Submitted:
05 March 2025
Posted:
05 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Epidemiology and Impact of Wound-Associated Itch
3. Physiology of Wound Healing
4. Pathophysiology of chronic wounds
5. Why Are Wounds Itchy
5.1. Overlap Between Mediators of Wound Healing and Itch
5.2. Neuronal Activity
5.3. Microbial Factors
5.4. Other Factors
6. Itch Associated with Burns
7. Itch Associated with Cutaneous Ulcers
8. The Special Case of Epidermolysis Bullosa
9. Management of Wound-Related Itch
4. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
| AD | Atopic dermatitis |
| CGRP | Calcitonin gene-related peptide |
| CXCL10 | C-X-C motif chemokine 10 |
| CXCR3 | C-X-C motif chemokine receptor 3 |
| CysLT2 | Cysteinyl leukotriene receptor 2 |
| CVI | Chronic venous insufficiency |
| DEB | Dystrophic epidermolysis bullosa |
| DETC | Dendritic epidermal T cells |
| DRG | Dorsal root ganglia |
| EB | Epidermolysis bullosa |
| ECM | Extracellular matrix |
| GRP | Gastrin-releasing peptide |
| GRPR | Gastrin-releasing peptide receptor |
| HRH | Histamine receptor |
| HTR | Hydroxytryptamine receptor |
| IGF | Insulin growth factor |
| IL | Interleukin |
| JAK | Janus kinase |
| KGF | Keratinocyte growth factors |
| LPA | Lysophosphatidic acid |
| LT | Leukotriene |
| MMP | Matrix metalloproteinase |
| Mrgpr | Mas-related G-protein-coupled receptor |
| NGF | Nerve growth factor |
| NMB | Neuromedin B |
| NPY | Neuropeptide Y |
| NRS | Numerical rating scale |
| PAF | Platelet-activating factor |
| PAR | Protein activated receptor |
| QoL | Quality of life |
| ROS | Reactive oxygen species |
| SD | Stasis dermatitis |
| SP | Substance P |
| TGF | Transforming growth factor |
| TRP | Transient receptor potential |
| TSLP | Thymic stromal lymphopoietin |
References
- Kujath P, Michelsen A. Wounds - from physiology to wound dressing. Dtsch Arztebl Int. 2008;105(13):239-48.
- Robson MC, Barbul A. Guidelines for the best care of chronic wounds. Wound Repair Regen. 2006;14(6):647-8. [CrossRef]
- [Internet]. Io. Chronic wounds: Learn More – What are the treatment options for chronic wounds? Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006 [updated 2022 Aug 8. Available from: https://www.ncbi.nlm.nih.gov/books/NBK326436/.
- Paul J. Characteristics of chronic wounds that itch. Adv Skin Wound Care. 2013;26(7):320-32; quiz 33-4. [CrossRef]
- Hareendran A, Bradbury A, Budd J, Geroulakos G, Hobbs R, Kenkre J, et al. Measuring the impact of venous leg ulcers on quality of life. J Wound Care. 2005;14(2):53-7. [CrossRef]
- Upton D, Richardson C, Andrews A, Rippon M. Wound pruritus: prevalence, aetiology and treatment. J Wound Care. 2013;22(9):501-8. [CrossRef]
- Iannone M, Janowska A, Dini V, Tonini G, Oranges T, Romanelli M. Itch in Chronic Wounds: Pathophysiology, Impact, and Management. Medicines (Basel). 2019;6(4). [CrossRef]
- Paul JC. Wound Itch: An Update. Adv Skin Wound Care. 2024;37(9):463-9. [CrossRef]
- Woo K, Santamaria N, Beeckman D, Alves P, Cullen B, Gefen A, et al. Using patient-reported experiences to inform the use of foam dressings for hard-to-heal wounds: perspectives from a wound care expert panel. J Wound Care. 2024;33(11):814-22. [CrossRef]
- Andrade LF, Abdi P, Kooner A, Eldaboush AM, Dhami RK, Natarelli N, et al. Treatment of post-burn pruritus - A systematic review and meta-analysis. Burns. 2024;50(2):293-301. [CrossRef]
- Martinengo L, Olsson M, Bajpai R, Soljak M, Upton Z, Schmidtchen A, et al. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann Epidemiol. 2019;29:8-15. [CrossRef]
- Carter MJ, DaVanzo J, Haught R, Nusgart M, Cartwright D, Fife CE. Chronic wound prevalence and the associated cost of treatment in Medicare beneficiaries: changes between 2014 and 2019. J Med Econ. 2023;26(1):894-901. [CrossRef]
- Paul J. A cross-sectional study of chronic wound-related pain and itching. Ostomy Wound Manage. 2013;59(7):28-34.
- Maida V, Ennis M, Kuziemsky C. The Toronto Symptom Assessment System for Wounds: a new clinical and research tool. Adv Skin Wound Care. 2009;22(10):468-74.
- Zhou L, Tang J, Cai Q, Wang YR, Wan Y, Lu X, et al. Survey of factors related to diabetic foot pruritus in the elderly in Shanghai. Int Wound J. 2023;20(6):2020-7. [CrossRef]
- Romeo C, Buscemi CP. Treating a chronic wound in a nonadherent patient: a case study. J Wound Ostomy Continence Nurs. 2013;40(2):195-7.
- de Vere Hunt I, Halley M, Sum K, Yekrang K, Phung M, Good J, et al. A qualitative exploration of the experiences of itch for adults living with epidermolysis bullosa. Br J Dermatol. 2022;187(2):261-3. [CrossRef]
- Grubbs H, Manna B. Wound Physiology. StatPearls. Treasure Island (FL)2024.
- Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care. 2012;25(7):304-14.
- Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. StatPearls. Treasure Island (FL)2024.
- Khalid KA, Nawi AFM, Zulkifli N, Barkat MA, Hadi H. Aging and Wound Healing of the Skin: A Review of Clinical and Pathophysiological Hallmarks. Life (Basel). 2022;12(12). [CrossRef]
- McDaniel JC, Browning KK. Smoking, chronic wound healing, and implications for evidence-based practice. J Wound Ostomy Continence Nurs. 2014;41(5):415-23; quiz E1-2.
- Garcia Hidalgo L. Dermatological complications of obesity. Am J Clin Dermatol. 2002;3(7):497-506.
