segovia-Hernández, J.G. Assessment of the sustainability of intensified CO2 capture schemes. Comput. Aided Chem. Eng. 2024, 53, 967-972. [CrossRef]
- Foorginezhad, S.; Ji, X. Development of monoethanolamine chloride-ethylene diamine deep eutectic solvent for efficient carbon dioxide capture. Sep. Purif. Technol. 2024, 347, 127593. [CrossRef]
- Ghanbari-Kalajahi, H.; Haghtalab, A. High-pressure carbon dioxide solubility in a deep eutectic solvent (choline chloride/MDEA)+sulfolane-experimental study and thermodynamic modeling using PC-SAFT equation of state. Fluid Ph. Equilib. 2024, 580, 114040. [CrossRef]
- Ghanbari-Kalajahi, H.; Haghtalab, A. Vapor-liquid equilibrium of carbon dioxide solubility in a deep eutectic solvent (choline chloride: MDEA) and a mixture of DES with piperazine-experimental study and modeling. J. Mol. Liq. 2023, 375, 121310. [CrossRef]
- He, N.; Chen, Q.; Cong, S.; An, N.; Fan, J.; Song, F.; Zhang, X. Investigation of effective CO2 capture by ternary deep eutectic solvents based on superbase. J. Mol. Liq. 2024, 401, 124755. [CrossRef]
- Jiang, B.; Zhang, C.; Zhou, Q.; Zhang, L.; Li, J.; Tantai, X.; Sun, Y.; Zhang, L. Investigation of efficient and reversible CO2 capture using 1,5-Diazabicyclo[4.3.0]non-5-ene-based quasi-deep eutectic solvents. ACS Sust. Chem. Eng. 2024, 12, 14109-14118. [CrossRef]
- Ju, J.; Choi, D.; Cho, S.; Yoo, Y.; Kang, D. Absorption characteristics and rheological properties of quaternized polyamine-based deep eutectic solvents for high performance CO2 capture. Chem. Eng. J. 2024, 496, 153922. [CrossRef]
- Kassim, M.A.; Alshaghdari, A.G.A.; Yusoff, R.; Aroua, M.K. Synthesis and characterisation of 2-(methylamino)etanol-based deep eutectic solvents for CO2 capture. Malaysian J. Sci. 2024, 43, 26-32. [CrossRef]
- Kontos, G.; Anna Soldatou, M.; Tsivintzelis, I. CO2 solubility in amine based deep eutectic solvents: review of literature data, experimental measurements for choline chloride plus 3-amino-1-propanol or 3-(methylamino)propylamine aqueous solutions and modeling with the modified Kent-Eisenberg model. J. Chem. Thermodyn. 2024, 197, 107327. [CrossRef]
- Makarov, D.M.; Krestyaninov, M.A.; Dyshin, A.A.; Golubev, V.A.; Kolker, A.M. CO2 capture using choline chloride-based eutectic solvents. An experimental and theoretical investigation. J. Mol. Liq. 2024, 413, 125910. [CrossRef]
- Reza Harifi-Mood, A.; Khodaei, A. Solubility of carbon dioxide in Triton X-100 – water – ethaline solvent mixtures at 298.15 K. J. Mol. Liq. 2024, 403, 124845. [CrossRef]
- Romero-García, A.G.; Ramírez-Márquez, C.; Sánchez-Ramírez, E.; Ponce-Ortega, J.M.; González-Campos, J. B.; De Blasio, C.; Segovia-Hernández, J.G. Implementation of the deep eutectic solvent, choline urea chloride (1:2), to evaluate the sustainability of its application during CO2 capture. Process Integr. Optim. Sustain. 2024, 8, 741-758. [CrossRef]
- Rozas, S.; Gutiérrez, A.; Atilhan, M.; Bol, A.; Aparicio, S. Understanding the CO2 capture potential of tetrapropylammonium-based multifunctional deep eutectic solvent via molecular simulation. J. Mol. Liq. 2024, 393, 123416. [CrossRef]
- Shao, Y.; Jiang, Y.; Wang, D.; Guo, B.; Zhao, J.; Zhou, Z.; Chen, J.; Guo, R.; Lei, Y.; Jin, L. A facile synthesis of trioctylphosphine oxide-based azole deep eutectic solvents: efficient reversible CO2 capture. Fuel 2024, 375, 132534. [CrossRef]