- Seth I, Lim B, Cevik J, Gracias D, Chua M, Kenney PS, et al. Impact of nutrition on skin wound healing and aesthetic outcomes: A comprehensive narrative review. JPRAS Open. 2024;39:291-302. [CrossRef]
- Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells. 2022;11(19). [CrossRef]
- Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol. 2024;22(8):507-21. [CrossRef]
- Todd M. Compression therapy for chronic oedema and venous leg ulcers: CoFlex TLC Calamine. Br J Nurs. 2019;28(12):S32-S7. [CrossRef]
- Gompelman M, van Asten SAV, Peters EJG. Update on the Role of Infection and Biofilms in Wound Healing: Pathophysiology and Treatment. Plast Reconstr Surg. 2016;138(3 Suppl):61S-70S. [CrossRef]
- Canedo-Dorantes L, Canedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int J Inflam. 2019;2019:3706315. [CrossRef]
- Adib Y, Bensussan A, Michel L. Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm. 2022;2022:5344085. [CrossRef]
- Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen. 2007;15(5):708-17. [CrossRef]
- Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, et al. A role for skin gammadelta T cells in wound repair. Science. 2002;296(5568):747-9.
- Ribot JC, Lopes N, Silva-Santos B. gammadelta T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21(4):221-32.
- Wang Y, Bai Y, Li Y, Liang G, Jiang Y, Liu Z, et al. IL-15 Enhances Activation and IGF-1 Production of Dendritic Epidermal T Cells to Promote Wound Healing in Diabetic Mice. Front Immunol. 2017;8:1557. [CrossRef]
- Theilgaard-Monch K, Knudsen S, Follin P, Borregaard N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J Immunol. 2004;172(12):7684-93. [CrossRef]
- Chen C, Yang J, Shang R, Tang Y, Cai X, Chen Y, et al. Orchestration of Macrophage Polarization Dynamics by Fibroblast-Secreted Exosomes during Skin Wound Healing. J Invest Dermatol. 2025;145(1):171-84 e6. [CrossRef]
- Walker JT, McLeod K, Kim S, Conway SJ, Hamilton DW. Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res. 2016;365(3):453-65. [CrossRef]
- Ko UH, Choi J, Choung J, Moon S, Shin JH. Physicochemically Tuned Myofibroblasts for Wound Healing Strategy. Sci Rep. 2019;9(1):16070. [CrossRef]
- Bray ER, Cheret J, Yosipovitch G, Paus R. Schwann cells as underestimated, major players in human skin physiology and pathology. Exp Dermatol. 2020;29(1):93-101. [CrossRef]
- Barrick B, Campbell EJ, Owen CA. Leukocyte proteinases in wound healing: roles in physiologic and pathologic processes. Wound Repair Regen. 1999;7(6):410-22. [CrossRef]
- Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514-25. [CrossRef]
- Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuna JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020;21(24). [CrossRef]
- Hanna KR, Katz AJ. An update on wound healing and the nervous system. Ann Plast Surg. 2011;67(1):49-52. [CrossRef]
- Ge S, Khachemoune A. Neuroanatomy of the Cutaneous Nervous System Regarding Wound Healing. Int J Low Extrem Wounds. 2024;23(2):191-204. [CrossRef]
- Theocharidis G, Veves A. Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton Neurosci. 2020;223:102610. [CrossRef]
- Thamm OC, Koenen P, Bader N, Schneider A, Wutzler S, Neugebauer EA, et al. Acute and chronic wound fluids influence keratinocyte function differently. Int Wound J. 2015;12(2):143-9. [CrossRef]
- Theocharidis G, Baltzis D, Roustit M, Tellechea A, Dangwal S, Khetani RS, et al. Integrated Skin Transcriptomics and Serum Multiplex Assays Reveal Novel Mechanisms of Wound Healing in Diabetic Foot Ulcers. Diabetes. 2020;69(10):2157-69. [CrossRef]
- Stone RC, Stojadinovic O, Rosa AM, Ramirez HA, Badiavas E, Blumenberg M, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci Transl Med. 2017;9(371). [CrossRef]
- Tellechea A, Bai S, Dangwal S, Theocharidis G, Nagai M, Koerner S, et al. Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. J Invest Dermatol. 2020;140(4):901-11 e11. [CrossRef]
- Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89-96. [CrossRef]
- Maheswary T, Nurul AA, Fauzi MB. The Insights of Microbes’ Roles in Wound Healing: A Comprehensive Review. Pharmaceutics. 2021;13(7). [CrossRef]
- Leaper D, Assadian O, Edmiston CE. Approach to chronic wound infections. Br J Dermatol. 2015;173(2):351-8. [CrossRef]
- Campbell AE, McCready-Vangi AR, Uberoi A, Murga-Garrido SM, Lovins VM, White EK, et al. Variable staphyloxanthin production by Staphylococcus aureus drives strain-dependent effects on diabetic wound-healing outcomes. Cell Rep. 2023;42(10):113281. [CrossRef]
- Yokota M, Haffner N, Kassier M, Brunner M, Shambat SM, Brennecke F, et al. Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing. FASEB J. 2021;35(7):e21695. [CrossRef]
- Athanasopoulos AN, Economopoulou M, Orlova VV, Sobke A, Schneider D, Weber H, et al. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood. 2006;107(7):2720-7.
- Shen S, Miskolci V, Dewey CN, Sauer JD, Huttenlocher A. Infection induced inflammation impairs wound healing through IL-1beta signaling. iScience. 2024;27(4):109532. [CrossRef]
- Eriksson E, Liu PY, Schultz GS, Martins-Green MM, Tanaka R, Weir D, et al. Chronic wounds: Treatment consensus. Wound Repair Regen. 2022;30(2):156-71. [CrossRef]
- Xu J, Zanvit P, Hu L, Tseng PY, Liu N, Wang F, et al. The Cytokine TGF-beta Induces Interleukin-31 Expression from Dermal Dendritic Cells to Activate Sensory Neurons and Stimulate Wound Itching. Immunity. 2020;53(2):371-83 e5. [CrossRef]
- M C, G G, F R, A A, M T, A F, et al. Evaluation of a Gel Containing a Propionibacterium Extract in an In Vivo Model of Wound Healing. Int J Mol Sci. 2022;23(9).
- Stander S, Yosipovitch G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Br J Dermatol. 2019;181(5):932-8. [CrossRef]
- Rogoz K, Andersen HH, Lagerstrom MC, Kullander K. Multimodal use of calcitonin gene-related peptide and substance P in itch and acute pain uncovered by the elimination of vesicular glutamate transporter 2 from transient receptor potential cation channel subfamily V member 1 neurons. J Neurosci. 2014;34(42):14055-68. [CrossRef]
- Kupczyk P, Reich A, Gajda M, Holysz M, Wysokinska E, Paprocka M, et al. UCHL1/PGP 9.5 Dynamic in Neuro-Immune-Cutaneous Milieu: Focusing on Axonal Nerve Terminals and Epidermal Keratinocytes in Psoriatic Itch. Biomed Res Int. 2018;2018:7489316. [CrossRef]
- Gunawardena DA, Stanley E, Issler-Fisher AC. Understanding Neural Factors in Burn-related Pruritus and Neuropathic Pain. J Burn Care Res. 2023;44(5):1182-8. [CrossRef]
- Yin SL, Qin ZL, Yang X. Role of periostin in skin wound healing and pathologic scar formation. Chin Med J (Engl). 2020;133(18):2236-8. [CrossRef]
- Mishra SK, Wheeler JJ, Pitake S, Ding H, Jiang C, Fukuyama T, et al. Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep. 2020;31(1):107472. [CrossRef]
- Emmerson E. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds. J Invest Dermatol. 2017;137(3):543-5. [CrossRef]
- Sebastian A, Iqbal SA, Colthurst J, Volk SW, Bayat A. Electrical stimulation enhances epidermal proliferation in human cutaneous wounds by modulating p53-SIVA1 interaction. J Invest Dermatol. 2015;135(4):1166-74. [CrossRef]
- Harsum S, Clarke JD, Martin P. A reciprocal relationship between cutaneous nerves and repairing skin wounds in the developing chick embryo. Dev Biol. 2001;238(1):27-39. [CrossRef]
- Malenfant A, Forget R, Papillon J, Amsel R, Frigon JY, Choiniere M. Prevalence and characteristics of chronic sensory problems in burn patients. Pain. 1996;67(2-3):493-500. [CrossRef]
- Palanivelu V, Maghami S, Wallace HJ, Wijeratne D, Wood FM, Fear MW. Loss of Type A neuronal cells in the dorsal root ganglion after a non-severe full-thickness burn injury in a rodent model. Burns. 2018;44(7):1792-800. [CrossRef]
- Saffari TM, Schuttenhelm BN, van Neck JW, Holstege JC. Nerve reinnervation and itch behavior in a rat burn wound model. Wound Repair Regen. 2018;26(1):16-26. [CrossRef]
- Keim K, Bhattacharya M, Crosby HA, Jenul C, Mills K, Schurr M, et al. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. bioRxiv. 2024.
- Gallo RL, Horswill AR. Staphylococcus aureus: The Bug Behind the Itch in Atopic Dermatitis. J Invest Dermatol. 2024;144(5):950-3. [CrossRef]
- Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411-7. [CrossRef]
- Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, Yousuf MS, et al. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell. 2023;186(24):5375-93 e25. [CrossRef]
- Kim J, Stechmiller J, Weaver M, James G, Stewart PS, Lyon D. Associations Among Wound-Related Factors Including Biofilm, Wound-Related Symptoms and Systemic Inflammation in Older Adults with Chronic Venous Leg Ulcers. Adv Wound Care (New Rochelle). 2024;13(10):518-27. [CrossRef]
- Lerner E. Why Do Wounds Itch? Wounds. 2018;30(1):1-3.
- Sim P, Strudwick XL, Song Y, Cowin AJ, Garg S. Influence of Acidic pH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int J Mol Sci. 2022;23(21). [CrossRef]
- Hindhede A, Meuleneire F. A clinical case-series evaluation of a superabsorbent dressing on exuding wounds. J Wound Care. 2012;21(11):574, 6-80. [CrossRef]
- Imbernon-Moya A, Ortiz-de Frutos FJ, Sanjuan-Alvarez M, Portero-Sanchez I, Merinero-Palomares R, Alcazar V. Pain and analgesic drugs in chronic venous ulcers with topical sevoflurane use. J Vasc Surg. 2018;68(3):830-5. [CrossRef]
- Abbade LPF, Barraviera S, Silvares MRC, Lima A, Haddad GR, Gatti MAN, et al. Treatment of Chronic Venous Ulcers With Heterologous Fibrin Sealant: A Phase I/II Clinical Trial. Front Immunol. 2021;12:627541. [CrossRef]
- Knight Nee Shingler SL, Robertson L, Stewart M. Graduated compression stockings for the initial treatment of varicose veins in people without venous ulceration. Cochrane Database Syst Rev. 2021;7(7):CD008819. [CrossRef]
- Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest. 2006;116(5):1174-86. [CrossRef]
- Nedorost ST, Stevens SR. Diagnosis and treatment of allergic skin disorders in the elderly. Drugs Aging. 2001;18(11):827-35. [CrossRef]
- Pannu CD, Farooque Md K. Allergic Contact Dermatitis to Octyl Cyanoacrylate Skin Glue After Surgical Wound Closure: A Systematic Review. Dermatitis. 2024;35(5):443-66. [CrossRef]
- Berkay AF, Buyukkuscu MO. Vicryl Reaction Following Arthroscopic Surgery: A Case Report. Cureus. 2024;16(7):e65255. [CrossRef]
- So SP, Yoon JY, Kim JW. Postoperative contact dermatitis caused by skin adhesives used in orthopedic surgery: Incidence, characteristics, and difference from surgical site infection. Medicine (Baltimore). 2021;100(20):e26053. [CrossRef]
- Bollemeijer JF, Zheng KJ, van der Meer AM, Ikram MK, Kavousi M, Brouwer WP, et al. Lifetime prevalence and associated factors of itch with skin conditions: atopic dermatitis, psoriasis and dry skin in individuals aged > 50 years. Clin Exp Dermatol. 2024;49(9):1036-43. [CrossRef]
- Obanigba G, Jay JW, Wolf S, Golovko G, Song J, Obi A, et al. Pre-existing skin diseases as predictors of post-burn pruritus. Am J Surg. 2024;236:115427. [CrossRef]
- Khalil NB, Coscarella G, Dhabhar FS, Yosipovitch G. A Narrative Review on Stress and Itch: What We Know and What We Would Like to Know. J Clin Med. 2024;13(22). [CrossRef]
- Goutos I. Neuropathic mechanisms in the pathophysiology of burns pruritus: redefining directions for therapy and research. J Burn Care Res. 2013;34(1):82-93.
- Nedelec B, LaSalle L. Postburn Itch: A Review of the Literature. Wounds. 2018;30(1):E118-E24.
- Carrougher GJ, Martinez EM, McMullen KS, Fauerbach JA, Holavanahalli RK, Herndon DN, et al. Pruritus in adult burn survivors: postburn prevalence and risk factors associated with increased intensity. J Burn Care Res. 2013;34(1):94-101.
- Schneider JC, Nadler DL, Herndon DN, Kowalske K, Matthews K, Wiechman SA, et al. Pruritus in pediatric burn survivors: defining the clinical course. J Burn Care Res. 2015;36(1):151-8.