- Wang, Y.; Zhang, W.; Ren, S.; Hou, Y.; Wu, W. Rapid absorption and desorption of CO2 by ceep eutectic solvents via reversible CO2-triggered proton transfer process. ACS Sust. Chem. Eng. 2024, 12, 3987-3995. [CrossRef]
- Wen, S.; Wang, T.; Zhang, X.; Hu, X.; Wu, Y. Deep eutectic solvents formed by novel metal-based amino acid salt and dihydric alcohol for highly efficient capture of CO2. J. Environ. Chem. Eng. 2024, 12, 112533. [CrossRef]
- Wen, S.; Zhang, X.; Wu, Y. Efficient absorption of CO2 by protic-ionic-liquid based deep eutectic solvents. Chem. - An Asian J. 2024, 19, e202400234. [CrossRef]
- Yan, M.; Huan, Q.; Zhang, Y.; Fang, W.; Chen, F.; Pariatamby, A.; Kanchanatip, E.; Wibowo, H. Effect of operating parameters on CO2 capture from biogas with choline chloride—monoethanolamine deep eutectic solvent and its aqueous solution. Biomass Convers. Biorefin. 2024, 14, 283-297. [CrossRef]
- Zhao, R.; Zhu, C.; Fu, T.; Gao, X.; Ma, Y. Study on CO2 absorption by EmimCl-MEA deep eutectic solvent in microchannel. Chem. Eng. Process. 2024, 202, 109859. [CrossRef]
- Zhen, Y.; Zhu, C.; Fu, T.; Ma, Y. CO2 capture performance of AMP-EAE amine blends: absorption in the microchannel and desorption from saturated solutions. J. Environ. Chem. Eng. 2024, 12, 114131. [CrossRef]
- Zhan, G.; Chen, Z.; Xing, L.; Yuan, B.; Huang, Z.; Liu, X.; Zhang, Y.; Chen, J.; Li, J. Simulation and optimization for flue gas CO2 capture by energy efficient water-lean ionic liquid solvent. Chem. Eng. J. 2024, 499, 156442. [CrossRef]
- Fan, J.; Zhang X.; He N.; Song F.; Qu, H. Deep eutectic solvent + water system in carbon dioxide absorption. Molecules 2024, 29, 3579. [CrossRef]
- Fan, J.; Zhang, X.; He, N.; Song, F.; Zhang, X. Physical absorption and thermodynamic modeling of CO2 in new deep eutectic solvents. J. Mol. Liq. 2024, 402, 124752. [CrossRef]
- Li, X.; Shao, B.; Lian, X.; Wei, K.; Li, T.; Zhong, M.; Hu, J.; Wang, X. CO2 absorption by ethanolamine-based ternary deep eutectic solvents. Huadong Ligong Daxue Xuebao/J. East China Univ. Sci. Technol. 2024, 50, 208-213. [CrossRef]
- Yu, J.; Guan, S.; Zhang X.; Xu, B.; Guan, T.; Li, K.; Wang, J. Deep eutectic solvents based on cyclodextrin-monoethanolamine for high-efficiency carbon dioxide capture under high temperature. J. Environ. Chem. Eng. 2024, 12, 111625. [CrossRef]
- Manafpour, A.A.; Feyzi F.; Rezaee, M. An environmentally friendly deep eutectic solvent for CO2 capture. Sci. Rep. 2024, 14, 19744. [CrossRef]
- Anwer, S.; Alkhatib, I.I.I.; Salih, H.A.; Vega, L.F.; AlNashef, I. Investigating the role of water on CO2 capture by amine-based deep eutectic solvents through a combined experimental-molecular modeling approach. Sep. Purif. Technol. 2024, 330, 125350. [CrossRef]
- Zhang, Y.; Zhu C.; Fu, T.; Gao, X.; Ma, Y.; Li, H.Z. CO2 absorption and desorption performance by ChCl-MEA-PZ deep eutectic solvent aqueous solutions. Sep. Purif. Technol. 2024, 330, 125275. [CrossRef]
- Jassim, M.N.; Mohammed T.J.; Karim, A.M.A. Experimental investigation of CO2 Solubility in new amine-based deep eutectic solvents. Tikrit J. Eng. Sci. 2024, 31, 262-277. [CrossRef]