- Zuccaro J, Budd D, Kelly C, Fish JS. Pruritus in the Pediatric Burn Population. J Burn Care Res. 2022;43(5):1175-9. [CrossRef]
- Stewart D, Caradec J, Ziegfeld S, Reynolds E, Ostrander R, Parrish C. Predictors and Correlates of Pediatric Postburn Pruritus in Preschool Children of Ages 0 to 4. J Burn Care Res. 2019;40(6):930-5. [CrossRef]
- Nieuwendijk SMP, de Korte IJ, Pursad MM, van Dijk M, Rode H. Post burn pruritus in pediatric burn patients. Burns. 2018;44(5):1151-8. [CrossRef]
- Van Loey NE, Bremer M, Faber AW, Middelkoop E, Nieuwenhuis MK. Itching following burns: epidemiology and predictors. Br J Dermatol. 2008;158(1):95-100. [CrossRef]
- Tracy LM, Edgar DW, Schrale R, Cleland H, Gabbe BJ, sites BAL-TOPPp, et al. Predictors of itch and pain in the 12 months following burn injury: results from the Burns Registry of Australia and New Zealand (BRANZ) Long-Term Outcomes Project. Burns Trauma. 2020;8:tkz004. [CrossRef]
- Prasad A, Thode HC, Jr., Sandoval S, Singer AJ. The association of patient and burn characteristics with itching and pain severity. Burns. 2019;45(2):348-53. [CrossRef]
- Mauck MC, Smith J, Shupp JW, Weaver MA, Liu A, Bortsov AV, et al. Pain and itch outcome trajectories differ among European American and African American survivors of major thermal burn injury. Pain. 2017;158(11):2268-76. [CrossRef]
- Samhan AF, Abdelhalim NM. Impacts of low-energy extracorporeal shockwave therapy on pain, pruritus, and health-related quality of life in patients with burn: A randomized placebo-controlled study. Burns. 2019;45(5):1094-101. [CrossRef]
- McGovern C, Quasim T, Puxty K, Shaw M, Ng W, Gilhooly C, et al. Neuropathic agents in the management of pruritus in burn injuries: a systematic review and meta-analysis. Trauma Surg Acute Care Open. 2021;6(1):e000810. [CrossRef]
- Yang YS, Cho SI, Choi MG, Choi YH, Kwak IS, Park CW, et al. Increased expression of three types of transient receptor potential channels (TRPA1, TRPV4 and TRPV3) in burn scars with post-burn pruritus. Acta Derm Venereol. 2015;95(1):20-4. [CrossRef]
- Park CW, Kim HJ, Choi YW, Chung BY, Woo SY, Song DK, et al. TRPV3 Channel in Keratinocytes in Scars with Post-Burn Pruritus. Int J Mol Sci. 2017;18(11). [CrossRef]
- Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med. 1993;177(6):1809-14. [CrossRef]
- Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci. 2018;19(10). [CrossRef]
- Shiraha H, Glading A, Gupta K, Wells A. IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. J Cell Biol. 1999;146(1):243-54. [CrossRef]
- Qu L, Fu K, Yang J, Shimada SG, LaMotte RH. CXCR3 chemokine receptor signaling mediates itch in experimental allergic contact dermatitis. Pain. 2015;156(9):1737-46. [CrossRef]
- Walsh CM, Hill RZ, Schwendinger-Schreck J, Deguine J, Brock EC, Kucirek N, et al. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. Elife. 2019;8. [CrossRef]
- Allen JE. IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annu Rev Immunol. 2023;41:229-54. [CrossRef]
- Lauterbach AL, Wallace RP, Alpar AT, Refvik KC, Reda JW, Ishihara A, et al. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. NPJ Regen Med. 2023;8(1):49. [CrossRef]
- Roeb E. Interleukin-13 (IL-13)-A Pleiotropic Cytokine Involved in Wound Healing and Fibrosis. Int J Mol Sci. 2023;24(16). [CrossRef]
- Salmon-Ehr V, Ramont L, Godeau G, Birembaut P, Guenounou M, Bernard P, et al. Implication of interleukin-4 in wound healing. Lab Invest. 2000;80(8):1337-43. [CrossRef]
- Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell. 2017;171(1):217-28 e13. [CrossRef]
- Mack MR, Miron Y, Chen F, Miller PE, Zhang A, Korotzer A, et al. Type 2 cytokines sensitize human sensory neurons to itch-associated stimuli. Front Mol Neurosci. 2023;16:1258823. [CrossRef]
- Kuzumi A, Yoshizaki A, Matsuda KM, Kotani H, Norimatsu Y, Fukayama M, et al. Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat Commun. 2021;12(1):5947. [CrossRef]
- Nemmer JM, Kuchner M, Datsi A, Olah P, Julia V, Raap U, et al. Interleukin-31 Signaling Bridges the Gap Between Immune Cells, the Nervous System and Epithelial Tissues. Front Med (Lausanne). 2021;8:639097. [CrossRef]
- Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133(2):448-60. [CrossRef]
- Fassett MS, Braz JM, Castellanos CA, Salvatierra JJ, Sadeghi M, Yu X, et al. IL-31-dependent neurogenic inflammation restrains cutaneous type 2 immune response in allergic dermatitis. Sci Immunol. 2023;8(88):eabi6887. [CrossRef]
- Raap U, Gehring M, Kleiner S, Rudrich U, Eiz-Vesper B, Haas H, et al. Human basophils are a source of - and are differentially activated by - IL-31. Clin Exp Allergy. 2017;47(4):499-508.
- Numata Y, Terui T, Okuyama R, Hirasawa N, Sugiura Y, Miyoshi I, et al. The accelerating effect of histamine on the cutaneous wound-healing process through the action of basic fibroblast growth factor. J Invest Dermatol. 2006;126(6):1403-9. [CrossRef]
- Gutowska-Owsiak D, Selvakumar TA, Salimi M, Taylor S, Ogg GS. Histamine enhances keratinocyte-mediated resolution of inflammation by promoting wound healing and response to infection. Clin Exp Dermatol. 2014;39(2):187-95. [CrossRef]
- Wolak M, Bojanowska E, Staszewska T, Piera L, Szymanski J, Drobnik J. Histamine augments collagen content via H1 receptor stimulation in cultures of myofibroblasts taken from wound granulation tissue. Mol Cell Biochem. 2021;476(2):1083-92. [CrossRef]
- Hatamochi A, Ueki H, Mauch C, Krieg T. Effect of histamine on collagen and collagen m-RNA production in human skin fibroblasts. J Dermatol Sci. 1991;2(6):407-12. [CrossRef]
- Thurmond RL, Kazerouni K, Chaplan SR, Greenspan AJ. Peripheral Neuronal Mechanism of Itch: Histamine and Itch. In: Carstens E, Akiyama T, editors. Itch: Mechanisms and Treatment. Frontiers in Neuroscience. Boca Raton (FL)2014.
- Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjork HE. Specific C-receptors for itch in human skin. J Neurosci. 1997;17(20):8003-8. [CrossRef]
- Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7(7):535-47. [CrossRef]
- Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 2007;27(9):2331-7. [CrossRef]
- Mommert S, Schaper JT, Schaper-Gerhardt K, Gutzmer R, Werfel T. Histamine Increases Th2 Cytokine-Induced CCL18 Expression in Human M2 Macrophages. Int J Mol Sci. 2021;22(21). [CrossRef]
- Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121(6):1008-15. [CrossRef]
- Mann DA, Oakley F. Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):905-10. [CrossRef]
- Sadiq A, Shah A, Jeschke MG, Belo C, Qasim Hayat M, Murad S, et al. The Role of Serotonin during Skin Healing in Post-Thermal Injury. Int J Mol Sci. 2018;19(4). [CrossRef]
- Lofdahl A, Rydell-Tormanen K, Muller C, Martina Holst C, Thiman L, Ekstrom G, et al. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep. 2016;4(15). [CrossRef]
- Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, et al. HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron. 2015;87(1):124-38. [CrossRef]
- Zhao ZQ, Liu XY, Jeffry J, Karunarathne WK, Li JL, Munanairi A, et al. Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling. Neuron. 2014;84(4):821-34. [CrossRef]
- Domocos D, Selescu T, Ceafalan LC, Iodi Carstens M, Carstens E, Babes A. Role of 5-HT1A and 5-HT3 receptors in serotonergic activation of sensory neurons in relation to itch and pain behavior in the rat. J Neurosci Res. 2020;98(10):1999-2017. [CrossRef]
- Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, et al. Involvement of TRPV4 in Serotonin-Evoked Scratching. J Invest Dermatol. 2016;136(1):154-60. [CrossRef]
- Lee SH, Tonello R, Choi Y, Jung SJ, Berta T. Sensory Neuron-Expressed TRPC4 Is a Target for the Relief of Psoriasiform Itch and Skin Inflammation in Mice. J Invest Dermatol. 2020;140(11):2221-9 e6. [CrossRef]
- Mogren S, Berlin F, Ramu S, Sverrild A, Porsbjerg C, Uller L, et al. Mast cell tryptase enhances wound healing by promoting migration in human bronchial epithelial cells. Cell Adh Migr. 2021;15(1):202-14. [CrossRef]
- Ng MF. The role of mast cells in wound healing. Int Wound J. 2010;7(1):55-61. [CrossRef]
- Garbuzenko E, Nagler A, Pickholtz D, Gillery P, Reich R, Maquart FX, et al. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin Exp Allergy. 2002;32(2):237-46. [CrossRef]
- Abe M, Kurosawa M, Ishikawa O, Miyachi Y. Effect of mast cell-derived mediators and mast cell-related neutral proteases on human dermal fibroblast proliferation and type I collagen production. J Allergy Clin Immunol. 2000;106(1 Pt 2):S78-84. [CrossRef]
- Xiang Y, Jiang Y, Lu L. Low-Dose Trypsin Accelerates Wound Healing via Protease-Activated Receptor 2. ACS Pharmacol Transl Sci. 2024;7(1):274-84. [CrossRef]
- White MJ, Glenn M, Gomer RH. Trypsin potentiates human fibrocyte differentiation. PLoS One. 2013;8(8):e70795. [CrossRef]
- Abbott RE, Corral CJ, MacIvor DM, Lin X, Ley TJ, Mustoe TA. Augmented inflammatory responses and altered wound healing in cathepsin G-deficient mice. Arch Surg. 1998;133(9):1002-6. [CrossRef]
- Anes E, Pires D, Mandal M, Azevedo-Pereira JM. Spatial localization of cathepsins: Implications in immune activation and resolution during infections. Front Immunol. 2022;13:955407. [CrossRef]
- Sun M, Chen M, Liu Y, Fukuoka M, Zhou K, Li G, et al. Cathepsin-L contributes to cardiac repair and remodelling post-infarction. Cardiovasc Res. 2011;89(2):374-83. [CrossRef]
- Siiskonen H, Harvima I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front Cell Neurosci. 2019;13:422. [CrossRef]
- Tsujii K, Andoh T, Ui H, Lee JB, Kuraishi Y. Involvement of Tryptase and Proteinase-Activated Receptor-2 in Spontaneous Itch-Associated Response in Mice With Atopy-like Dermatitis. J Pharmacol Sci. 2009;109(3):388-95. [CrossRef]
- Costa R, Marotta DM, Manjavachi MN, Fernandes ES, Lima-Garcia JF, Paszcuk AF, et al. Evidence for the role of neurogenic inflammation components in trypsin-elicited scratching behaviour in mice. Br J Pharmacol. 2008;154(5):1094-103. [CrossRef]
- Alsrhani A, Raman R, Jagadeeswaran P. Trypsin induces an aversive response in zebrafish by PAR2 activation in keratinocytes. PLoS One. 2021;16(10):e0257774. [CrossRef]
- Chung K, Pitcher T, Grant AD, Hewitt E, Lindstrom E, Malcangio M. Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour. Neurobiol Pain. 2019;6:100032. [CrossRef]
- Reddy VB, Shimada SG, Sikand P, Lamotte RH, Lerner EA. Cathepsin S elicits itch and signals via protease-activated receptors. J Invest Dermatol. 2010;130(5):1468-70. [CrossRef]
- Reddy VB, Sun S, Azimi E, Elmariah SB, Dong X, Lerner EA. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat Commun. 2015;6:7864. [CrossRef]
- Andoh T, Yoshida T, Lee JB, Kuraishi Y. Cathepsin E induces itch-related response through the production of endothelin-1 in mice. Eur J Pharmacol. 2012;686[1–3]:16-21. [CrossRef]
- Nikoloudaki G, Creber K, Hamilton DW. Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Am J Physiol Cell Physiol. 2020;318(6):C1065-C77. [CrossRef]
- Hashimoto T, Mishra SK, Olivry T, Yosipovitch G. Periostin, an Emerging Player in Itch Sensation. J Invest Dermatol. 2021;141(10):2338-43. [CrossRef]
- Xing L, Chen B, Qin Y, Li X, Zhou S, Yuan K, et al. The role of neuropeptides in cutaneous wound healing: a focus on mechanisms and neuropeptide-derived treatments. Front Bioeng Biotechnol. 2024;12:1494865. [CrossRef]
- Schmelz M, Petersen LJ. Neurogenic inflammation in human and rodent skin. News Physiol Sci. 2001;16:33-7. [CrossRef]
- Hagermark O, Hokfelt T, Pernow B. Flare and itch induced by substance P in human skin. J Invest Dermatol. 1978;71(4):233-5. [CrossRef]
- Nakashima C, Ishida Y, Kitoh A, Otsuka A, Kabashima K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp Dermatol. 2019;28(12):1405-11. [CrossRef]
- Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature. 2007;448(7154):700-3. [CrossRef]
- Wan L, Jin H, Liu XY, Jeffry J, Barry DM, Shen KF, et al. Distinct roles of NMB and GRP in itch transmission. Sci Rep. 2017;7(1):15466. [CrossRef]
- Tian W, Jiang X, Kim D, Guan T, Nicolls MR, Rockson SG. Leukotrienes in Tumor-Associated Inflammation. Front Pharmacol. 2020;11:1289. [CrossRef]
- Peters-Golden M, Canetti C, Mancuso P, Coffey MJ. Leukotrienes: underappreciated mediators of innate immune responses. J Immunol. 2005;174(2):589-94. [CrossRef]
- Yasukawa K, Okuno T, Yokomizo T. Eicosanoids in Skin Wound Healing. Int J Mol Sci. 2020;21(22).