- Murshid, G.; Nasrifar, K.; Naser, J.; Mjalli, F.S.; Pishro, K. Experimental measurement and thermodynamic modelling of the solubility of carbon dioxide in deep eutectic solvent. Brazilian J. Chem. Eng. 2024. [CrossRef]
- Ansari, A.; Ghaemi, A.; Shahhosseini, S. Impregnation of nanoclay montmorillonite by choline chloride-urea for selective CO2, N2, and O2 adsorption: experimental and modeling. Arabian J. Chem. 2024, 17, 105688. [CrossRef]
- Ansari, A.; Shahhosseini, S. Investigations and optimization of CO2 capture using a new composite of montmorillonite and choline-chloride-urea in a continuous fixed bed; breakthrough and RSM modeling. Case Stud. Chem. Environ. Eng. 2024, 10, 100895. [CrossRef]
- Foorginezhad, S.; Ji, X. Developing slurry based on immobilized and aqueous [MEACl][EDA] for CO2 capture. Chem. Eng. J. 2024, 499, 156176. [CrossRef]
- Guo, T.; Zhu, D.; Zhao, C.; Xu, Y.; Wang, J.; Xie, H.; Mahian, O.; Yu, W. Efficient solar-driven carbon dioxide capture system for greenhouse using graphene-contained deep eutectic solvents. Sep. Purif. Technol. 2024, 332, 125754. [CrossRef]
- Jahanbakhshi, M.; Ghaemi, A.; Helmi, M. Impregnation of silica gel with choline chloride-MEA as an eco-friendly adsorbent for CO2 capture. Sci. Rep. 2024, 14, 15208. [CrossRef]
- Noorani, N.; Mehrdad, A. Improving the separation of CO2/N2 using impregnation of a deep eutectic solvent on a porous MOF. ACS Omega 2024, 9, 9516-9525. [CrossRef]
- Ishaq, M.; Saeed, U.; Belousov, A.S.; Qamar, S.; Shafique, S.; Afzal, Z.M.; Arshad, I.; Shafiq, I. Performance tuning of surface modified ceria based mixed matrix membrane for effective CO2 separation. J. Appl. Polym. Sci. 2024, 141, e56084. [CrossRef]
| Betaine:1,2-propanediol:1,8-diazabiocyclo(5.4.0)undec-7-ene Betaine:1,2-propanediol: 1,5-diazabicyclo(4.3.0.)non-5-ene Betaine:1,2-propanediol:1,1,3,3-tetramethylguanidine Betaine:diethylene glycol:1,8-diazabicyclo(5.4.0)undec-7-ene Betaine:diethylene glycol:1,5-diazabicyclo(4.3.0)non-5-ene Betaine:diethylene glycol:1,1,3,3-tetramethylguanidine |
| Absorbent | g CO2/g absorbent |
|---|---|
| MEA ChCl-MEA ChCl-Apr ChCl-U ChCl-F |
0.32 0.22 0.18 nil nil |
| HBA | HBD | aCO2 uptake, mol/mol |
|---|---|---|
| TOPO | Im 4-MIm Py 3-AP 123-Tz 124-Tz |
0.062 0.063 0.026 0.033 0.051 0.031 |
| DES | aCO2 uptake, mol/mol | aCO2/N2 selectivity |
|---|---|---|
| [DMAPAH][Ac]-Im [DMAPAH][Ac]-EIm [DMAPAH][Ac]-1,2,3-Tri [DMAPAH][Ac]-Dmee |
0.50 0.53 0.48 0.69 |
29.3 28.9 34.6 38.0 |
| DES | CO2, uptake, mol/mol | Reference |
|---|---|---|
| [N2222][Lys]:EG [N2222][Ala].EG ChCl:EG:MEA (1:2:1) ChCl:MEA (1:8) [IiPim][Triz]:EG (1.5) DBN:EG [TEPA][Cl3]:EDA ChCl:MAPA (4.92%:25.05%) ChCl:MEA (1:5) AMP:EAE (1:3) ChCl:MEA (1:6) EAHC:DETA (1:9) |
1.2 0.81 0.29 0.65 0.99 2.0 4.2 1.4 0.61 a0.96 0.38 3.8 |
[34] [34] [35] [35] [36] [43] [44] [46] [55] [57] [66] [67] |
| Temperature, ºC | CO2 uptake, wt% |
|---|---|
| 5 22 40 60 80 |
25.3 25 22 20 12.5 |
| Membrane | CO2 permeation, barrer | CO2/CH4 | CO2/N2 |
|---|---|---|---|
| Polysulfone Polysulfone-CeO2 Polysulfone-CeO2-DES (2%) Polysulfone-CeO2-DES (5%) Polysulfone-CeO2-DES (10%) Polysulfone-CeO2-DES (15%) |
27.2 30.2 33.1 41.4 45.6 48.2 |
46 47 49 60 61 62 |
53 50 58 79 78 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