- Ramalho T, Filgueiras L, Silva-Jr IA, Pessoa AFM, Jancar S. Impaired wound healing in type 1 diabetes is dependent on 5-lipoxygenase products. Sci Rep. 2018;8(1):14164.
- Oyoshi MK, He R, Kanaoka Y, ElKhal A, Kawamoto S, Lewis CN, et al. Eosinophil-derived leukotriene C4 signals via type 2 cysteinyl leukotriene receptor to promote skin fibrosis in a mouse model of atopic dermatitis. Proc Natl Acad Sci U S A. 2012;109(13):4992-7. [CrossRef]
- Sato M, Shegogue D, Hatamochi A, Yamazaki S, Trojanowska M. Lysophosphatidic acid inhibits TGF-beta-mediated stimulation of type I collagen mRNA stability via an ERK-dependent pathway in dermal fibroblasts. Matrix Biol. 2004;23(6):353-61. [CrossRef]
- Panther E, Idzko M, Corinti S, Ferrari D, Herouy Y, Mockenhaupt M, et al. The influence of lysophosphatidic acid on the functions of human dendritic cells. J Immunol. 2002;169(8):4129-35. [CrossRef]
- Lei L, Su J, Chen J, Chen W, Chen X, Peng C. The role of lysophosphatidic acid in the physiology and pathology of the skin. Life Sci. 2019;220:194-200. [CrossRef]
- Mio T, Liu X, Toews ML, Rennard SI. Lysophosphatidic acid augments fibroblast-mediated contraction of released collagen gels. J Lab Clin Med. 2002;139(1):20-7. [CrossRef]
- Chabaud S, Marcoux TL, Deschenes-Rompre MP, Rousseau A, Morissette A, Bouhout S, et al. Lysophosphatidic acid enhances collagen deposition and matrix thickening in engineered tissue. J Tissue Eng Regen Med. 2015;9(11):E65-75. [CrossRef]
- Sadik CD, Sezin T, Kim ND. Leukotrienes orchestrating allergic skin inflammation. Exp Dermatol. 2013;22(11):705-9. [CrossRef]
- Voisin T, Perner C, Messou MA, Shiers S, Ualiyeva S, Kanaoka Y, et al. The CysLT(2)R receptor mediates leukotriene C(4)-driven acute and chronic itch. Proc Natl Acad Sci U S A. 2021;118(13).
- Andoh T, Harada A, Kuraishi Y. Involvement of Leukotriene B4 Released from Keratinocytes in Itch-associated Response to Intradermal Interleukin-31 in Mice. Acta Derm Venereol. 2017;97(8):922-7. [CrossRef]
- Andoh T, Katsube N, Maruyama M, Kuraishi Y. Involvement of leukotriene B(4) in substance P-induced itch-associated response in mice. J Invest Dermatol. 2001;117(6):1621-6. [CrossRef]
- Kittaka H, Uchida K, Fukuta N, Tominaga M. Lysophosphatidic acid-induced itch is mediated by signalling of LPA(5) receptor, phospholipase D and TRPA1/TRPV1. J Physiol. 2017;595(8):2681-98.
- Bergasa NV. Lysophosphatidic acid and atotaxin in patients with cholestasis and pruritus: Fine biology, anticipated discernme. Ann Hepatol. 2010;9(4):475-9.
- Fischer C, Schreiber Y, Nitsch R, Vogt J, Thomas D, Geisslinger G, et al. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int J Mol Sci. 2024;25(15). [CrossRef]
- Patrascu AI, Vata D, Temelie-Olinici D, Mocanu M, Gugulus DL, Marinescu M, et al. Skin Lesions with Loss of Tissue and Cutaneous-Onset Sepsis: The Skin Infection-Sepsis Relationship. Diagnostics (Basel). 2024;14(6). [CrossRef]
- Janowska A, Dini V, Oranges T, Iannone M, Loggini B, Romanelli M. Atypical Ulcers: Diagnosis and Management. Clin Interv Aging. 2019;14:2137-43. [CrossRef]
- Ladwig A, Haase H, Bichel J, Schuren J, Junger M. Compression therapy of leg ulcers with PAOD. Phlebology. 2014;29(1 suppl):7-12. [CrossRef]
- Yosipovitch G, Jackson JM, Nedorost ST, Friedman AJ, Adiri R, Cha A, et al. Stasis Dermatitis: The Burden of Disease, Diagnosis, and Treatment. Dermatitis. 2024;35(4):337-44. [CrossRef]
- Jockenhofer F, Zaremba A, Wehrmann C, Benson S, Stander S, Dissemond J. Pruritus in patients with chronic leg ulcers: A frequent and often neglected problem. Int Wound J. 2019;16(6):1464-70. [CrossRef]
- Park KY, Kim IS, Yeo IK, Kim BJ, Kim MN. Treatment of refractory venous stasis ulcers with autologous platelet-rich plasma and light-emitting diodes: a pilot study. J Dermatolog Treat. 2013;24(5):332-5. [CrossRef]
- Kaur C, Sarkar R, Kanwar AJ, Attri AK, Dabra AK, Kochhar S. An open trial of calcium dobesilate in patients with venous ulcers and stasis dermatitis. Int J Dermatol. 2003;42(2):147-52. [CrossRef]
- Reyzelman AM, Vayser D, Tam SW, Dove C. Initial clinical assessment of a novel wound management system: a case series. Adv Skin Wound Care. 2011;24(6):256-60.
- Bradbury A, Evans C, Allan P, Lee A, Ruckley CV, Fowkes FG. What are the symptoms of varicose veins? Edinburgh vein study cross sectional population survey. BMJ. 1999;318(7180):353-6. [CrossRef]
- Duque MI, Yosipovitch G, Chan YH, Smith R, Levy P. Itch, pain, and burning sensation are common symptoms in mild to moderate chronic venous insufficiency with an impact on quality of life. J Am Acad Dermatol. 2005;53(3):504-8. [CrossRef]
- Paul JC, Pieper B, Templin TN. Itch: association with chronic venous disease, pain, and quality of life. J Wound Ostomy Continence Nurs. 2011;38(1):46-54.
- Yosipovitch G, Nedorost ST, Silverberg JI, Friedman AJ, Canosa JM, Cha A. Stasis Dermatitis: An Overview of Its Clinical Presentation, Pathogenesis, and Management. Am J Clin Dermatol. 2023;24(2):275-86. [CrossRef]
- Oien RF, Hakansson A, Ovhed I, Hansen BU. Wound management for 287 patients with chronic leg ulcers demands 12 full-time nurses. Leg ulcer epidemiology and care in a well-defined population in southern Sweden. Scand J Prim Health Care. 2000;18(4):220-5. [CrossRef]
- Shevchenko A, Valdes-Rodriguez R, Yosipovitch G. Causes, pathophysiology, and treatment of pruritus in the mature patient. Clin Dermatol. 2018;36(2):140-51. [CrossRef]
- Labib A, Rosen J, Yosipovitch G. Skin Manifestations of Diabetes Mellitus. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth (MA)2000.
- Kirsner RS, Yosipovitch G, Hu S, Andriessen A, Hanft JR, Kim PJ, et al. Diabetic Skin Changes Can Benefit from Moisturizer and Cleanser Use: A Review. J Drugs Dermatol. 2019;18(12):1211-7.
- Kim JH, Yoon NY, Kim DH, Jung M, Jun M, Park HY, et al. Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end-product. Exp Dermatol. 2018;27(8):815-23. [CrossRef]
- Yosipovitch G, Mills KC, Nattkemper LA, Feneran A, Tey HL, Lowenthal BM, et al. Association of pain and itch with depth of invasion and inflammatory cell constitution in skin cancer: results of a large clinicopathologic study. JAMA Dermatol. 2014;150(11):1160-6.
- Mills KC, Kwatra SG, Feneran AN, Pearce DJ, Williford PM, D’Agostino RB, et al. Itch and pain in nonmelanoma skin cancer: pain as an important feature of cutaneous squamous cell carcinoma. Arch Dermatol. 2012;148(12):1422-3. [CrossRef]
- Tilley CP, Fu MR, Van Cleeve J, Crocilla BL, Comfort CP. Symptoms of Malignant Fungating Wounds and Functional Performance among Patients with Advanced Cancer: An Integrative Review from 2000 to 2019. J Palliat Med. 2020;23(6):848-62. [CrossRef]
- Liu X, Xie JQ, Liao ZY, Wei MJ, Lin H. Changes in wound symptoms and quality of life of patients with newly diagnosed malignant fungating wounds. J Wound Care. 2024;33(4):262-70. [CrossRef]
- Maida V, Ennis M, Kuziemsky C, Trozzolo L. Symptoms associated with malignant wounds: a prospective case series. J Pain Symptom Manage. 2009;37(2):206-11. [CrossRef]
- Chen A, Dusza S, Bromberg J, Goldfarb S, Sanford R, Markova A. Quality of Life in Patients with Malignant Wounds Treated at a Wound Care Clinic. Res Sq. 2024. [CrossRef]
- Ye C, Li W. Cutaneous vasculitis in a patient with ankylosing spondylitis: A case report. Medicine (Baltimore). 2019;98(3):e14121. [CrossRef]
- Bhatt DM, Bhamburkar S, Madke B, Jangid SD, Khan A. Adalimumab in the Treatment of Recalcitrant Livedoid Vasculopathy. Cureus. 2023;15(12):e50053.
- Altieri M, Vaziri K, Orkin BA. Topical tacrolimus for parastomal pyoderma gangrenosum: a report of two cases. Ostomy Wound Manage. 2010;56(9):56-9.
- Flora A, Pham J, Woods JA, Radzeika M, Dickson H, Malone M, et al. The Clinical and Molecular Response of Pyoderma Gangrenosum to Interleukin 23 Blockade: Result from a proof-of-concept open-label clinical trial. J Invest Dermatol. 2024. [CrossRef]
- Neoh CY, Tan AW. Trigeminal trophic syndrome: an unusual cause of a non-healing cheek ulcer. Singapore Med J. 2007;48(1):e22-4.
- Mohammadi A, Khojasteh A, Khojasteh F. Trigeminal Trophic Syndrome as an Unusual Cause of Chronic and Non-Healing Ala Nasi Ulcer: A Case Report. World J Plast Surg. 2020;9(3):346-8. [CrossRef]
- Pala E, Tasar PT, Soguksu AO, Karasahin O, Sevinc C. Dermatological Diseases in Palliative Care Patients in a University Hospital: A Prospective Study. J Palliat Care. 2024;39(1):75-81. [CrossRef]
- Sahoo SP, Misra J, Subudhi BS, Panda AK. Tubercular lesion of the foot presenting as epithelioma. Singapore Med J. 2013;54(3):e59-61. [CrossRef]
- Elas D, Swick B, Stone MS, Miller M, Stockdale C. Botryomycosis of the vulva: a case report. J Low Genit Tract Dis. 2014;18(3):e80-3. [CrossRef]
- Gelman A, Valdes-Rodriguez R, Bhattacharyya S, Yosipovitch G. A case of primary cutaneous mucormycosis caused by minor trauma. Dermatol Online J. 2015;21(1).
- Samaranayake TN, Dissanayake VH, Fernando SD. Clinical manifestations of cutaneous leishmaniasis in Sri Lanka - possible evidence for genetic susceptibility among the Sinhalese. Ann Trop Med Parasitol. 2008;102(5):383-90. [CrossRef]
- Li D, Zhang M, Yin J, Chen K. A Case of Secondary Syphilis with the Extragenital Chancre of the Lips and Tongue. Clin Cosmet Investig Dermatol. 2023;16:2185-8. [CrossRef]
- Has C, Bauer JW, Bodemer C, Bolling MC, Bruckner-Tuderman L, Diem A, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol. 2020;183(4):614-27. [CrossRef]
- Alheggi A, Alnutaifi R, Alkhonezan M, Almudawi N, Alsuhaibani R, Moons P, et al. Measuring the impact of pruritus in patients with epidermolysis bullosa: evaluation with an itch-specific instrument. Dermatol Reports. 2023;15(4):9700.
- Snauwaert JJ, Yuen WY, Jonkman MF, Moons P, Naulaers G, Morren MA. Burden of itch in epidermolysis bullosa. Br J Dermatol. 2014;171(1):73-8. [CrossRef]
- Mellerio JE, Pillay EI, Ledwaba-Chapman L, Bisquera A, Robertson SJ, Papanikolaou M, et al. Itch in recessive dystrophic epidermolysis bullosa: findings of PEBLES, a prospective register study. Orphanet J Rare Dis. 2023;18(1):235. [CrossRef]
- Papanikolaou M, Onoufriadis A, Mellerio JE, Nattkemper LA, Yosipovitch G, Steinhoff M, et al. Prevalence, pathophysiology and management of itch in epidermolysis bullosa. Br J Dermatol. 2021;184(5):816-25. [CrossRef]
- Aala WJF, Hou PC, Hong YK, Lin YC, Lee YR, Tu WT, et al. Dominant dystrophic epidermolysis bullosa is associated with glycolytically active GATA3+ T helper 2 cells which may contribute to pruritus in lesional skin. Br J Dermatol. 2024;191(2):252-60. [CrossRef]
- Papanikolaou M, Nattkemper L, Benzian-Olsson N, Liu L, Guy A, Lu H, et al. Th2 response drives itch in dystrophic epidermolysis bullosa pruriginosa: A case-control study. J Am Acad Dermatol. 2024;91(1):130-3. [CrossRef]
- Lee SG, Kim SE, Jeong IH, Lee SE. Mechanism underlying pruritus in recessive dystrophic epidermolysis bullosa: Role of interleukin-31 from mast cells and macrophages. J Eur Acad Dermatol Venereol. 2024;38(5):895-903. [CrossRef]
- Chiaverini C, Kandemir S, Hubiche T, Bourrat E, Hovnanian A. Efficacy of dupilumab against pruritus in dystrophic epidermolysis bullosa: Real-life data from a retrospective bicentric study. J Eur Acad Dermatol Venereol. 2024. [CrossRef]
- Gewert S, Davidovic M, Has C, Kiritsi D. Dupilumab improves itch and blistering in different subtypes of epidermolysis bullosa. J Dtsch Dermatol Ges. 2024;22(8):1139-44. [CrossRef]
- Nguyen HH, Shinkuma S, Hayashi R, Katsumi T, Nishiguchi T, Natsuga K, et al. New insight of itch mediators and proinflammatory cytokines in epidermolysis bullosa. J Cutan Immunol All. 2022;5(3):78-87. [CrossRef]
- Reimer-Taschenbrecker A, Hess M, Davidovic M, Hwang A, Hubner S, Hofsaess M, et al. IL-6 levels dominate the serum cytokine signature of severe epidermolysis bullosa: A prospective cohort study. J Eur Acad Dermatol Venereol. 2025;39(1):202-9. [CrossRef]
- Esposito S, Guez S, Orenti A, Tadini G, Scuvera G, Corti L, et al. Autoimmunity and Cytokine Imbalance in Inherited Epidermolysis Bullosa. Int J Mol Sci. 2016;17(10). [CrossRef]
- Darbord D, Hickman G, Pironon N, Barbieux C, Bonnet-des-Claustres M, Titeux M, et al. Dystrophic epidermolysis bullosa pruriginosa: a new case series of a rare phenotype unveils skewed Th2 immunity. J Eur Acad Dermatol Venereol. 2022;36(1):133-43. [CrossRef]
- Calvo M, Tejos-Bravo M, Passi-Solar A, Espinoza F, Fuentes I, Lara-Corrales I, et al. Pregabalin for Neuropathic Pain and Itch in Recessive Dystrophic Epidermolysis Bullosa: A Randomized Crossover Trial. JAMA Dermatol. 2024;160(12):1314-9.
- Danial C, Adeduntan R, Gorell ES, Lucky AW, Paller AS, Bruckner A, et al. Prevalence and characterization of pruritus in epidermolysis bullosa. Pediatr Dermatol. 2015;32(1):53-9. [CrossRef]
- van Scheppingen C, Lettinga AT, Duipmans JC, Maathuis CG, Jonkman MF. Main problems experienced by children with epidermolysis bullosa: a qualitative study with semi-structured interviews. Acta Derm Venereol. 2008;88(2):143-50.
- Jeon IK, On HR, Kim SC. Quality of Life and Economic Burden in Recessive Dystrophic Epidermolysis Bullosa. Ann Dermatol. 2016;28(1):6-14. [CrossRef]
- Bowers S, Franco E. Chronic Wounds: Evaluation and Management. Am Fam Physician. 2020;101(3):159-66.
- Weisshaar E, Szepietowski JC, Dalgard FJ, Garcovich S, Gieler U, Gimenez-Arnau AM, et al. European S2k Guideline on Chronic Pruritus. Acta Derm Venereol. 2019;99(5):469-506. [CrossRef]
- Kirsner RS, Andriessen A, Hanft JR, Hu S, Marston WA, Ruotsi LC, et al. Improvement of Chronic Venous Insufficiency Related Leg Xerosis and Dermatitis With Ceramide-Containing Cleansers and Moisturizers: An Expert-Based Consensus. J Drugs Dermatol. 2024;23(2):61-6.
- Ahmed AA, Eltregy S, Kandil MI. Honey dressing: a missed way for orthopaedic wound care. Int Orthop. 2022;46(11):2483-91. [CrossRef]
- Liu J, Shen H. Clinical efficacy of chitosan-based hydrocolloid dressing in the treatment of chronic refractory wounds. Int Wound J. 2022;19(8):2012-8. [CrossRef]
- Niculescu AG, Georgescu M, Marinas IC, Ustundag CB, Bertesteanu G, Pinteala M, et al. Therapeutic Management of Malignant Wounds: An Update. Curr Treat Options Oncol. 2024;25(1):97-126. [CrossRef]
| Mediator | Role in wound healing | Role in itch |
|---|---|---|
| CXCL10 | ||
| IL-4 & IL-13 |
|
1. Directly activate skin neurons involved in itch-sensory pathways [115]2. Sensitize DRG neurons to itch stimuli [115,116]3. Neuronal IL-4Rα signaling is necessary for chronic itch [115] |
| IL-31 | 1. Induces type I collagen production [117]2. Promotes inflammation though induction of chemotactic factors production [118]3. Promotes tissue remodeling though induction of MMP production [118] | |
| Histamine | ||
| Serotonin (5-HT) |
|
|
| Proteases | Tryptase Trypsin
|
Tryptase |
| Periostin | ||
| Neuropeptides (incl. but not limited to substance P, CGRP, GRP, NMB, NPY) |
||
| Lipid mediators | LeukotrienesLPA | Leukotrienes
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
